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Abstract - This paper presents a solution to the problem of minimizing energy consumption of a 
computer system performing periodic hard real-time tasks with precedence constraints. In the 
proposed approach, dynamic power management and voltage scaling techniques are combined to 
reduce the energy consumption of the CPU and devices. The optimization problem is initially 
formulated as an integer programming problem. Next, a three-phase heuristic solution, which 
integrates power management, task scheduling and task voltage assignment, is provided. 
Experimental results show that the proposed approach outperforms existing methods by an average 
of 18% in terms of the system-wide energy savings.  

 

I. INTRODUCTION 
A dichotomy exists in the design of modern microelectronic systems: they must be low power and 
high performance, simultaneously. The goal of low-power design for battery-powered electronics 
is to extend the battery service life while meeting performance requirements. Unless optimizations 
are applied at different levels, the capabilities of future portable systems will be severely limited 
by the weight of the batteries required for an acceptable duration of service. Additionally, in fixed 
power-rich platforms, the packaging cost and power density/reliability issues associated with high 
power and high performance systems force designers to look for ways to reduce power 
consumption. Thus, reducing power dissipation is a design goal even for non-portable devices 
since excessive power dissipation results in increased packaging and cooling costs as well as 
potential reliability problems. Meanwhile, following Moore’s Law, integrated circuit densities and 
operating speeds have continued to go up in unabated fashion. The result is that chips are 
becoming larger, faster, and more complex and because of this, consuming increasing amounts of 
power. 

Dynamic power management (DPM) and dynamic voltage scaling (DVS) have both proven to 
be highly effective techniques for reducing power dissipation in such systems. DPM refers to a 
selective shut-off of idle system components whereas DVS slows down underutilized resources 
and decreases their operating voltages.  

Much research has been conducted on optimizing power management policies, resulting in 
both heuristics and stochastic approaches. While the heuristic approaches are easy to implement, 
they do not provide and power/performance assurances. In contrast, the stochastic approaches 
guarantee optimality under performance constraints although they are more complex to implement. 
A number of stochastic models have been reported for DPM. More precisely, to overcome the 



 

limitations of heuristic “time-out”-based power management techniques [1][2], an approach based 
on discrete-time Markovian decision processes (DTMDP) was proposed in [3]. This approach 
outperforms the previous heuristic techniques because of its solid theoretical framework for 
system modeling and policy optimization. However, the discrete-time model requires policy 
evaluation at periodic time intervals and may thus consume a large number of power dissipation 
even when no change in the system state has occurred. To surmount this shortcoming, an approach 
based on continuous-time Markovian decision processes (CTMDP) was proposed in [4]. The 
policy change under this model is asynchronous and thus more suitable for implementation as part 
of a real-time operating system environment. Reference [5] also improved on the CTMDP 
modeling technique by using time-indexed semi-Markovian decision processes (SMDP). An 
SMDP is a stochastic process where the next state depends on the current state and how long the 
current state has been active.  

In [6], the authors present a hierarchical scheme for adaptive DPM under non-stationary 
service requests, where the term “hierarchical” refers to the manner by which the authors construct 
a DPM policy. More precisely, this work assumes that the service providers are fully controllable 
and have not built-in power management policy. The authors formulate the policy optimization as 
a problem of seeking an optimal rule that switches policies among a set of pre-computed ones. In 
contrast, in [7], the authors adopt a hierarchical power management architecture which aims to 
facilitate power-awareness in an electronic system with multiple components, each equipped with 
its own local power management structure. The authors thus decompose the power management 
task into two sub-tasks: component-level and system-level. The component-level policy is pre-
specified and fixed although it can be made to behave differently under system commands. The 
system-level policy optimization is formulated as a concurrent service request flow regulation and 
application scheduling problem and is solved by the hierarchical power manager. 

