
Stochastic Sequential Machines Synthesis with
Application to Constrained Sequence Generation

Diana Marculescu
Department of Electrical Engineering
University of Maryland, College Park, MD 20742
and
Radu Marculescu
Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis, MN 55455
and
Massoud Pedram
Department of Electrical Engineering-Systems
University of Southern California, Los Angeles, CA 90089

Categories and Subject Descriptors:

General Terms:

Additional Key Words and Phrases:

In power estimation, one is faced with two problems: 1) generating input vector sequences
that satisfy a given statistical behavior (in terms of signal probabilities and correlations
among bits); 2) making these sequences as short as possible so as to improve the
efficiency of power simulators. Stochastic sequential machines (SSMs) can be used to
solve both problems. In particular, this paper presents a general procedure for SSM
synthesis and describes a new framework for sequence characterization to match
designer’s needs for sequence generation or compaction. Experimental results
demonstrate that compaction ratios of 1-3 orders of magnitude can be obtained without
much loss in accuracy of total power estimates.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others than ACM must be hon-
ored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works, requires prior specific per-
mission and/or a fee. Permissions may be requested from Publications Dept., ACM Inc., 1515
Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.  1996
by the Association for Computing Machinery, Inc.

2

1. Introduction

In the past, time, area and testabil ity were the primary concerns of IC designers. With the
growing need for low-power electronic circuits and systems, power estimation and low-
power optimization have become crucial tasks that must be also addressed. It is expected
that, in the forthcoming years, power issues wil l receive increasing attention due to the
widespread use of portable applications and desire to reduce the packaging and cooling
costs of high-end systems.

Power estimation techniques must be fast and accurate in order to be applicable in
practice. Not surprisingly, these two requirements interfere with one another and at some
point they become contradictory. General simulation techniques can provide sufficient
accuracy, but the price to be payed is too high; one can extract switching activity
information (and thus power estimates) by doing exhaustive simulation on small circuits,
but it is unrealistic to rely on simulation results for large circuits. Probabilistic power
estimation techniques were thus developed and proved their usefulness by providing
sufficient accuracy with low computational overhead [1].

A major challenge in probabili stic power estimation approaches is the ability to
account for internal dependencies due to the reconvergent fan-out in the circuit. This
problem, which we will refer as ‘ the circuit problem’ , is by no means trivial. Indeed, a
whole set of solutions have been proposed, ranging from approaches which build the
global OBDDs [2] and therefore capture all i nternal dependencies, to eff icient techniques
which partially account for dependencies in an incremental manner [3]-[5].

Recently, some authors have pointed out the importance of correlations not only
inside the target circuit, but also at the circuit inputs. If one ignores these correlations, the
power estimation results can be significantly impaired [6][7]. We will refer to this issue as
‘ the input problem’ and note that it is important not only in power estimation, but also in
low-power design.

Let us consider a simple example to illustrate the significance of the input problem.
Suppose that a 4-bit ripple-carry adder is fed successively by two input sequences S1 and

S2, as shown in Fig.1a. To estimate the total power consumption of the circuit (in a gate

level implementation), we may sum over all the gates in the circuit the average power
dissipation due to the capacitive switching currents, that is:

 where fclk is the clock frequency, VDD is the supply

voltage, Cn and swn are the capacitance and the average switching activity of gate n,

respectively. As we can see, the average switching activity per node (gate) is a key
parameter that needs to be determined correctly.

FIGURE 1. The input problem

The two sequences in Fig.1a, have the same signal probability on the input lines (p = 0.5),
but are otherwise very different; whilst the average switching activity per bit is 0.5 for

Pavg

fclk

2
------- VDD

2
Cn swn⋅()

n

∑⋅ ⋅=

3

sequence S1, it is 0.3 for sequence S2. This difference in switching activity leads to: PS1 =

456 µW and PS2 = 365 µW at 20 MHz that is, about 20% difference in the values of total
power consumption. On the other hand, sequences S1 and S3 given in Fig.1b have

different lengths (S3 is about 40% shorter than S1) but similar statistics on the bit lines.

This similarity leads to PS3 = 446 µW, a value which is only 2% off from PS1. Since the
input sequence plays such an important role in determining the average power dissipation
of a circuit, the question becomes how one should select or generate the sequence of input
vectors to be applied to the circuit under consideration and still get the same power values.

