Logical-Depth-Oriented Reversible Logic Synthesis

Mona Arabzadeh, Morteza Saheb Zamani, Mehdi Sedighi and Mehdi Saeedi
Quantum Design Automation Lab, Computer Engineering Department
Amirkabir University of Technology
Tehran, Iran
{m.arabzadeh, szamani, msedighi, msaeedi} @aut.ac.ir

Abstract—Boolean reversible logic has applications in various
research areas including quantum computing. In this paper, a
synthesis method for reversible logic is proposed which concen-
trates on two objectives, namely logical depth and quantum cost.
To this end, the input specification is represented in a cycle form,
and a set of three distinct subsets of input cycles are distinguished
for parallel execution where the first set is executed on the first
n input qubits and the remaining two sets are applied on the
set of 2n ancillae. The final results are constructed on the main
qubits. For each set, the cycle-based synthesis method is applied
equipped with negative-control gates and parallel gate execution.
Experimental results on the attempted benchmarks demonstrate
more than 50% improvement in the logical depth with less than
2% increase in the quantum cost on average.

I. INTRODUCTION

In the current quantum computing technologies [1], qubits
can hold their states only for a limited period of time due
to decoherence. As such, implementing parallelized quantum
circuits attracts research interest. Quantum circuit parallelism
has been studied in various papers [2], [3] where a tradeoff
between space complexity (i.e., ancillae) and time complexity
(i.e., circuit depth) is discussed.

QNC is defined as the quantum analog of the efficient
parallel class NC in classical computation [2]. It has been
shown that various classes of circuits consisting of CNOT,
Hadamard and controlled 7-shifts can be parallelized to a log-
arithmic depth. It was also proved that any circuit consisting
of CNOT gates can be parallelized to O(logn) depth with
O(n?) ancillae. Hence, any family of such circuits is in QNC.

To parallelize quantum circuits, an automated technique was
developed in [3] which translates a quantum circuit from the
quantum circuit model of computation to the measurement-
based model [4] in the presence of ancillae. The authors dis-
tinguished circuits with clifford gates of polynomial depth can
be parallelized to a logarithmic depth by adding a polynomial
number of ancillae.

In [5], a post-process algorithm was proposed to reduce
the logical depth of a given quantum circuit. To do so,
a set of circuit templates was introduced and applied to
reduce quantum cost and logical depth. Additionally, a greedy
algorithm was suggested to compact the number of circuit
levels.

Various techniques were used by different researchers for
particular quantum circuits too. Fast implementation of quan-
tum modular exponentiation was discussed in [6]. It has been
shown that the time complexity of modular exponentiation

can be reduced from O(n?®) to O(log®n) with the aim of
O(n?) ancillae. In [7], an implementation of quantum carry-
lookahead adder with O(logn) depth was introduced which
uses O(n) ancillae. Applying a post-process algorithm such
as [5] can improve the result of [7] further.

While quantum cost is the main objective of reversible
synthesis algorithms [8], [9], they do not consider logical
depth explicitly. In other works [10], [11], a large number
of ancillae was used which can restrict their usage in the
current quantum technologies. The aim of this paper is to
consider both logical depth and quantum cost in a synthesis
algorithm for reversible logic, instead of applying a post-
process method, without significant increase in quantum cost.
To this end, the cycle representation of a given specification is
considered and input cycles are partitioned into three subsets.
Additionally, 2n ancillae are added to an n-input circuit. One
subset is synthesized on input qubits and the other subsets
are synthesized on the other sets of ancillae. The cycle-based
synthesis algorithm [9] is applied with explicit consideration
of circuit depth for each subset. Our experimental results show
the logical depth of a given circuit can be improved by up to
67% using the proposed method.

The rest of the paper is organized as follows. Basic concepts
are explained in Section II. Related work on reversible logic
synthesis which is used in our method is described in Section
III. The proposed cycle-based synthesis method is introduced
in Section IV. Experimental results are reported in Section V
and finally, Section VI concludes the paper.