Previous DVS works can be broadly divided into two categories, one for non real-time 
operation and the other for real-time operation. The most important step in implementing DVS is 
prediction of the future workload, which allows one to choose the minimum required 
voltage/frequency levels while satisfying key constraints on energy and QoS. As proposed in [8] 
and [9], a simple interval-based scheduling algorithm can be used in non real-time operation. This 
is because there is no timing constraint. As a result, some performance degradation due to 
workload mis-prediction is allowed. The defining characteristic of the interval-based scheduling 
algorithm is that uniform-length intervals are used to monitor the system utilization in the previous 
intervals and thereby set the voltage level for the next interval by extrapolation. This algorithm is 
effective for applications with predictable computational workloads such as audio [10] or other 
digital signal processing intensive applications [11]. Although the interval-based scheduling 
algorithm is simple and easy to implement, it often predicts the future workload incorrectly when a 
task’s workload exhibits a large variability. One typical example of such a task is MPEG decoding. 
In MPEG decoding, because the computational workload varies greatly depending on each frame 
type, repeated mis-predictions may result in a decrease in the frame rate, which in turn means a 
lower QoS in MPEG. More recently, a number of researchers have reported DVS algorithms 
taking into account energy consumption of the system components. In [12] the authors present a 
DVS heuristic based on the critical speed of each task, which is defined as the CPU speed at which 
the execution of a task consumes the least total system energy. Reference [13] proposes a DVS 
technique based on a precise energy model considering both the active power and standby 
component of the system power.  

There are also many studies to apply DVS in real-time application scenarios. Multi-task 
scheduling in the operating system (OS) is the focus of [14] and [15]. More precisely, the 
scheduling is performed so as to reduce energy consumption while meeting given hard timing 
constraints. In these coarse-grained DVS approaches, it is assumed that the total number of CPU 



 

cycles needed to complete each task is fixed and known a priori. This is an assumption that is 
difficult to satisfy in practice. In [16], an intra-task voltage scheduling technique was proposed in 
which the application code is divided into many segments and the worst-case execution time of 
each segment (which is obtained from a static timing analysis) is used to determine a suitable 
voltage for the next segment. In [17] a method based on a software feedback loop was proposed. In 
this method, a deadline for each time slot is provided. The authors calculate the operating 
frequency of the processor for the next time slot depending on the slack time generated in the 
current slot and again the worst-case execution time of the next time slot. In these two fine-grained 
DVS approaches, it is assumed that the worst-case execution time of each segment of a task is 
known. This assumption is again difficult to meet for many applications, for example, for MPEG 
decoding where the worst-case execution time cannot be accurately determined on a per-frame 
basis. Note that a single worst-case execution time for all video frames (which may be calculated 
rather easily) will not be useful because it tends to be too pessimistic and therefore will 
significantly reduce the energy saving potential of a DVS technique that uses it. In [18], an 
effective DVS algorithm for MPEG decoding is proposed in which the future workload is 
predicted on a per-frame basis. This is accomplished by using a frame-type-based workload-
averaging scheme where the prediction error due to statistical variation in the workload of the 
frame-dependent part of the decoder is effectively compensated for by using the frame 
independent part of the decoding time as a “buffer zone.” This allows the authors to obtain a 
significant energy saving without any notable QoS degradation. 

Most researches on low-power task scheduling focus only on reducing the CPU power by 
using DVS techniques. However, in reality, executing a useful task on a computer system requires 
cooperation between the CPU and many other system components, e.g., memory, disk drives, 
wireless devices, etc., which can also consume significant amounts of power. These components 
generally have their own voltage levels and may or may not support DVS, which makes it difficult 
to apply DVS techniques to the CPU only and achieve total system power savings. In fact, DVS 
when applied to CPU only may even increase the overall system energy consumption for 
executing a given set of tasks. At the same time, DPM is known to be an effective approach for 
reducing the power consumption of the various peripheral components and I/O devices. Thus DVS 
combined with DPM has the potential to achieve power savings, not possible by either DPM or 
DVS. 

Most related work on low power scheduling for dependent tasks concentrate on DVS 
techniques. Some authors have considered voltage assignment on distributed embedded systems.  
The approach proposed in [19] first schedules tasks based on a list-scheduling algorithm by using 
the reciprocal of the slack time as the task priority, and next tries to evenly distribute the available 
positive slack time among tasks on each critical path and thereby reduce the operating voltages and 
save energy. Reference [20] assumes a given task schedule and assignment and proposes an 
extended list-scheduling algorithm. At each time step, the energy saving of a task is calculated as 
the difference between the expected energies given the task is scheduled at this step or at the next 
step. A task with a higher energy saving and lower slack time has a higher priority. The authors of 
[21] present a two-phase solution. In the first phase, a version of the early-deadline-first 
scheduling is used to assign a task to a best-fit processor in terms of the task ready time and the 
processor free time. In the second phase, an ILP optimization problem is formulated and solved in 
order to determine the voltage level of the processor used to run each task.  