In many cases, the designer has some information (albeit, limited) about the statistics
of the input sequence (in terms of signal or transition probabil ities, inter-bit correlations,
etc.). Generating a minimal-length sequence of input vectors that satisfies these statistics
in not trivial. More precisely, LFSRs which have traditionally found use in testing or
functional verification [8], are of little or no help here. The reason is that the set of input
statistics which must be preserved or reproduced during sequence generation (for use with
power simulators) is quite complex. One such attempt is [9] where authors use
deterministic FSMs to model user-specified input sequences. Since the number of states in
the FSM is equal to the length of the sequence to be modeled, the abil ity to characterize
anything else but short input sequences is limited.

From a designer perspective, we may want to estimate the power consumption of the
adder in Fig.1 in a context resembling as much as possible the one where this adder will be
instantiated. For example, if the adder was designed to be an incrementor in the address
calculation unit of a memory chip, then the primary inputs A and B will likely receive
sequences similar to S2; on the other hand, if this adder was designed to be part of a DSP

system used for noise analysis, then it wil l l ikely receive random inputs and therefore S1 is

the most appropriate sequence to be used for power estimation.

To validate the design, circuit or gate-level simulation is finally invoked to measure
the total power consumption. The biggest hurdle for simulation-based power estimators is
the huge number of vectors which should be applied to the circuit to obtain accurate power
values for the circuit. It is impractical to simulate large circuits using milli ons or even
thousands of input vectors and therefore, the length of the sequence to be simulated is an
important consideration.

In summary, a number of issues appear to be important for power estimation and low-
power synthesis. The input statistics which must be properly captured and the length of the
input sequences which must be applied, are two such issues. From this perspective, the
present paper shifts the focus from ‘ the circuit problem’ to ‘ the input problem’ and
improves the state-of-the-art by proposing an original solution for constrained sequence
generation.1

Over the years, many important problems in sequential circuit synthesis and
optimization have been approached using concepts from automata theory. Finite automata

1. Simply stated, any input sequence that must satisfy a set of spatial and/or temporal correlations is
considered to be “constrained”.

4

are mathematical models for systems with a finite number of states which accept, at
discrete time steps, certain inputs and emit accordingly certain outputs. Finite automata
exhibit deterministic behavior, that is, the current state of the machine and the input value
determine the next state and the output of the automaton. It is quite natural (and useful) to
consider automata with stochastic behavior. The idea is that the automaton, when in state
si and receiving input x, can move into any new state sj with a positive probability p(si,x).

A practical motivation for considering probabil istic automata is that even sequential
circuits which are intended to behave deterministically, may exhibit stochastic behavior
because of random malfunctioning of components [10][17].

The mathematical foundation of our approach relies on the stochastic sequential
machines (SSMs) theory and, without any loss in generali ty, emphasizes those aspects
related to Moore-type machines. In this paper, we reveal a general procedure for SSM
synthesis and describe a new framework for sequence characterization to match designer’s
needs for sequence generation or compaction. We focus on the basic task of synthesizing
an SSM which is able to generate constrained input sequences. Such a machine can be
effectively used in power estimation as it is illustrated in Fig.2.

FIGURE 2. Constrained sequence generation

To evaluate the total power consumption in a target circuit for a given input sequence of
length L0, we first derive a probabilistic model based on SSMs and then, having this

compact representation, we generate a much shorter sequence L, equivalent with L0 as far
as total power consumption is concerned, which can be used with any available simulator
to derive accurate power estimates.

We note that successful research on constrained sequence generation, may find
application ground in three areas:

• Sequence generation: This represents the abili ty to generate input sequences, with
different lengths, that satisfy a set of user-prescribed characteristics in terms of word-level
transition or conditional probabil ities. Basically, for a given set of input symbols { α1,
α2,..., αn} with the set of occurrence probabilities { p1, p2,..., pn} , we are interested in

finding a machine capable not only of generating those symbols with the specified set of
probabil ities, but also of preserving the temporal order (sequencing) among them. As
illustrated in Fig.1, this is important especially in low-power design. This issue will be
discussed in detail in Section 2.

• Sequence compaction: This is basically the ability to construct a representative
sequence (short enough to be efficiently simulated) equivalent as far as the total power
consumption is concerned with the original sequence that reproduces the operating
context in which the circuit is intended to work. This feature can make (circuit or gate-
level) simulators a viable option for power analysis even for very large circuits and
therefore deserves special attention; it is discussed and supported with examples in
Sections 3 and 4.