II. PRELIMINARIES

Basic concepts of reversible logic synthesis are described
in the following subsections:

A. Permutation Function

Let B be any set and define f : B — B as a one-to-
one and onto transition function. The function f is called
a permutation function, as applying f to B leads to a set
with the same elements of B and probably in a different
order. If B = {1,2,3,...,m}, there exist two elements b;
and b; belonging to B such that f(b;) = b; . A k-cycle
with length k is denoted as (b1, ba, ..., b;) which means that
f(b1) = ba, f(by) = b3, ..., and f(bg) = by. A given k-cycle
(b1, ba, ...,b) could be written in many different ways, such
as (bo, b3, ...bg, b1). Cycles ¢; and ¢y are called disjoint if they
have no common members. Any permutation can be written

uniquely, except for the order, as a product of disjoint cycles.
If two cycles c¢; and co are disjoint, they can commute, i.e.,
cice = cacy. A cycle with length two is called transposition. A
cycle or a permutation is called even (odd) if it can be written
as an even (odd) number of transpositions. A k-cycle is even
(odd) if k£ is odd (even).

B. Reversible Function

An n-input, n-output, fully specified Boolean function f :
B — B over variables X = {aq,...,a,} is called reversible
if it maps each input pattern to a unique output pattern.
Each reversible function can be considered as a permutation
function. In this paper, n is particularly used to refer to
the number of inputs/outputs of a circuit (i.e., circuit size).
Additional lines to a circuit is called ancillae.

C. Reversible Gate

An n-input, n-output gate is reversible if it realizes a
reversible function. Previously, various reversible gates with
different functionalities have been proposed. Among them,
multiple-control Toffoli gate has been used by different syn-
thesis methods [12], [13], [8], [14], [9], [15] and various
optimization methods were introduced [16], [5], [17], [18].
A multiple-control Toffoli gate can be written as C"NOT(C;
t), where C' = {z;,,...,2;,, } C X is the set of control lines
and t = {z;} with C Nt = 0 is the rarget line. The value of
the target line is inverted if all of the control lines have the
required zero or one values. A control line may be positive
(negative) which means that if its value is one (zero), the target
is inverted. For m=0 and m=1, the gates are called NOT and
CNOT, respectively. For m=2, the gate is called C2NOT or
Toffoli.

D. Quantum Cost

In addition to the C"™NOT gate, several other gate types
have been proposed in the literature [1]. Controlled-V
(controlled-VT) changes the value on its target line using the
transformation given by the matrix V (V1) if the control line
has the value of 1.

I+i| 1 —i p_l—=ip1
V= 9 {—i 1}7‘/ 9 {z 1]

The gates NOT, CNOT, controlled-V, and controlled-V* (with
positive controls) have been efficiently simulated in some
quantum computer technologies [19]. These gates are consid-
ered as elementary gates for reversible Boolean functions. The
number of elementary gates required for simulating a given
gate is called quantum cost. A reversible circuit includes a
set of reversible gates and each reversible gate consists of
several elementary gates. The simulation of multiple-control
Toffoli gates are studied in different works [20], [5]. In our
work, the results of [5] are used for calculating the number
of elementary gates in C"*NOT gates with both positive and
negative controls. Multiple-control Toffoli gates with both
positive and negative controls are used in some synthesis and
optimization methods of reversible circuits [21], [14], [17].

Fig. 1. A simplified and a level-compacted 3-input full adder [5].

E. Logical Depth

In a reversible circuit, elementary gates which can be
applied in parallel are considered as one logic level [5]. The
number of logical levels in a circuit is called logical depth
or depth in short. The depth of a circuit is less than or equal
to the number of elementary gates in that circuit. Decreasing
the circuit depth reduces the execution time of a given circuit
which mitigates the effect of decoherency. Figure 1 shows
a simplified and a level-compacted circuit for a 3-input full
adder [5]. The logical levels of this circuit are separated by
dash lines. The depth of this circuit is 4 with 6 elementary
gates (i.e., quantum cost = 6). The depth 4 is optimal here
since four qubits are involved in the 4th qubit [5].

