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Abstract
We present an algorithm for solving a general min-cut, two-
way partitioning problem subject to timing constraints. The
problem is formulated as a constrained programming problem
and solved in two phases: cut-set minimization and timing sat-
isfaction. A mathematical programming technique based on
iterative quadratic programming (TPIQ) is used to find an
approximate solution to the constrained problem. When the
timing constraints are too strict to have a feasible solution,
node replication is used to satisfy the constraints. Experimen-
tal results on ISCAS89 benchmark suite show that TPIQ can
solve the timing-driven bipartitioning problem with little
impact on the chip size.

1. Introduction
Partitioning plays an important role in VLSI physical design. It
affects not only the efficiency of the subsequence design pro-
cesses, but also the overall circuit performance. In the past,
most of the partitioning algorithms focused on minimizing the
cut size. With the advances in CMOS process technologies, the
difference between intra-part delays (internal delay) and inter-
part delays (external delay) increases. A partitioning solution
which results in cutting the critical paths of a circuit too many
times may not meet the timing requirements of that system.
Thus, a timing-driven partitioning algorithm for a high perfor-
mance circuit must reduce the cut size as well as minimize the
number of times the critical paths are cut.

The main source of difficulty in timing-driven partitioning
is the need for considering all paths of the circuit at the same
time. Without this global view, minimizing the delays of some
critical paths may result in creating other critical paths. Most of
the bipartitioning techniques which are reported in the litera-
ture are based on Fiduccia-Mattheyses (FM) algorithm [1]-[5].
FM-based heuristics maintain a local view of the circuit and
hence do not appear to be suitable for handling the timing con-
straints [6]. Other approaches [7]-[11] have been proposed to
cope with this problem. The methods in [7]-[9] focus on delay
improvement only whereas the computational efficiency of the
methods in [10][11] is a concern.

In this paper, we propose a general timing-driven
bipartitioning algorithm called TPIQ. The idea used in TPIQ is
to transform the Boolean quadratic programming formulation
of a timing-driven partitioning problem to an iterative
quadratic programming problem in continuous space. By
incrementally constraining the variables, the solution will
gradually converge to discrete space. TPIQ consists of two
phases. The first phase formulates the problem as a capacity-
constrained quadratic programming problem which aims at
minimizing the cut size without considering the timing

constraints. The second phase starts with the result of phase I
as the initial solution and identifies nodes which violate the
timing constraints. These critical nodes are reassigned in a
way similar to phase I, but this time under appropriately
enforced timing constraints.

In both phases, a unified technique based on iterative
quadratic programming (IQP) is used. IQP simulates the
Boolean quadratic programming by iteratively adding extra
edges to connect nodes in the circuit to two dummy fixed
nodes: one placed at 1, and the other placed at 0. The final
solutions of IQP are moved to either 1 or 0 if the assignments
meet the timing constraints. Otherwise, the nodes remain
floating between 0 and 1. Nodes with non-binary final solution
are replicated and assigned to both parts so as to minimize
delay. This algorithm was tested on MCNC ISCAS89
benchmark suite ranging from 554 to 23,949 nodes. The result
indicates that TPIQ is capable of minimizing cut size while
meeting the delay requirements with negligible node
replication.

The remainder of the paper is organized as follows:
Section 2 describes the problem. Section 3 presents the
iterative quadratic programming partitioning technique. The
formulation of constraints and the replication method are
given in section 4. Section 5 provides our experimental results.
Section 6 concludes this paper and describes further research
directions.

2. Problem Statement
The timing-driven partitioning problem can be stated as fol-
lows. Consider a circuit (combinational or sequential) which is
represented by a directed graph G=(V, E). Each node vi ∈V has
a weight δ(vi) which specifies the intrinsic delay associated
with vi. Each edge (vi, vj) ∈E has a wiring delay d(vi, vj). If (vi,
vj) is cut, d(vi, vj)=D where D is the external delay, otherwise,
d(vi, vj) is the internal delay inside a part. The problem is to
partition the nodes into two groups so as to minimize the cut
size while satisfying the user-specified timing and capacity
constraints. This problem can be simplified further by replac-
ing the internal delays with a constant d. This simplification is
often justified since the location of nodes in a part and the
lengths of connections within a part are unknown at this stage.
In general, D >> d.