5

• Probability transformation: This represents the ability to construct machines that
convert a given set of input symbols, occurring with some fixed probabilities, into another
one, which may have a completely different set of probabilities. Using the aforementioned
formalism, a probability transformer when fed with input symbols {α1, α2,..., αn} which

occur with probabilities {p1, p2,...,pn}, generates a new set of symbols {β1, β2,..., βm} with
different, yet prescribed, probabilities {q1, q2,..., qm}. A probability transformer may take

as input an uncorrelated (random) binary stream and produce a highly correlated binary
stream as output [21][22]. Such a probability transformer, when placed in front of the
circuit under consideration, enables the use of any probabilistic power estimation
approach that assumes input temporal independence as it eliminates the need for
considering explicit input correlations. The input correlations will be instead captured by
the structure of the probability transformer circuitry. As we shall see later, the SSM is
such a probability transformer which, when excited with randomly generated inputs,
produces temporally correlated data at the primary inputs of the target circuit. Thus, the
product machine (input SSM, target circuit) (see Fig.2) can now be analyzed using
probabilistic power estimation techniques such as [23].

To conclude, both simulation-based approaches and probabilistic techniques for
power estimation may benefit from this research. The issues brought into attention in this
paper are new and represent a first step toward reducing the gap between the simulative
and probabilistic techniques commonly used in power estimation. Finally, the concept of
SSMs may find useful applications in other CAD-related problems.

The paper is organized as follows: Section 2 introduces some basic definitions from
SSM theory and gives the main decomposition theorems used in SSM synthesis. Section 3
discusses the constrained sequence generation problem while Section 4 gives a practical
procedure for sequence compaction. Section 5 is devoted to practical considerations and
experimental results. Finally, we conclude by summarizing our main contribution.

2. Synthesis of SSMs

In this section, we review the concept of SSM and describe a basic procedure for
synthesizing SSMs from their mathematical models. In what follows, we use the
formalism and notations introduced in [17].

2.1 Stochastic machines: basic definitions

Definition 1: A Mealy-type SSM is a quadruple M = (S, X, Y, {A(x, y)}) where S, X, and Y
are finite sets (the internal states, inputs, and outputs respectively), and {A(x, y)} is a finite
set containing |X| × |Y| square stochastic matrices of order |S| such that aij(y|x) ≥ 0 for all i
and j, and

 (1) aij y x()

j 1=

S

∑
y Y∈
∑ 1= where A y x() aij y x()[]=

6

Interpretation: Let π be any |S|-dimensional vector. If the machine begins with an initial
distribution π over the state set S and is fed with a word x, it outputs the word y and moves
on to the next state. The transition is controlled by the transition matrices A(y|x) where
aij(y|x) is the conditional probability of the machine going to state sj and producing the

symbol y, given it had been in state si and fed with symbol x.

Definition 2: Let M be an SSM, u = x1x2...xk an input sequence and v = y1y2...yk an output
sequence. By definition, A(v|u) = [aij(v|u)] = A(y1|x1)·A(y2|x2)·...·A(yk|xk); it foll ows from

the interpretation of the values of aij(y|x) that aij(v|u) is the probability of machine going to

state sj and producing the sequence v, having been in state si and fed sequentially the
sequence u.

Definition 3: A Moore-type SSM is a quintuple M = (S, X, Y, { A(x)} , Λ) where S, X, and Y
are as in Definition 1, { A(x)} is a finite set containing |X| square stochastic matrices of
order |S| and Λ a deterministic function from S into Y.

Interpretation: The value aij(x) (A(x) = [aij(x)]) is the probabil ity of the machine moving

from state si to sj when fed with the symbol x. When entering state sj, the machine outputs

the symbol Λ(sj) ∈ Y.

Definition 4: Let M be an SSM. Let A(u) = [aij(u)] = A(x1)· A(x2)·...·A(xk); it follows from
the above interpretation that aij(u) is the probability of the machine going from state si to

state sj when fed the word u. The output word v depends on the sequence of states through

the machine passed when scanning the input word u.

As we can see from the above definitions, Mealy and Moore stochastic machines
generalize the corresponding definitions of deterministic machines. Since the stochastic
machines are more elaborate in structure than the deterministic ones, other generalizations
are possible [17]. On this line, we should note that Mealy-Moore equivalence is still valid
for stochastic machines, that is every Moore-type SSM has a Mealy-type equivalent and
vice versa.

2.2 The synthesis procedure

Without loss of generality, in what follows the machines are assumed to be of Moore-type.
The objective of this section is to build a SSM which generates an output sequence with
given characteristics. The basic procedure involves synthesis of combinational circuits
and construction of information sources with prescribed probability distributions. It can be
simplified by means of the following important result:

Theorem 1 [11]: Any m × n stochastic matrix A can be expressed in the form

 where pi > 0, , and Ui are degenerate stochastic matrices (that is,

matrix elements are 0 or 1 only), and the number of matrices Ui in the expansion is at most

.