III. PREVIOUS WORK

Several synthesis methods have been proposed during the
recent years most of which use heuristic methods with dif-
ferent kinds of input representations such as truth table [22],
[14], binary decision diagrams [10], positive polarity Reed-
Muller expansion [13], [8] and cycle forms [12], [9], [23].
Among them, the methods in [12], [9] and [23] use the cycle
form of the input specification which is used in our work to
decompose the input specification into subsets to be applied in
parallel. In cycle representation, fixed rows of the truth table
are removed and are not considered in the synthesis process.
This helps to save space and also to eliminate the gates which
may change and then fix the values of these rows. Additionally,
cycle representation distinguishes disjoint subsets which is
particularly important in our work for parallel synthesis.

In [12], an NCT-based synthesis method is proposed. In
NCT-based synthesis, the library of gates consists of NOT,
CNOT and Toffoli gates. In this method, first 0 and 2¢ terms
are positioned at their right locations. Then, the resulted k-
cycle is decomposed into a set of transpositions. Each pair
of transpositions (a, b)(c,d) is converted into specific terms
by a circuit called 7 circuit. The specific terms are 2" — 4,
2" —3, 2" —2 and 2" —1. Then a pre-defined circuit, called kg,
implements a 2-cycle over those specific terms i.e., (2" — 4,
2" —3) (2™ — 2, 2" —1). After that, the inverse 7 circuit, 771,
is applied to convert the terms into their primary states a, b, ¢
and d. Hence, the permutation (a, b)(c, d) is implemented. For
each pair of transpositions, the same 7rom ! circuit should
be applied. The final circuit is a cascade of such sub-circuits.

In [9], a k-cycle-based synthesis algorithm was proposed.
The authors proposed a set of cycles of lengths less than 6.
The k-cycle method consists of two main parts:

as ay a
flo 0 1
filo 0 0 Q(fo’fl)ﬁ@
L0 1 0
501 0 0 £ f
g0 11 ':>(3’ ‘OH@
511 0 1
)1 1 1 |:|'> (fs,) —>
1 1 0

Fig. 2. An example of distinct subsets in a truth table with three variables.

o Building Blocks Synthesis: Direct synthesis of seven
building blocks consisting of a pair of 2-cycles, a single
3-cycle, a pair of 3-cycles, a single 5-cycle, a pair of
4-cycles and a single 2-cycle (4-cycle) followed by a
single 4-cycle (2-cycle) was proposed in this part. These
building blocks were called elementary cycles in this
work. For each building block, the structure mrom ! was
considered and a synthesis algorithm was proposed for
each one.

e Decomposition: A given k-cycle should be decomposed
into a set of elementary cycles. In this part the decom-
position procedure was described and it was shown that
an arbitrary permutation can be decomposed into a set
of elementary cycles. The effect of decomposition on the
result of cycle-based algorithm was considered in [23].

The k-cycle-based synthesis algorithm first fixes the posi-
tions of 0 and 2° terms and then decomposes the resulted
k-cycle into elementary cycles. After that, direct synthesis of
each elementary cycle with wrom ! structure are performed
to synthesize the given permutation.

IV. PARALLEL CYCLE-BASED SYNTHESIS METHOD

In this section the main structure of our proposed synthesis
method is introduced. The main goal of the method is to
find distinct subsets in an input cycle-based specification
and perform their constructions in a parallel manner. Cycle
representation is used since disjoint cycles represent distinct
subsets.

Example 1: Figure 2 shows the main idea of using par-
allelism in Boolean reversible circuit synthesis according to
the input specification. The input specification of a reversible
specification with three variables is given in truth table format.
The cycle form of this permutation can be shown by (fo, f1),
(fs, fa) and (fs, f7) transpositions. Each transposition can be
synthesized independently in one subset in parallel with other
transpositions.

Each subset is synthesized using k-cycle-based method in
[9] with three main differences:

L structure

e It uses a structure different from the mwrom™
(explained in subsection III).
o The input terms of k¢ circuits are changed to improve

the logical depth.