Several works on DPM-based task scheduling have also been proposed in the literature. An 
online scheduling algorithm for independent tasks is presented in [22]. This algorithm attempts to 
reduce the number of device on/off transitions by greedily extending the pattern for current device 
usage so as to reduce average power consumption in the near future. Reference [23] proposes an 
offline branch-and-bound algorithm to search for the energy optimal task scheduling. In [24], the 



 

authors prove that solving energy optimal task scheduling for DPM on multiple devices is an NP 
hard problem even for a simple case where no timing dependency is considered. References [25] 
and [26] start with a given timing-fixed task sequence and propose algorithms to determine an 
energy-minimal state transition sequence for devices while satisfying hard time constraints. 

In the literature, several works have been proposed on combining DVS and DPM. Reference 
[27] present a Markovian decision processes based DPM model which is a uniform modeling 
framework for both DVS and DPM. In [28], the authors combine DVS with their previously 
proposed renewal theory based DPM approach. These two stochastic approaches are unable to 
handle tasks with hard-time constraints or dependency. The problem of combining DVS and DPM 
for hard real-time tasks is studied in reference [29], where a scheduling algorithm for a single 
processor with a sleep state is presented which is proved having a competitive ratio of 3. Task 
dependency is not considered in this work either.  

To the best of our knowledge, no research work has been conducted to combine DVS and 
DPM techniques for hard real-time dependent tasks running on multiple devices. This is 
specifically the contribution of the present paper. More precisely, this paper addresses the problem 
of power optimization of a real-time system having heterogeneous components and performing 
periodic hard real-time tasks. The dependencies between the tasks are described by a directed 
acyclic graph (DAG), sometimes referred to as a task graph. An integer programming based 
formulation is first provided to exactly state the optimization problem to be addressed. Next, a 
three-phase algorithm is proposed to solve the power-aware task scheduling and voltage-to-task 
assignment problems with the objective of minimizing the total system energy consumption. The 
three steps are power-aware task scheduling, task-level voltage assignment, and task rescheduling 
and voltage level refinement. 

The remainder of the paper is organized as follows: The problem formulation is presented in 
section 2. The three steps of the proposed algorithm are described in sections 3, 4 and 5, 
respectively. Experimental results and conclusions are given in sections 6 and 7.   

II. PROBLEM FORMULATION  
This paper targets a real-time system which has a single CPU and κ system devices (e.g., various 
I/O devices, main memory.) The CPU is considered to be device number 0 whereas other devices 
are numbered from1 to κ. The CPU has a discrete number of performance states corresponding to 
different supply voltage levels and clock frequencies and one sleep state. All other devices have a 
functional state during which they provide service and a low power sleep mode during which they 
cannot provide any services. 1  Furthermore, a device which is in the performance/functional state 
can be in one of two sub-states: 1) actively performing services; 2) waiting for service requests to 
arrive. We will refer to sub-state 1 as the active state and sub-state 2 as the idle state. We assume 
that each device k consumes the same amount of power when they are in active or idle mode 
(denoted by funcpowk), but significantly less power when it is in the sleep mode (sleepowk.) 

A set of n non-preemptive dependent tasks periodically run on the system with a time period 
Td. The data dependency (precedence) constraints between the tasks are described by a directed 
acyclic task graph, called a task graph, G(V, E), where each node v denotes a task and a directed 
edge e(u, v) represents a data flow between task u and v and implies that task v can be executed 
only after task u finishes. Every task has to be performed on the CPU, and may require support 
(services) from some (or all) of the system devices. It is assumed that during the run time of a task, 
all devices whose services are required by the task in question will stay in their active modes. The 
                                                      
1 It is straight-forward to extend the mathematical formulation to handle I/O devices with multiple low-

power states (e.g., standby, drowsy, and sleep.)  



 

problem is to solve the optimal task scheduling and task-level voltage assignment with the 
objective of minimizing the total system energy consumption during period Td.  

Let Vi, i =1, …, m, denote the m operating voltages for the CPU and fi the clock frequency of 
the CPU at voltage Vi. We define the workload of task u as the number of CPU cycles without 
considering memory and IO device access delay. Let Nu,i denote the actual number of CPU cycles 
required to complete task u at operating voltage Vi. We define variable x(u, i) to represent the 
percentage of the workload of task u which is performed at voltage Vi. Note that there are m·n such 
variables. The execution time (duration) of task u is calculated as 
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We introduce n.κ 0-1 integer variables, Zk(u), as follows: ( ) 1kZ u =  exactly if task u requires 
service from device k. The energy consumption due to execution of task u is equal to 
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where cu is the effective switched capacitance per CPU cycle; and Pk is the power consumption 
of device k in the active mode. 