A piUi∑= pi∑ 1=

m n 1–()⋅ 1+

7

Proof: p1 is taken to be mini maxj [aij] and elements of U1 satisfy u1
ij = 1 if

 and 0 otherwise. The procedure is then applied recursively to the newly

constructed stochastic matrix [1/(1-p1)] [A-p1U1].
�

The theorem we provide in the following is a very important result from a practical
point of view; as we will see later, it gives the basis to efficiently apply Theorem 1 on
large matrices which may arise in practice.

Theorem 2: The sequence { pi} i ≥1 is monotonically non-increasing and strictly positive.

Proof: It suff ices to show that p1 ≥ p2 > 0 due to the recursive manner in which matrices

Ui are generated. According to the definition, p1 = mini maxj [aij] and p2 = (1-p1)q2 where

q2 = mini maxj [a
1

ij] (A1 = [a1
ij]). Since A1 = [1/(1-p1)] [A-p1U1], the inequali ty becomes

mini maxj [aij] ≥ mini maxj [aij-p1u1
ij] where U1 = [u1

ij]. But for any fixed i, j, aij ≥ aij-

p1u1
ij (the elements of matrix U1 are either 1 or 0 and p1 is positive); hence maxj [aij] ≥

maxj [aij-p1u1
ij] for any fixed i and mini maxj [aij] ≥ mini maxj [aij-p1u1

ij] thus concluding
our proof.

�

Let A be a stochastic matrix which can be expressed in the form A = ∑ pi Ui (i = 1,

2,..., t) according to the above result. This means that either A has been decomposed using
exactly t matrices Ui, or considering only the first t matrices in this decomposition has
been satisfactory for a given level of accuracy. We allow therefore limited precision in our
calculations, not only because this limitation is suff icient in practice, but also because it
may substantially simpli fy the decomposition process based on Theorem 1 (see Section 4).

 Let Σ = { σ1,σ2,...,σt} be an auxili ary alphabet with t symbols, one for each matrix Ui

in the expansion of A, and let P be a single information source over Σ emitting the σi with

probabil ity pi. We give in Fig.3 a simplified block diagram of the network which

synthesizes such a machine.

FIGURE 3. The general structure of the SSM

The combinational logic is constructed such that its output is sj for input (xl, σm, sk), if
and only if the entry of matrix Um in the row corresponding to (sk, xl) and the column

corresponding to sj equals 1. The output logic box is a combinational logic implementing

the function Λ.

Interpretation: Theorem 1 states in fact that any SSM can be decomposed into a finite
number of deterministic sequential machines. The behavior of the SSM is thus
“simulated” by selecting one of these deterministic machines based on the values of the
auxili ary inputs.

ai j maxk aik[]=

8

Example 1: Let M = (S, X, Y, {A(x)}, Λ) with S = {0, 1} = X = Y, Λ(0) = 1, Λ(1) = 0, and

 with and . Applying Theorem 1, we get

 and thus Σ = {σ1,σ2,σ3,σ4} and P =

{p(σ1), p(σ2), p(σ3), p(σ4)} = (1/2, 1/4, 1/6, 1/12). Encoding the symbols in Σ with 2 bits

(w1,w2) as 00, 01, 10, 11 respectively, we get the following transition table.

FIGURE 4. The behavior of the SSM in Example 1

Using standard Karnaugh approach, we obtain the circuit which synthesizes the given
SSM, as shown in Fig.5.

FIGURE 5. A possible implementation of the SSM in Example 1

Words Σ on the auxiliary input (w1,w2) must be supplied with the probability distribution

P as resulted from the decomposition of matrix A. For this purpose, it is sufficient to
generate a set of numbers uniformly distributed on the interval [0, 1] and divide the
interval into four subintervals as follows: [0, 1/2), [1/2, 1/2 + 1/4), [1/2 + 1/4, 1/2 + 1/4 +
1/6) and [1/2 + 1/4 + 1/6, 1]. Each subinterval corresponds to a particular word (w1,w2) on
the auxiliary input: if the number generated lies in some subinterval, the corresponding
word is generated. Clearly, this procedure will generate all auxiliary inputs according to
the given probability distribution.

In summary, the basic synthesis procedure based on Theorem 1, involves essentially
the synthesis of a combinational circuit with feedback, and construction of information
sources with prescribed probability distributions.