Van)
A\
2

&
a
A%
A
g
&

S

=
l&

Sz

coco
.
U
®
Qo

S3

(a) (b)

Fig. 3. The preparation circuit (a), and the terminal circuit (b) in the proposed
parallel circuit structure.

o Gates with negative control are also used in both kg and
7 circuits for quantum cost reduction.

These three items are explained in subsection IV-A2 in more
details.

The input cycles of a given specification are partitioned into
three main subsets in the proposed method. The number of
subsets can be extended up to the number of disjoint input
cycles if sufficient qubits exist.

A. Parallel Structure

The synthesized circuit is constructed from three main parts.
The first part or preparation circuit prepares the input data of
the garbage lines. The middle circuit, which is the main part of
the synthesis algorithm, is organized in three subsets and the
input cycles of each subset are synthesized separately using
cycle-based method. Finally, the terminal circuit takes the n
outputs of the circuit from the 3n outputs of the structure and
moves them to the first n qubits. In the rest of this section,
each part of the parallel structure is discussed in more details.

1) Preparation Circuit: The preparation circuit is made by
2n CNOT gates with two logical levels. These gates copy the
input qubits to the zero-initiated ancillae. Figure 3-a shows the
preparation circuit for a circuit with n qubits and 2n added
ancillae.

2) Middle Circuit: The middle circuit is organized in three
subsets. The input cycles of each subset are synthesized using
the k-cycle approach with the following remarks:

o Sequential-cycle structure: In the k-cycle synthesis ap-
proach proposed in [9], the mrom ™! structure is used.
We propose a new structure in which 7k circuits come
first and then all 7! circuits are placed in the reverse
order after them. Note that the input terms of the second
cycle (and as a result, all other cycles after that) should
be computed from the applied gates in the 7 circuits up
to that cycle. Therefore, the last I1-! circuit, which is the
chain of all 7! circuits, may have redundant functions
and may be simplified. Figure 4 shows the sequential-
cycle structure in comparison to the previously used one.

e Cycle operating interval: In the proposed algorithm, the
interval in which the cycle is implemented in k¢ circuits

-1 -1
T (xy) T (mn)

Txy) || Kox.y) T(m,n) || Ko(m,n)

o

L3

L]
vee

(@

eoe

-1 -1 -
Txy) || Koxy) || Tmn) || Kogm,n) T mn) || T @y |2

(b)

Fig. 4. The structure used in [12] and [9] (a), and sequential-cycle structure (b).

s P P

Top H :
w v o o
a3 A 9—
Cycle operating A ——
interval A1
A2
A
Bottom H H
Ve A o
(a) (b)

Fig. 5. The k(2,2 circuit in [9] (a), and the proposed rq(2,2) circuit (b).

is limited and stands between two areas, so this chance
is given to each input term to reach to the specific term
in kg circuit in a parallel manner from two sides. Figure
5 shows the (2,2 circuit. The cycle interval and the top
and bottom parts are illustrated in Fig. 5-b.

Example 2: For converting (11100111) to (00100100)
where the second term is the specific term of kg circuit,
two logical levels are sufficient in the m circuit; each level
with two CNOT gates as shown in Fig. 6.

e Negative controls: In our elementary cycles, negative
controls are used in k¢ and also in 7 and 7! circuit
implementations to reduce the quantum cost. It has been
studied in [5] that multiple-control Toffoli gates with
negative controls can be simulated by elementary gates
in the same manner as those with all positive controls.
Therefore, negative controls are used as an abstract model
and can be used in high-level synthesis. Since 2° terms
cannot be fixed before the synthesis of input cycles
as in the k-cycle approach (according to the proposed
parallelized structure), negative controls are needed for
converting input terms to specific terms in kg circuit (i.e.,
in some cases there is no 1 in the term to be used as
positive control for CNOT or Toffoli gates in the synthesis
algorithm).

as

ae

ag

n Ko(2,2)

Fig. 6. An example of 7 circuit with depth considerations.

3) Terminal Circuit: The two output sets of our three
main subsets keep their input values and the other output
set produces the original output of the circuit. The terminal
circuit takes the outputs from the main three subsets using the
circuit in Fig. 3-b and transfers the correct output to the first
qubits. This circuit is constructed from 2n CNOT gates with
two logical levels.