Let s(u) denote the start time of task u. Thus the precedence constraint is expressed as 

( ) ( ) ( , )us u dur s v e u v E+ ≤ ∀ ∈  

To formulate the energy consumed by the CPU and devices during idle time, we need to 
introduce two virtual (dummy) tasks: task 0 of duration zero which is placed at exactly the start of 
period Td and task n+1 of duration zero which is placed at the end of period Td.  We define tasks 0 
and n+1 so as to require all devices, i.e., (0) 1 and ( 1) 1,  k kZ Z n k= + = ∀ . Notice that the interval 
between task 0 and the first task executed on device k denotes the first idle period. Similarly, the 
last idle period is defined as the interval between the last task executed on device k and task n+1. 
Also notice that. 

We introduce (n+2)2k 0-1 integer scheduling variables Yk(u,v) as follows: Yk(u,v) = 1 exactly if 
task u is executed on device k immediately before task v is executed on the same device. Since on 
each device, every task has only one immediate successor, the following constraint on Yk(u,v) 
should be respected 
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Similarly, every task has only one immediate predecessor; i.e., 
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There is also a precedence constraint between task v and its immediate successor, both of 
which are executed on device k, as follows 
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With variable Yk(u,v), we can express the duration of the idle time of device k just before it 
provides service to task v, itk,v, as 
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Let function idlenek(it) return the energy consumed by device k during idle time of length it. 
Note that the device may be placed in a low-power state during its long idle times, as suggested, 
for instance, in [25][26]. For the illustration purpose, assume that device k has two power states: 
active and sleep.  Let pa and ps denote the power consumptions of the device in the active and 
sleep states, respectively. Let εtr and τtr denote the summation of energy overheads and latency 
overheads associated with the two transitions into and out of the sleep state, respectively. Recall 
that the breakeven time is equal to ( )/BE tr a sp pτ ε= − . Then, 

 , max( , )
( )

, otherwise
tr s BE tr

k
a

p it it
idlene it

p it
ε τ τ+ ⋅ ≥⎧

= ⎨ ⋅⎩
 

Thus, the total energy consumed by the system during time period Td is calculated as 
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Notice that when executing a periodical task set, for a device, the idle time before the first task 
starts and the idle time after the last task finishes actually constitute a single idle period. The third 
term on the right-hand side of equation (2-9) calculates the device energy consumption for such an 
idle period. The second term on the RHS handles all the other idle times.  

The optimization problem is to minimize Esys with respect to constraints (2-1) to (2-8). Note 
that in this formulation, we ignore the energy and timing overhead associated with the voltage 
changes because switching of the CPU voltage normally takes between 10-100 microseconds 
depending on the hardware support for the DVS function. This is negligible compared to the 
device on/off transition times, which tend to be in the range of a few tenths of a second. The 
corresponding energy overhead is also small. 

This problem is a nonlinear non-convex integer program over variables s(u), x(u,i) and Yk(u,v); 
the worst-case computational complexity of exactly solving this problem is expected to be 
exponential. So we propose a three-step heuristic approach to solve the problem as follows: 

Task Ordering: Derive a linear ordering of tasks (i.e., calculate Yk(u,v) values) by performing 
an interactive minimum-cost matching on some appropriately constructed graph (cf. section 3.) 

Voltage Assignment: Given the task ordering implied by the schedule obtained in step 1, 
assign voltages and task durations (i.e., calculate x(u,i) values) and exact start times (i.e., calculate 
s(u) values) to each task so as to meet a target cycle time, Td  (cf. section 4.) 

Refinement: Improve the task scheduling and voltage assignment of steps 1 and 2 to increase 
the energy efficiency of the resulting solutions (cf. section 5.) 

(2-8)

(2-9)



 

 
Figure 1. Diagram of the proposed three-step iterative approach. 

III. TASK ORDERING 
In this step, we assume that the CPU voltage level is set to the maximum possible value and 

that the task execution times (durations) are calculated on this basis.2 The goal is to take the task 
graph with known task execution times and schedule it on the CPU (device 0) so as to minimize 
the total energy dissipation due to I/O devices (1,…, κ) staying in the idle mode and that caused by 
transitioning the devices from their high-power functional state to the low-power sleep state. 
Notice that the summation of energy dissipation in all devices (0,…, κ) when these devices are in 
active states is fixed and independent of the scheduling. The scheduling only changes the duration 
of the idle times and the number of on to off transitions for the I/O devices.   