The cut-set ϑ = {ϑ1,ϑ2 . . . ϑk} is used to define a delay
function for the circuit. Let c(p,ϑ) be the number of cut edges
along a path p, and |p| be the number of nodes on the path p.
The delay dV(vi) of an output node vi is:

for all paths p ending at vi.
The cycle time for the graph G: ΦG=max dV(V) is a func-
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tion of c(p,ϑ). For the timing constrained problem, each pri-
mary output node or the input of a register is annotated with a
required time. A critical path is a path whose output arrival
time exceeds the specified required time. To eliminate the criti-
cal paths, every c(p,ϑ) must be within a range so that dV(vi) is
smaller than or equal to the corresponding required time.

3. Iterative Quadratic Programming
Let C=[cij]NxN denote the adjacency matrix of a graph G,
where cij is the connectivity weight or the cost between nodes
vi and vj. An assignment function ϕ(vi) assigns vi to either part
0 or part 1:

The objective function is defined as:

f(V)=

Let xi = ϕ(vi), X=ϕ(V)=[x1, x2, . . .xN]T. The objective function

becomes: f(X)= .

The function can be written in a matrix notation: f(X)= ,

where Q=B-C is the Laplacian matrix and B=[bij]NxN is the
degree matrix with bii=deg(vi), and bij=0 if i ≠ j.

This is a Boolean quadratic programming problem formu-
lation. To approximate this problem, we relax the Boolean
restriction on xi. Every variable xi in X can be a real number in
[0,1]. The objective is to minimize

f(X)= , for all xi ∈X.

The matrix Q which appears in the quadratic term is positive
semi-definite hence the function f(X) is convex.

In spite of the removal of the binary restriction for xi’s, a
final feasible solution for this problem is one in which every xi

∈{0, 1}. To encourage xi to converge to a binary value, an
attractive force from boundary 0 or 1 is added. The attractive
force comes from two fixed dummy nodes: vs0 which is fixed at
0 and vs1 which is fixed at 1.

We give some terminology first. An anchored node is a
node which is connected to exactly one fixed node. A free node
is a node which does not connect to any fixed node. Let P0 =
{the set of anchored nodes which connect to vs0}, P1 = {the set
of anchored nodes which connect to vs1}, Pf = {the set of free
nodes}.

If the solution xi of one iteration of the quadratic program
is “close” to 0, vi is likely to be assigned to P0. Therefore, an
extra edge is added to connect vso and vi, and vi becomes a left-
anchored node. A neighborhood region R0 is used to determine
whether vi is “close” enough to be attracted to vs0. Similarly if
xi falls into a neighborhood region R1, it becomes a right-
anchored node. If no node falls into R0 or R1, a node which is
closest to 1 or 0 is selected to be anchored. The new configura-
tion is passed as input to the next iteration of quadratic pro-
gram until all nodes are anchored to either vs0 or vs1.

The objective function f(X) for the new configuration is:

, for all xi ∈X.
cmax is the weight of the edge connecting an anchored node

to its respective fixed node. It must be large enough to ensure
that every xi converges to the boundary values. At the same
time, it should not be too large to overshadow the first term. We
thus seek a minimum cmax such that the second term in the
above equation is always equal to or greater than the first term.
Each vi ∈ P1 contributes g(xi, xj) to the objective function:

, cij ≠ 0.

If we differentiate g(xi, xj) with respect to xi, and let g’(xi ,xj)=0,

then we obtain:

When vi is anchored to P1 and all the other vj’s (cij ≠ 0) are
anchored to P0, the cmax for vi is 2⋅Σcij, j=1..N. Hence, in the
worst case, the minimum cmax for vi must be equal to or larger
than 2⋅Σcij to ensure vi will have a final solution of 1. We can
derive the same cmax for any vi ∈ P0. The minimum cmax for
f(X) is max{2⋅Σcij, j=1..N, ∀ vi ∈ V}.

Let V=V ∪ {vs0, vs1}=[v1, v2 . . . vN, vs0, vs1]T, X=X ∪ {0,

1}=[x1, x2 . . . xN, 0, 1]T. Q is the new Laplacian matrix formed
by attaching two columns of all zeros and two rows of all zeros
to Q. The assignment function is redefined as:

,

,

and the vector b is given by:

In matrix notation, this results in: f(X)=

In TPIQ, we adopt a new weight function which calcu-
lates the cij weights according to the number of anchored nodes
of nets. A net is represented by the clique model. Assuming
that the probability distribution for the combinations of assign-
ing free nodes to either side is uniform, then the weight is
defined as the reciprocal of the expected value for the net to be
cut. Let nk,sum be the sum of cut edges of all assignment combi-
nations for a net nk which connects n nodes. Note that nk,sum is

computed by where Nkf is the number of

free nodes, and Nka is the number of anchored nodes connected
to exactly one fixed node in nk. The weight cij of every node
pairs in nk is defined as:
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A net which connects more nodes has a higher probability
of being cut, hence, the weight function gives edges in a larger
net smaller weights.