B. Elementary Cycles

In this subsection the elementary cycles which are used in
our method are introduced. The differences of our internal
structures with the k-cycle-based method in [9] are attributed
to these elementary cycles. Input terms of «(circuits for each
cycle are listed below:

o Cyclez 9 :
(2k:+27 2k+2 + 2k71)(2k+2 + Qk’ 2k+2 4 2k: 4 2’671)
. CyCle(3) :
(2k—17 2k+1 + 2k—17 2k+1 + 2k + 2k—1)
. CyClC 3,3) -
(2k—1(, 2k)+1 + 2k—1, Qk-‘rl + 2k¢ + 2k:—1)
(2k+2 4 2k—17 2k+2 + 2k+1 + 21@—17 2k‘+2 + 2k+1 4 2k +
2k71>
o Cycle(y o) :
(2k+ZE 2k)+2 + 2k71’ 2k+2 + 2]@) 2k+2 + 2k 4 21{:71)
(2k+2 + 2k + 2k—1 + 2]€—27 2k+2 + 2k—1 + 2k—2)

a

A1
ak Ak-1 ag
A

A2 Akl A2

bbbt

I S S
(@ (b (©

Fig. 7. The Kqg(2,2), Ko(3) and kq(3,3) circuits.

. Cycle(474) :
(2k+2’ 2k+2 4 2k72’ 2k+2 4 2k71’ 2k+2 4 2k71 T 2k72)
(2k+2+2k’2k+2+2k+2k‘72’2k+2+2k‘+2k7172k+2+
2k 4 2k=1 4 oh=2)

. CyCle5 :
(2k+25 2)k+2 + 2k—1 + 2k—272k+2 + 2k—272k+2 +
2/&’—17 2k+2 + 2k + 2k—1 + 2k—2)

. Cycle 5,5) -
(2k+ZE 2k)+2 4 2k—2 4 2k—3,2k+2 + 2k‘—3’2k+2 4
2k72,2k+2+2k71+2k72+2k73)(2k+2+2k’2k+2+2k+
2k72+2k7372k+2+2k+2k73’2k+2 +2k +2k72’2k+2+
2k 4 2k 4 okh=2 4 9h=3)

Figures 7-9 show the kg circuits for the elementary cycles
of our synthesis algorithm. Table I summarizes the maximum
quantum cost needed for implementing each elementary cycle.
Cost/length values are reported for the proposed method and
the method in [9] in the table. It can be seen that by using
negative controls in the synthesis of elementary cycles, the
maximum cost of cycle implementation is reduced for each
cycle.

Consider (ay,...ag+205+10Kak—1...a1) binary representation
model for each term where a; is the least significant variable
in an n-variable function. For the input cycles (a,b)(c,d),
for the 7 circuit, at most n NOT gates are used to convert
the first term a to (0...1000...0) and 3n CNOT gates (with
at most three CNOT gates with negative control) are used to
convert the changed input b to (0...1001...0), ¢ to (0...1010...0)
and d to (0...1111...0). At last, one Toffoli gate is used to
convert the last term to (0...1011...0). Then, the xg circuit
of Cycle(z) with the quantum cost of 24n — 88 should be
applied. The 7! circuit, (i.e., the reverse of 7 circuit which is
performed after circuit), needs the same number of gates as
« circuit. Totally, the maximum quantum cost which is needed
for implementing (a, b)(c, d) permutation is 32n — 66.

A similar approach is used for implementing all other
elementary cycles. Note that the order of converting terms may
be different in cycle implementation. Some gates are fixed in
the procedure of term converting except for the terms that do
not need any changes. For example, the last Toffoli gate in
the pair of 2-cycles implementation is fixed. k is chosen to be

[5] in our implementation.

Vany
Nz

232
bz
5 H
222

Fig. 8. The rg(4,2) and Kg(4,4) circuits.
" : H H H H H
o — 0= —O0—0- — 00— OO
— 5 & ay, N N
ao g A
A1 T4 Ay _E _ _E
£ % a -
. : H a : : H :

(a) (b)

Fig. 9. The rg(5) and rq(s,5) circuits.