Let tasksk denote the set of tasks running on device k and devu denote the set of devices that are 
needed by task u.  A lower bound on the total system energy dissipation, toteneLB can be obtained 
by assuming that there is no energy overhead for the transitions between idle and sleep states of 
any device 
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Now, the actual total energy includes the energy consumed by various devices when they stay 
in their idle modes and when they transition in and out of the sleep modes. Let’s denote the 
schedule, Λ, by the start times of all tasks in the given task graph. Based on this information, one 

                                                      
2 This is a simple heuristic used to assign task durations for this step. Other heuristic assignments are 

possible. Note, however, that we are only interested in the ordering of tasks after the completion of this 
step and will in fact calculate the exact task schedule and execution times after voltage assignment. 



 

can linearly order the set of tasks and represent the active times of each device as a set of closed 
intervals. More precisely, device k will be represented by a segment set, Sk={sk,1,…,sk,z} (z£n) 
corresponding to the time intervals during which the device is in its active state.  
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Here start(s) and end(s) denote the start time and end time of segment s while transenek 
denotes the total transition energy cost of device k to go from idle mode to the sleep mode and to 
return to the active mode.  Next we construct an augmented task graph (ATG) A(V,C) from the 
given task graph G(V,E) by copying G(V,E) and subsequently adding/deleting some edges to/from 
E. More precisely, the new edge set, C, does not contain any directed edge uv such that there exists 
another directed path from u to v in C. In addition, C contains undirected edges qr if tasks 
associated with q and r can be scheduled next to each other in some order. In addition, each node, 
q, in V (task) has three attributes: task execution time, durq, task energy consumption, eneq, and 
the list of devices that are required by the task, devq. Finally, each directed edge qr in C, has an 
associated energy cost, extraeneqr, calculated as follows 
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Each undirected edge between nodes q and r will have two such energy costs corresponding to 
directed edges qr and rq. Note however that at most one of the two directed edges may be chosen 
as part of the scheduling solution. 

The basic flow of the proposed scheduling algorithm is to iteratively find the edge with the 
least extra energy value and merge its two end nodes, implying that the corresponding tasks will 
be scheduled to run in immediate succession. For a directed edge, the ordering is fixed a priori 
whereas for the undirected edge, the algorithm will choose one of the two possible orderings and 
fix it. After each merge, the ATG is updated by removing all edges that become invalid and 
calculating the attributes for the newly generated node. The process continues until a single node is 
left in the ATG, which corresponds to a total ordering (scheduling) of all the tasks. The process 
continues until exactly one node remains in the modified ATG (i.e., a complete schedule is 
obtained.)  If at any step of the algorithm, there is a tie between the extra energy costs of two 
candidate edges qr and uw, then we will choose the edge that would result in the minimum total 
extra energy cost, extraenetot, of the resulting graph if the merge was performed. Now, extraenetot 
is calculated as the summation of the node weights of the resulting graph where the node weight is 
itself calculated as the average of the extra edge costs of outgoing edges from that node.  

Example 1: Consider a task graph depicted in Figure 2(a). Assume that there are four devices 
{0,1,2,3} with the following device utilization sets:  



 

( 1) {0}
( 2) ( 4) {0,1}
( 3) ( 5) ( 6) {0, 2,3}

dev u
dev u dev u
dev u dev u dev u

=
= =
= = =

.   

For the sake of simplicity, we assume that each task has a unit time duration (which is longer 
than its breakeven time) and that the idle power consumption of all devices is the same. In addition, 
each device consumes 1 unit of energy for each transition to and from the sleep state. The ATG 
graph of this task set is given in Figure 2(b). The directed edge u1u2 exists in ATG, because there 
is a precedence constraint between nodes u1 and u2 and u2 can be scheduled immediately after u1. 
The presence of undirected edge u2u3 implies that u2 and u3 can be scheduled next to the other 
without any ordering constraint. The edge labels denote the energy consumption if the start and 
end nodes of the edge are scheduled one after the other. For simplicity, assume all node energies 
are 0.  

