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Introduction

Circuit depth

Quantum technology
challenges

Number of input 
qubits
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Limited in the current technologiesLimited due to qubit decoherence



Introduction 

Time
Complexity

Depth: 
A parameter to consider the execution time of 
a circuit: Number of Logical levels 
Gates that can be performed in parallel consider 
as one Logical Level

Space
Complexity

Ancillae: 
Helper qubits which are added to the circuit to 
reduce Circuit Depth
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“Parallel quantum computation and quantum codes”, 
SIAM Journal on computing, 2001 [2]
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NC
Efficient parallel class in

classical computation

QNC

Quantum analog of the class NC

Logarithmic 
depth 

circuits by 
adding 
ancillae



Boolean Reversible circuits

Parallel synthesis 
of Boolean 

reversible circuits
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Applications in quantum computing



Basic Concepts
 Boolean reversible function

 n-input, n-output, 

 Unique output assignment 

 Example: a 3-input, 3-output 

• function: 2,7,0,1,6,3,4,5
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f3 f2f1a3a2a1

2 0 1 0 0 0 0 0 

7 1 1 1 1 1 0 0 

0 0 0 0 2 0 1 0 

1 1 0 0 3 1 1 0 

6 0 1 1 4 0 0 1 

3 1 1 0 5 1 0 1 

4 0 0 1 6 0 1 1 

5 1 0 1 7 1 1 1 



Basic Concepts
 Permutation function:

 Every permutation function can be written uniquely, except for 
the order, as a product of disjoint cycles
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f3 f2f1a3a2a1

1 1 00 0 0 0 0 

7 1 1 1 1 1 0 0

4 0 0 12 0 1 0 

000 0 3 1 1 0 

6 0 1 1 4 0 0 1 

3 1 1 0 5 1 0 1 

20 106 0 1 1 

5 1 0 1 7 1 1 1 

1

7

53

0
2

4

6
F = (0,1,7,5,3) (2,4,6)



Basic Concepts
 Reversible gate

 Various reversible gates

 CmNOT gates

• NOT, CNOT, C2NOT (Toffoli), …

– Positive controls

– Negative controls

 Controlled-V

 Controlled-V+
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Basic Concepts
 Elementary gates:

 NOT, CNOT, controlled-V, and controlled-V+

 Quantum cost:
 The number of elementary gates required for simulating a 

given gate

 Reversible circuit:
 A set of reversible gates 
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Reversible circuits:  Synthesis
IWLS 2011
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Gate-level 
circuits

Physical 
Implementation

11

4

2
6

7

5

3

0

1



Previous work: 
“Synthesis of Reversible Logic Circuits”, TCAD, 2003.  [12]

 Decomposes every cycle with length larger than two to a set of 
pairs of disjoint cycles with length two :Transposition

(b0, b1, b2, …, bk) = (b0, b1 )(bk-1, bk)(b0, b2, b3, …, bk-1 )

 Synthesizes each disjoint transposition pair (a, b)(c, d) using 
πκ0 π -1 circuit
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π κ0 π -1
2n - 4
2n - 3
2n - 2
2n - 1

2n - 3
2n - 4
2n - 1
2n - 2

a
b
c
d

b
a
d
c



Previous work: 
“Reversible circuit synthesis using a cycle-based approach”, JETC, 2010.  [9]

 k-cycle-based synthesis algorithm: set of cycles of length less than 6

 The k-cycle method consists of two main parts:

 Synthesis of Seven Building Blocks (Elementary Cycles): 

• a pair of 2-cycles

• a single 3-cycle

• a pair of 3-cycles 

• a single 5-cycle

• a pair of 5-cycles

• a pair of 4-cycles

• a single 2-cycle (4-cycle) 

followed by a single 4-cycle (2-cycle)
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Cycle (2,2)

Cycle (3,3)

Cycle (3)

Cycle (5)

Cycle (5,5) Cycle (4,4)

Cycle (4,2)



Previous work: 
“Reversible circuit synthesis using a cycle-based approach”, JETC, 2010.  [9]

 k-cycle-based synthesis algorithm: set of cycles of length less than 6

 The k-cycle method consists of two main parts:

 Decomposition: 
• A given k-cycle should be decomposed into a set of elementary cycles

• It was shown that an arbitrary permutation can be decomposed into a 
set of elementary cycles: 
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Elementary
Cycle

Elementary
Cycle

Elementary
Cycle

Elementary
Cycle



Parallel Cycle-Based Synthesis Method
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 Goal:  To find distinct subsets in input specification
 To perform them in parallel 



Parallel Structure
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Adding 2n ancillae

Copying the input qubits to the ancillae

Distributing disjoint cycles in 3 subsets

Using cycle-based  synthesis method for each subset

Transferring the output to the main qubits

Parallel 
Structure 

Steps

Parallel 
Structure 

Steps

2

1

3

5

4
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Adding 2n ancillae1
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Copying the input qubits to the ancillae2
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F = (1,3)(7,10)(0,4)(6,15)(2,8)(5,13)
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Using cycle-based  synthesis method for each subset4

F = (1,3)(7,10)(0,4)(6,15)(2,8)(5,13)
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Using cycle-based  synthesis method for each subset4
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Using cycle-based  synthesis method for each subset4
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Using cycle-based  synthesis method for each subset4
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F = (1,3)(7,10)(0,4)(6,15)(2,8)(5,13)

Transferring the output to the main qubits5
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Cycle-Based Synthesis
 Three main differences with [9]:
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Sequential-Cycle Structure

Cycle Operating Interval

Using Negative Controls

To improve 
Quantum Cost 

and 
Depth
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Cycle-Based Synthesis

Π-1

Structure in 
[9], [12]

Sequential-Cycle Structure
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Cycle-Based Synthesis

Cycle Operating Interval Example 
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Cycle-Based Synthesis

Using Negative Controls:

Elementary 
Cycle Length Total cost Cost/Length Cost/Length

[9]

(2,2) 4 32n-66 8n-16.5 8.5n-16

(3) 3 30n-80 10n-26.6 10.7n-27.3

(3,3) 6 36n-60 6n-10 6.3n-15.3

(4,2) 6 48n-152 8n-25.3 8.3n-20.3

(4,4) 8 52n-136 6.5n-17 7n-15.7

(5) 5 58n-140 11.6n-28 12n-26

(5,5) 10 56n-92 5.6n-9.2 6.4n-5.4



Experimental Results

June 3, 2011

IWLS 2011

29

Benchmark n Garbage QC Depth QC [9] Depth [9] Imp. QC Imp. 
Depth

hwb8 8 16 7400 2316 6940 6205 -6.6 62.6

hwb9 9 18 15376 4800 16173 14312 4.9 66.4

hwb10 10 20 38388 11787 35618 31908 -7.7 63.0

hwb11 11 22 89434 27079 90745 81440 1.4 66.7

hwb12 12 24 208992 64727 198928 184210 -5.0 64.8

hwb13 13 26 431054 131166 436305 397147 1.2 66.9

nth_prime7 7 14 3108 1651 3172 2782 2.0 40.6

nth_prime9 9 18 17744 15202 17975 15767 1.2 3.5

nth_prime10 10 20 43026 14446 40301 35511 -6.7 59.3

nth_prime11 11 22 93548 40316 95433 85093 1.9 52.6

nth_prime12 12 24 217294 140507 208227 187006 -4.3 24.8

nth_prime13 13 26 469422 281129 474660 431644 1.1 34.8

Average -1.3 50.5



Future Directions
 Working on the improvement of the resulting 

synthesized circuits

 By Better distribution algorithm 
• In terms of depth or quantum cost

 By developing level compaction algorithms
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Conclusions
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 A Boolean reversible logic synthesis method with
logical-depth optimization is proposed

 Cycle representation was chosen to distinct parallel
subsets in input specification

 The cycle-based synthesis method equipped with
depth-consideration was used

 The number of logical levels can be improved by up
to 67% by adding 2n ancillae with less than 2%
increase in the quantum cost on average
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