C. Decomposition Method

The goal of decomposition is to decompose an input per-
mutation into the elementary cycles introduced in subsection
IV-B. Our decomposition method follows the one which was
described in [9]. The input permutation is decomposed into a
set of 5, 4, 3 and 2 cycles in this method. Example 3 describes
the decomposition method in more details.

Example 3: Consider the input permutation (5, 8, 4, 3,
15, 13, 0, 12, 10, 1, 14, 7) (2, 11) on 4 variables with
two cycles of length 11 and 2 respectively. Decomposition
procedure starts to cut off cycles of length 5. One element
of each separated cycle should repeat in the remaining cycle
to save the permutation connection. The procedure should be
continued to obtain cycles of length less than 6. The resulted
elementary cycles are (5, 8, 4, 3, 15) (13, 0, 12, 10, 1) (14,
7,5, 13) (2, 11) for this input permutation.

D. Distribution Method

Number of input cycles for our algorithm should be more
than three. In other words, one cycle for each subset is nec-
essary. More than three cycles are distributed in three subsets.
For distribution, a greedy algorithm was developed which
gives weight to each permutation according to Cost/Length
column in Table I after decomposing that permutation to its
elementary cycles.

For even permutations, the algorithm considers that each
subset should keep its permutation even. For odd permutations,
it is enough for one subset to keep its permutation odd. Odd
permutations need one more ancilla for implementation and
fewer of them is preferred.

Example 4 describes the general idea of the proposed
method and the resulted circuit of this example can be seen

TABLE 1
MAXIMUM COST COMPARISON FOR THE PROPOSED ELEMENTARY CYCLES. THE COST/LENGTH VALUES ARE REPORTED FOR THE PROPOSED METHOD
AND THE METHOD IN [9].

[EC [Length Ko oL [Total Cost [Cost/Length Cost/Length [9]]
2,2) 4 24n-88 4n+11 32n-66 8n-16.5 8.5n-16
3) 3 24n-88 3n+4 30n-80 10n-26.6 10.7n-27.3
(3,3) 6 24n-112 6n+26 36m-60 6n-10 6.3n-15.3
4,2) 6 36n-180 6n+14 48n-152 8n-25.3 8.3n-20.3
4.4) 8 36n-228 8n+46 52n-136 6.5n-17 Tn-15.7
5) 5 48n-166 Sn+13 58n-140 11.6n-28 12n-26
(5.,5) 10 36n-206 10n+57 56m-92 5.6n-9.2 6.4n-5.4
a | - DD DD D 5 4
o @ | T O—1@ az
Yo Pary o a3
A% A\
% L4 D D D D U
0 7 * Sva L 2 *® G
s, | 0 8% ® P G
0 B ® o H—e ® G
0 7 L 4 —b b—D ° G
0 Fany Fany Vary Yary Fany ® G
U A A
s, 0 © D I—O—é—l I_M D ® G
0 & ? N D ? o G
0 Pary yary yany yany yary o G
A A O A A U= A

The Preparation Circuit

The Middle Circuit

The Terminal Circuit

Fig. 10. An example of the proposed parallel cycle-based method for a 4-qubit function.

in Fig. 10.

Example 4: Assume that the input cycles (1,3) (7,10) (0,4)
(6,15) (2,8) (5,13) are given for implementing a circuit with
4 qubits. Using the proposed method, each pair of 2-cycles
is assigned to one subset using greedy distribution algorithm.
Since the input cycles of each subset are elementary cycles,
no decomposition procedure in needed in this case. Therefore,
(1,3) (7,10) cycles are assigned to the first subset, (0,4) (6,15)
cycles are assigned to the second subset and (2,8) (5,13)
cycles are assigned to the third subset. The preparation circuit
prepares the input data of the second and third subsets and
each subset is synthesized independently with sequential-cycle
structure for each subset. The terminal circuit is added at the
end of the circuit for transferring the output of the circuit to
the first n qubits. The depth of the middle circuit is equal to
the maximum depth of the three subsets (i.e., 33). The depth
of the whole circuit is equal to the depth of the middle circuit
plus 4 (2 for the preparation circuit and 2 for the terminal
circuit). The synthesized circuit is shown in Fig. 10.