 
(a) Initial task graph            (b) ATG 

 
(c) ATG after merging a pair of node 

Figure 2. An example to illustrate the power-aware task scheduling. 
With this ATG, we can start the task scheduling for power management. There are five edges 

with minimal edge energy equal to 0. That is, we can merge the pair of nodes associated with each 
of these edges without incurring additional energy cost. In Figure 2(c), three ATGs are presented, 
each corresponding to the merging of the node pair for one of the edges. Let us consider the left-
most ATG which is generated after merging u2 and u4. Since there is a directed edge from u2 to 
u4, u4 must be scheduled after u2. After the u2-u4 merge, the edge from u3 to u2 becomes a 
directed edge, because originally u3 had to be executed before u4 which has now been merged 
with u2 into a single node. The directed edge from u1 to u2 in the initial ATG disappears because 
after the u2-u4 merge, u3 stands between u1 and u2 in the precedence chain. The left-most ATG in 
Figure 2(c) has the minimal EATG value equal to 5. So the merger of u2 and u4 is selected for the 
first step.  

IV. VOLTAGE ASSIGNMENT 
Having generated the task schedule, we fix the ordering of tasks, but otherwise, ignore the task 
execution times and start times, which were heuristically set as explained at the beginning of 



 

section 3, we can easily calculate the Yk(u,v) values. Thus by substituting the value of Yk(u,v) into 
the optimization problem formulated by (2-1) through (2-9), all constraints becomes linear 
constraints and the only unknowns become s(u) and x(u,i) variables. However, the optimization 
problem cannot be solved exactly and efficiently, because the objective function remains a non-
convex function of idle times, it. We thus propose two approaches to get around this non-
convexity issue.  

The first one simply ignores the energy components introduced by idlenek in equation (2-9). 
The optimization problem thus becomes a linear programming problem over continuous variable 
x(u,i), which can be solved in polynomial time. It is worth pointing out that, strictly speaking, x(u,i) 
should take discrete values instead of continuous ones, because the number of CPU cycles 
executed at each operating voltage is an integer. However, when we consider a task executed in 
hundreds of thousands of CPU cycles, the effect introduced by rounding up to one cycle can be 
safely ignored. 

The second approach introduces new 0-1 integer variables Wk(v,h) to approximate the idle time 
itk,v as follows: Wk(v,h) =1 exactly if tk,h≤ itk,v < tk,h+1. tk,h and tk,h+1  take values from a discrete set 
{tk,1, tk,2, …, tk,H}. The value of idlenek(it) is approximated by 
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Consequently, constraint (2-8) is thus rewritten as 
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Equation (2-9) becomes an integer linear cost function. As a result, the original optimization 
problem is approximated with a mixed integer linear program. The value of parameter H can be 
adjusted to trade-off the computational complexity and approximation accuracy.  

V. REFINEMENT 
We provide a top-level overview of an algorithm that we have developed to improve the results 
obtained by the first two steps. Starting from the solution obtained from steps 1 and 2, we shift the 
tasks together to remove redundant positive slack times.  Next, we apply a greedy refinement 
algorithm on this solution to improve the total energy cost while meeting the timing constraint. In 
particular, we identify the set of critical tasks whose duration has a large impact on the system 
energy dissipation, e.g., a small change of the duration could enable device transitions to low 
power states, and change their voltage assignments accordingly. Details are provided next.   

Each approach presented in Section 4 tries to obtain a solution by simplifying the formulation 
of the original optimization problem. Thus the error in the objective function introduced by the 
simplification method may cause the results to deviate from the optimal solution. In this section, 
we present a heuristic algorithm to improve the results obtained by the first two steps. 

The purpose of this algorithm is to adjust the length of the idle periods to reduce the idle 
energy consumption. The algorithm has two major steps: 1) slack time redistribution, 2) task 
voltage adjustment to remove critical idle period. 

Slack time redistribution  

A slack period is defined as a period in which no task is executed. This step tries to collect 
available slack times and redistribute them to idle periods where this time can be used to reduce 
idle energy significantly, e.g. enabling a device to transit into and out of a lower power state. The 
algorithm of redistributing slack times is presented in Figure 3. 



 

 

 
Figure 3: The slack time redistribution algorithm. 

Example 2: Consider a task schedule obtained after scheduling and voltage assignment, as 
shown in Figure 4(a). There are 3 tasks: u1, u2 and u3. The system has a CPU and a device, each 
having two states: active and sleep. Assume the CPU and the device each consumes 1W in their 
active states and 0 in their sleep states. Furthermore, it takes 80ms for either one to go to sleep and 
wake up (e.g., 40 ms to go to sleep and 40 ms to wakeup) and the energy consumption for the 
transitions is 40mJ. In the initial schedule, neither the device nor the CPU can sleep during each 

Algorithm for slack time redistribution 

Input: A task sequence with s(u), x(u,i) and Wk(v,h) values solved in the 
step of voltage assignment for each task u. 