The selection of the first node to be anchored affects the
convergence speed of TPIQ. A heuristic is to draw a denser
cluster in the graph to one side as early as possible. The way
we implement this heuristic is to choose the node with the larg-
est degree as the first anchored node.

4.Timing Constraints
Path delay in TPIQ is determined by block-oriented timing
analysis [12]. The timing constraints are:

arrival time for any internal node vj:
aj =max{ai + d(vi,vj) + δ(vi) | ∀(vi,vj) ∈E}
The values of arrival time for the primary inputs (PI) or

the outputs of registers (PPI, pseudo PI) and the values of
required time for primary output (PO) or the input of registers
(PPO, pseudo PO) are specified by the user. We have the fol-
lowing inequalities for PI (PPI) and PO (PPO):

, ∀ vj ∈{set of PIs or PPIs}, where is a pre-

specified arrival time for vj,
, ∀ vi ∈{set of POs or PPOs}, where is a pre-

specified required time for vi.
If xi and xj are close to one another, they have high ten-

dency to be assigned to the same part and the internal delay d
dominates. Otherwise external delay D dominates. Hence, the
connection delay d(vi,vj) is given by:

d(vi,vj) =

Since the nodes are anchored gradually, d(vi,vj)
approaches either D or d. The arrival time is rewritten as:

Let D = k⋅d, then we have

The delay equations are thus written as linear equations
and absolute value signs are removed.

Let s(vi) denote the size of node vi. Sp(vi) = Σp s(vi) is the
sum of node sizes in part p ∈{P0, P1}. Then we have:

Lower bound ≤ Sp(vi) ≤ Upper bound, ∀ p ∈{P0, P1},
where the lower and upper bound are user specified.
Furthermore, we have 0 ≤ xi ≤ 1, ∀ xi ∈X.
The formal formulation for the quadratic programming is:

minimize  subject to constraints

Let Min denote the total number of input pins in the graph
G, N the number of nodes, Nreg the number of registers, Ninput

the number of PIs, and Noutput the number of POs. For TPIQ
phase II, the total number of variables is: 2⋅N +Nreg. The num-

ber of constraints is 2⋅Min+2⋅Nreg+Ninput+Noutput+2⋅N+2.
The complexity of solving a convex quadratic program

with linear constraints depends on the number of Newton steps
required to compute a feasible solution. In our implementation,
we adopted LOQO [13] as the quadratic program solver. Gen-
erally speaking, LOQO finds an optimal solution for a convex
quadratic program within 200 steps.

Floating-Node Replication
Min-cut, min-delay replication problem is to determine a

set of nodes to replicate between two parts so as to minimize
the cut size |ϑ| and satisfy the timing constraints. It is possible
that TPIQ may not have a feasible final solution (i.e. xi ∈{0, 1}
∀ xi ∈ X). The solution of TPIQ can differentiate the nodes
which violate the timing constraints from those which do not.
After all the nodes are anchored, some nodes may not have
solutions of 1 or 0 because of the timing constraints. The nodes
whose final solutions are between (0, 1) are called floating
nodes.

Consider Figure 1-a where the floating node ni receives
inputs from both parts and sends its output to both parts. Let
the solid and the dashed arrows indicate two critical timing
path. If we move ni to either part, one of the critical paths is cut
twice. If we replicate this node as shown in Figure 1-b, then
each critical path is cut only once.

           Figure 1: Floating-node replication.

We also use floating-node expansion or reduction to
resolve timing violations. Details are omitted due to space lim-
itation.

5. Experimental Results
The simulation was executed based on the unit delay model
[7]. This delay model assumes that the external delay is one
and ignores the internal delay and gate delay. The simulation
assumed all nodes have unit size. The area balance criterion is
45% to 55% before node replication. Choosing the range of
neighborhood regions is an accuracy/run-time trade-off. We
chose R0=[0, 0.2], and R1=[0.8, 1].

The algorithm was tested on ISCAS89 benchmarks
[14]. Table 1 is the comparison of the results of TPIQ phase I
to other algorithms.The cycle time ΦG is calculated as the max-
imum number of cut edges along paths from PIs (PPIs) to POs
(PPOs). The results for the FM algorithm are reported as the
best run from 200 runs. The results of TPIQ phase I are
reported in column 2 which includes the cut size |ϑ| and the
longest path delay ΦG in parenthesis. Column 3 is the mini-
mum |ϑ| among the 200 FM runs and its corresponding ΦG in
parenthesis. Column 4 is the minimum ΦG among the 200 FM
runs and its corresponding |ϑ| in parenthesis. We can see that
phase I TPIQ is always better than FM algorithm in cut size.
Column 5, 6 are the cut size results of CLIP [5] and ML_c [4]
respectively. TPIQ phase I is superior to CLIP by 16.9% on the
average and inferior to ML_c by 6.8%. The real advantage of
TPIQ is however in its ability to minimize the cut size subject
to given timing constraints as will be illustrated in Table 2. The
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other algorithms cannot perform this task.