V. EXPERIMENTAL RESULTS

The proposed parallel cycle-based synthesis method was
implemented in C++ and all of the experiments were done
on an Intel Pentium IV 2.5GHz computer with 4GB memory.
The quantum cost (labeled as QC) and logical depth (labeled
as LD) results of the proposed cycle-based synthesis method
are compared with the results of [9] in Table II. To evaluate the

proposed synthesis method, reversible benchmark functions of
[24] which were implemented using pure k-cycle approach [9]
were attempted. The results of [5] are used for decomposing
multiple-control Toffoli gates and quantum cost calculation for
gates with negative control(s).

The results show that the maximum depth improvement
of our method is 67% and its average is 50%. As it can
be seen in the table, in some cases, the quantum cost of
the proposed method is increased which is the effect of
partitioning cycles into three groups as well as using 2° terms
in the synthesis process. Notice that using negative controls
prevents the quantum cost to grow. For odd permutations, one
more ancilla should be added in both methods as discussed in
[12]. The average depth improvement of nth_prime bench-
marks is less than hwb functions since the input cycles of
those functions are unstructured with different cycle lengths
which results in unbalanced subsets after distribution. Function
nth_prime8_inc is eliminated from the list of benchmark
functions since this function has one disjoint input cycle
and the proposed synthesis method cannot be applied to it.
It should be mentioned that no post-process quantum cost
optimization algorithm is applied on the synthesized circuits.

VI. CONCLUSION

In this paper, the problem of Boolean reversible logic
synthesis with logical-depth optimization was addressed. To
this end, cycle representation was chosen and input cycles

TABLE I

QUANTUM COSTS (QC) AND LOGICAL DEPTHS (LD) OF THE PROPOSED PARALLEL CYCLE-BASED SYNTHESIS METHOD COMPARED WITH THOSE OF THE
k-CYCLE-BASED APPROACH [9]. RUNTIME RESULTS ARE FROM A FEW SECONDS FOR n < 9 TO & 1 HOUR FOR OTHER CASES.

Benchmark n Our Method [9] QC Impr. LD Impr.
Function Garbage | QC | LD QC | LD (%) (%)
hwb8 8 16 7400 2316 6940 6205 -6.6 62.6
hwb9 9 18 15376 4800 16173 14312 4.9 66.4
hwb10 10 20 38388 11787 35618 31908 -1.7 63.0
hwb11 11 22 89434 27079 90745 81440 1.4 66.7
hwb12 12 24 208992 64727 198928 184210 -5.0 64.8
hwb13 13 26 431054 131166 | 436305 | 397147 1.2 66.9
nth_prime7_inc 7 14 3108 1651 3172 2782 2.0 40.6
nth_prime9_inc 9 18 17744 15202 17975 15767 1.2 35
nth_prime10_inc 10 20 43026 14446 40301 35511 -6.7 59.3
nth_primel1_inc 11 22 93548 40316 95433 85093 1.9 52.6
nth_prime12_inc 12 24 217294 140507 | 208227 187006 -4.3 24.8
nth_prime13_inc 13 26 469422 281129 474660 431644 1.1 34.8
[Average [-1.3 50.5

were partitioned into three subsets. The cycle-based synthe- [16]
sis method equipped with depth-consideration was used to
synthesize the input cycles of each subset. The synthesized |7
circuits in these subsets were applied in parallel. In addition,

internal structures with depth-consideration were introduced in
the synthesis method. Our experimental results show that the

(18]

number of logical levels can be improved by up to 67% by [19]
adding 2n ancillae. A better distribution algorithm can improve
the results in terms of quantum cost or depth. [20]

[1]

[2]

[3]

[5]

[6]
[7]
[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

REFERENCES [21]

M. Nielsen and I. Chuang. Quantum computation and quantum infor-
mation. Cambridge University Press, 2000.

C. Moore and M. Nilsson. Parallel quantum computation and quantum [22]
codes. SIAM Journal on Computing, 31:799-815, 2001.