Output: Adjusted values of task star time s(u). 
1. total_asl = 0. 
2. For each task u starting from the leftmost 
3.    Assuming task v immediately follows task u, the slack immediately 

after task u is ( ) ( ) ( ( ) )usl u s v s u dur= − + . 

4.    For each idle duration itk,v’ that crosses this slack period 

5.        Calculate ( )
1
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−

′
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6.    The available slack time that can be extracted  

,( ) min( ( ),min ( ( , )))k vasl u sl u ir k v′ ′= . 

7.     For each task u’ after u, ( ) ( ) ( )s u s u asl u′ ′= − . 
8.     total_asl = total_asl+asl(u). 
9. At each epoch separating two tasks or a task and a slack time, we 

check to see whether or not the total energy consumption can be 
reduced by inserting a slack time. We select the epoch with the 
maximal ratio of decrease in energy to increase in slack time. Let msl 
≤ total_asl denote the increase in slack corresponding to the maximal 
energy ratio. 

10. For each task u starting after this epoch, ( ) ( )s u s u msl= + . 

11. total_asl = total_asl−msl. 
12. Goto line 9 until total_asl=0. 
13. Let denote the time corresponds to  
14. If ηw,k≤D, then 1 ( )/k k ks γ γη η+ = − ⋅∇ ∇τ τ . If ηw,k>D, then 

*
, ,arg max {( ) ( )}i k i w k ii γη τ η τ= ∂ ∂ ∂ ∂ , * *1, , kk i k i

sτ τ
+

= − . 

15. If ηw,k≤D≤ηw,k-1 or ηw,k-1≤D≤ηw,k, then set sk+1 = sk/α, where α>1 is a 
constant factor.  

16. If both ηw,k ,ηw,k-1>D, then increment a counter nc by one. In this case, 
if nc becomes greater than a preset threshold, then set sk+1 = αsk and 
clear nc. 

17. If both ηw,k ,ηw,k-1≤D and ∇ηγ,k ·∇ηγ,k-1<0, then set sk+1 = sk/α. 
18. Go to step 2. 



 

slack time. During the first step of the refinement procedure, all slack times are collected and the 
available slack time is calculated to be 80ms. Next, this slack time is allocated to the epoch which 
has the largest ratio of energy saving per unit of additional slack time. In this example, epoch ep1 
and ep2 have the same ratios, so the slack time is arbitrarily allocated to one of them, say ep1. The 
schedule after refinement is shown in Figure 4(b) where the device can go to sleep while the CPU 
has to remain active for the whole period. The total energy of the initial schedule is 200mJ 
whereas it is 160mJ after the refinement. This savings comes about because the device can transit 
to its sleep state after the refinement. 

 
Figure 4: Illustrative example for refinement step I 

Task voltage adjustment 

Third, we adjust the task operating frequency to increase critical idle periods. A critical idle 
period indicates a long idle period which, however, still cannot accommodate a device state 
transition. Note that after the first two steps of the flow described in section 4, there may still be 
some critical idle periods. For a critical idle period, we tentatively increase the operating frequency 
of the two tasks that limit the length of the idle period, so that the idle period is long enough to 
enable a device to enter the lower power mode. We select and increase the critical idle period that 
brings the largest energy saving. This procedure is repeated until no critical idle period can be 
improved. 

Example 3: Let’s revisit the previous example. In the schedule obtained after the first two 
steps of the refinement procedure, i.e., Figure 4(b), the length of the idle period on the CPU is 
70ms, which is less than the timing overhead of 80ms for the CPU to enter and leave the sleep 
state. Now we assume the CPU has a higher operating voltage level, under which the CPU 
consumes 4W, and the execution time for each task is 5ms. Thus, we can increase the CPU speed 
to reduce the task execution times, and thereby, create more idle time for the CPU. In the schedule 
shown in Figure 5, we set tasks u1 and u2 to run at the higher CPU speed. Thus the current CPU 
idle time is increased from 70ms to 80ms, which enables the CPU to transit to the sleep state. The 
total system energy consumption thus is further reduced to 145mJ. 

 

(a) Initial schedule 

 

(b) Schedule after refinement



 

 
Figure 5: Illustrative example for refinement procedure II 

VI. EXPERIMENTAL RESULTS 
This experiment is conducted on a system comprising of a single CPU and three other devices. The 
CPU has three operating voltage/frequency levels: 1V/200MHz, 1.1V/300MHz and 1.3V/400MHz 
[13]. The CPU and all devices support only one low-power sleep state. The power consumptions 
in different states, energy and timing overheads of state transitions for both the CPU and the three 
devices are reported in Table 1.  