Table 2 lists the results of TPIQ phase II under different
ΦG constraints. All the arrival times for PIs (PPIs) are assumed
to be 0 and the required times for POs (PPOs) are set to be ΦG.
The values outside the parentheses denote the number of repli-
cated nodes, and the values inside parentheses denote the cut
size. For any cycle time ΦG ≥ 2, the number of replicated nodes
is negligible. When ΦG is as low as 2, the average cut size
increases by 24% compared to that of TPIQ phase I partition-
ing solution, but the delay is improved by 42% When ΦG is
reduced to 1, the number of replicated nodes and cut size
increase rapidly. Although ΦG is improved by 69%, the repli-
cation rate increases to 4.7% and the average cut size increases
by 344%. From the results, we see that setting ΦG to 2 is a
practical step under the unit delay model.

We have also generated results for a general delay model
(D=1, d=δ(vi)=0.01, normalized required time of POs=2.5). In
this case phase II TPIQ gives an average of 17.2% reduction in
ΦG at the cost of 1.2% node duplication. Tables are not
included due to space limitation.

The run-times of TPIQ for ISCAS89 benchmarks mea-
sured on a SUN Sparc station are listed in Table 3. The run-
time strongly depends on the circuit structures.

6. Conclusion
We proposed a timing-driven partitioning algorithm TPIQ. The
results of TPIQ demonstrates that by incorporating timing con-
straints into the partitioning and using replication algorithm we
can achieve a min-cut partitioning solution which satisfies the
delay target for the circuit.

Currently, we are using TPIQ as the partitioner of a tim-
ing-driven placement system. By restricting the number of cuts
of critical paths, we hope to achieve the delay minimization.
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Table 1: Results of TPIQ phase I and other algorithms.

benchmark
TPIQ

phase I
min. |ϑ| of

FM
min. ΦG of

FM
|ϑ| of CLIP |ϑ| of ML_c

s1196 39(4) 39(4) 3(44) 40 39

s1238 40(5) 40(5) 3(47) 40 40

s1423 13(2) 13(2) 2(13) 12 12

s1488 42(3) 45(4) 3(48) 41 42

s1494 42(4) 45(4) 3(47) 42 41

s5378 58(3) 82(4) 3(101) 60 56

s9234.1 47(3) 51(3) 2(59) 45 40

s13207.1 65(5) 92(3) 2(96) 85 56

s15850.1 43(3) 101(3) 3(101) 81 42

s35932 42(1) 118(3) 2(132) 67 42

s38417 63(3) 127(5) 3(136) 75 50

s38584.1 50(3) 59(3) 3(59) 48 47

Sum of |ϑ| 544 812 883 636 507

Improved - 49.2% - 16.9% -6.8%

Table 2: Results of TPIQ phase II for different ΦG under the
unit delay model.

benchmark ΦG=1 ΦG=2 ΦG=3 ΦG=4 ΦG=5

s1196 78(193) 0(62) 0(40) 0(39)

s1238 63(195) 0(63) 0(46) 0(46) 0(40)

s1423 42(132) 0(13)

s1488 98(221) 0(51) 0(42)

s1494 26(87) 0(47) 0(42) 0(42)

s5378 10(119) 0(63) 0(58)

s9234.1 56(184) 0(57) 0(47)

s13207.1 75(283) 0(101) 0(95) 0(69) 0(65)

s15850.1 51(154) 0(43) 0(43)

s35932 0(42)

s38417 21(148) 0(87) 0(63)

s38584.1 70(265) 0(59) 0(50)

Table 3: Run-time of ISCAS89 benchmarks (unit: second).

benchmark # nodes phase I phase II (ΦG=1) Total

s1196 575 395 15 410

s1238 554 383 15 398

s1423 753 54 13 67

s1488 686 434 10 444

s1494 680 391 1271 1662

s5378 3042 757 3439 4196

s9234.1 5883 513 1004 1517

s13207.1 8803 586 901 1487

s15850.1 10533 632 6232 6864

s35932 18148 867 - 867

s38417 23949 1752 7209 8961

s38584.1 21021 1433 10600 12033