A. Broadbent and E. Kashefi. Parallelizing quantum circuits. Theoretical
Computer Science, 410(26), 2009. [23]
R. Jozsa. An introduction to measurement based quantum computation.
e-print, quant-ph/0508124, 2005.

D. Maslov, G. W. Dueck, D. M. Miller, and C. Negrevergne. Quantum [24]
circuit simplification and level compaction. [EEE Trans. on CAD,
27(3):436-444, March 2008.

R. V. Meter and K. M. Itoh. Fast quantum modular exponentiation.
Phys. Rev. A, Gen. Phys., 71(5), 2005.

T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore. A logarithmic-
depth quantum carry-lookahead adder. e-print, quant-ph/0406142, 2004.
D. Maslov, G. W. Dueck, and D. M. Miller. Techniques for the synthesis
of reversible Toffoli networks. ACM Trans. Des. Autom. Electron. Syst.,
12(4):42, 2007.

M. Saeedi, M. Saheb Zamani, M. Sedighi, and Z. Sasanian. Reversible
circuit synthesis using a cycle-based approach. ACM Journal of
Emerging Technologies in Computing Systems, 6(4), December 2010.
R. Wille and R. Drechsler. BDD-based synthesis of reversible logic for
large functions. In Design Autom. Conf., pages 270-275, San Francisco,
CA, 2009.

R. Wille, M. Soeken, and R. Drechsler. Reducing the number of lines in
reversible circuits. In Design Autom. Conf., pages 647-652, Anaheim,
CA, 2010.

V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes. Synthesis
of reversible logic circuits. /[EEE Trans. on CAD, 22(6):710-722, June
2003.

P. Gupta, A. Agrawal, and N. K. Jha. An algorithm for synthesis of
reversible logic circuits. IEEE Trans. on CAD, 25(11):2317-2330, 2006.
M. Saeedi, M. Sedighi, and M. Saheb Zamani. A novel synthesis
algorithm for reversible circuits. In Design Autom. Conf., pages 65—
68, San Jose, California, 2007.

D. Grofle, R. Wille, G. W. Dueck, and R. Drechsler. Exact multiple
control Toffoli network synthesis with SAT techniques. /EEE Trans. on
CAD, 28(5):703-715, 20009.

A. K. Prasad, V. V. Shende, K. N. Patel, I. L. Markov, and J. P. Hayes.
Data structures and algorithms for simplifying reversible circuits. J.
Emerg. Technol. Comput. Syst., 2(4), October 2006.

M. Arabzadeh, M. Saeedi, and M. Saheb Zamani. Rule-based optimiza-
tion of reversible circuits. In Asia and South Pacific Design Autom.
Conf., pages 849-854, Taiwan, 2010.

D. M. Miller, R. Wille, and R. Drechsler. Reducing reversible circuit
cost by adding lines. pages 217-222, Barcelona, Spain, 2010.

S. Lee, S. J. Lee, T. Kim, J. S. Lee, J. Biamonte, and M. Perkowski.
The cost of quantum gate primitives. Journal of Multiple-Valued Logic
and Soft Computing, 12(5-6), 2006.

A. Barenco et al. Elementary gates for quantum computation. APS
Physical Review A, 52:3457-3467, 1995.

G. W. Dueck and D. Maslov. Reversible function synthesis with mini-
mum garbage outputs. In International Symposium on Representations
and Methodology of Future Computing Technologies, pages 154-161,
Trier, Germany, 2003.

D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based
algorithm for reversible logic synthesis. In Design Autom. Conf., pages
318-323, Anaheim, CA, 2003.

M. Saeedi, M. Sedighi, and M. Saheb Zamani. A library-based synthesis
methodology for reversible logic. Microelectron. J., 41(4):185-194, Apr
2010.

D. Maslov. Reversible logic synthesis benchmarks page.
http://webhome.cs.uvic.ca/~dmaslov, 2011.