TABLE 1  
Power and transition parameters 

Device Active 
Power 

Sleep 
Power 

Energy 
Overhead

Timing 
Overhead 

SDRAM 0.3W ~0 ~0 ~0 

HDD 2.1W 0.85W 0.6J 400ms 

WLAN 0.7W 0.05W 0.04J 100ms 

CPU 

 

1.0W 

(200MHz) 

0.05W 0.3J 400ms 

 
To evaluate the effectiveness of our proposed approach, we generated five task graphs by 

using software package, TGFF [30], which is a randomized task graph generator widely used in 
the literature to evaluate the performance of scheduling algorithms. Each task graph consists of 20 
to 200 tasks. All tasks require supports from SDRAM. The dependency of tasks on HDD and 
WLAN were randomly generated and fixed before optimization. The characteristics of different 
task graphs are given in the following table. For example, for task graph G1, when the CPU has its 
highest frequency setting, the cpu is used during 61% of the total execution whereas the SDRAM, 
HDD and WLAN are used for 61%, 29% and 42% of the total time.  

TABLE 2  
Characteristics of task graphs 

Task 

Graph 
No. of 
Tasks 

CPU and device utilization factors 
at max speed for the CPU 

CPU SDRAM HDD WLAN 

G1 28 0.61 0.61 0.29 0.42 

G2 47 0.40 0.40 0.21 0.12 

G3 65 0.72 0.72 0.51 0.39 

G4 81 0.63 0.63 0.42 0.17 

G5 110 0.34 0.34 0.12 0.23 



 

G6 123 0.51 0.51 0.32 0.33 

G7 159 0.48 0.48 0.30 0.25 

G8 204 0.55 0.55 0.28 0.36 
 

In this experiment, we compare the total system energy consumptions of the following 
methods: 

M1: No DVS, no DPM. The CPU always operates at the highest voltage level and devices are 
kept active during the whole execution time. This provides the baseline compare against. 

M2: DPM without any task scheduling. Tasks are executed on the CPU (which has assumed its 
highest frequency and voltage setting) in an un-optimized order based on their ID numbers after 
they become available. A method similar to the approach in [25] is used to determine the state 
transition sequences of all devices and the CPU. 

M3: DPM with task scheduling. This method is similar to M2, except that our proposed 
power-aware task scheduling algorithm is used to determine the task execution sequence.  

M4: Conventional cpu-driven DVS plus DPM. Similar to M2, except that the task operating 
voltage is assigned to minimize the CPU power consumption. More specifically, the operating 
voltage setting for each task is obtained by solving the optimization problem defined in section 2 
without considering the energy consumption of devices.  

M5: Proposed system-aware DVS plus DPM (which have called, Power-aware Scheduling and 
Voltage Setting or PSVS for short.) Task scheduling and operating voltage settings are determined 
through the proposed three-phase framework.  

TABLE 3 
 Normalized energy consumption results for different techniques 

Task Graph M2 M3 M4 M5 

G1 0.54 0.50 0.58 0.47 

G2 0.37 0.35 0.42 0.33 

G3 0.67 0.59 0.63 0.53 

G4 0.59 0.50 0.58 0.45 

G5 0.28 0.26 0.32 0.25 

G6 0.45 0.40 0.47 0.37 

G7 0.40 0.35 0.42 0.34 

G8 0.43 0.37 0.39 0.33 
 

The energy consumptions of different techniques are compared in Table 3. These values have 
been normalized with respect to the baseline energy consumption of M1, e.g., for G1, M2 results 
in total system energy consumption which is 54% of the baseline energy consumption. From this 
table, it is seen that compared to DPM technique without task scheduling, our proposed DPM with 
task scheduling can reduce energy consumption by an average of 11%. Furthermore, when this 
method is combined with our proposed voltage assignment technique (resulting in M5 or PSVS), 
an additional 9% energy saving is achieved. 



 

VII. CONCLUSION 
This paper addresses the problem of minimizing energy consumption of a computer system 
performing periodic hard real-time tasks with precedence constraints. In the proposed approach, 
dynamic power management and voltage scaling techniques are combined to reduce the energy 
consumption of the CPU and devices. The optimization problem is first formulated as an integer 
programming problem. Next, a three-phase solution framework, which integrates power 
management scheduling and task voltage assignment, is proposed. Experimental results 
demonstrate efficiency of the proposed approach.  
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