3. Constrained Sequence Characterization

In this section, we give a precise characterization of sequences in terms of their transition
matrices. In addition, we present some theoretical results that demonstrate the possibility
of using different input sequences while still having the same total power consumption in
the target circuit.

A
A 0()
A 1()

= A 0()

1
2
--- 1

2

1
4
--- 3

4

= A 1()

2
3
--- 1

3

1
2
--- 1

2

=

A
1
2

1 0

0 1
1 0

1 0

1
4

0 1

1 0
0 1

0 1

1
6

0 1

0 1
1 0

0 1

1
12

0 1

0 1
0 1

0 1

+ + +=

9

3.1 Sequence equivalence

In what follows, we associate with every Moore SSM its output sequence (of length

), generated during its normal operation, and we will interchangeably refer to both
SSM and its output sequence. The general problem of equivalence between stochastic
machines is very complex and for an in-depth presentation the reader is referred to [17].
For practical purposes, we restrict our attention only to reduced stochastic machines of
Moore-type.

Definition 5: Two reduced stochastic machines M and M * (as in Definition 3) are output-
equivalent if the foll owing conditions are satisfied:

1) The state spaces S and S * have the same cardinality, that is |S| = |S *|;

2) The output spaces Y and Y * are the same, that is Y = Y *;

3) For every state si of M there corresponds a state sj of M * , and vice versa, such that

 for every input u with L(u) ≥ 1.

Interpretation: If the isomorphism relationship between state spaces S and S * is given by

the function h : S → S *, then we can represent the output-equivalence relationship

between machines M and M * as follows:

FIGURE 6. Output equivalence

Basically, S is isomorphically mapped to S * such that the output spaces coincide.
These considerations translate into a definition for sequence equivalence as follows:

Definition 6: The output sequence Y generated by machine M is ε-equivalent with the

output sequence Y * produced by M * if , where the norm is defined as

. (We note the particular case ε = 0, when A = A *, which corresponds to

exact equivalence).

Differently stated, two output sequences are ε-equivalent if they are generated by
SSMs characterized by nearly the same average transition probabil ities, that is

, for any input x. In practice, having a reference sequence produced

by M, we need to know how close is the sequence generated by M * to the original one. To
this end, we have to investigate the effect of errors (perturbations) that may appear in A1

on the statistical behavior of the output sequence generated according to A* .

1. This may appear as a side effect if, for instance, we apply Theorem 1 with limited precision.

L 1≥

Λ si() Λ*
sj()=

A A
∗

– ε<

A max ai j=

ai j x() aij
∗

x()– ε<

10

3.2 Perturbation analysis for generated sequences

For our particular appli cation, the SSM to be synthesized has no external inputs (that is, X
= ∅). In addition, we assume that the output function Λ is a one-to-one mapping from S to
Y and thus, A represents the stochastic matrix associated to the output sequence, i.e.

, where vi, vj are two consecutive vectors. Having a reference sequence, to

produce an equivalent one we should preserve the word-level transition probabilities. This
essentially becomes the problem of preserving both conditional and state probabilities

because , where pi is the state probability of vector vi and pi → j

represents the transition probability of going from vector vi to vj. Assuming stationarity

conditions, if p = [pi] denotes the state probabil ity vector, then from Chapman-

Kolmogorov equations [18] we have . (In other words, p is the eigenvector

that corresponds to the eigenvalue λ = 1 in the general equation .)

Based on the Perron-Frobenius theorem [19], it can be proven that every stochastic
matrix has 1 as a simple eigenvalue and all other eigenvalues have absolute values less
than one. Let us assume that the newly generated sequence is characterized by the matrix

 where (εij represents the error introduced by some

perturbation of matrix A) and . Because A* characterizes a sequence of vectors, it

is also a stochastic matrix and therefore, it has an eigenvalue . What we are
interested in is the effect of perturbation of matrix A on the eigenvectors that correspond to
the eigenvalue 1.

Theorem 3: For any eigenvector p of A corresponding to the simple eigenvalue λ = 1,

there exists an eigenvector p* of A* corresponding to the simple eigenvalue ,

such that (read as ‘ zero of epsilon’) , where 0(ε) is any power series in ε
(convergent for suff iciently small ε) having the form k1ε + k2ε2 +.... �

This theorem follows from the theory of algebraic functions developed in [19]. Since

, it is easy to see that:

Corollary 1: If the stochastic matrix A is properly preserved, the transition probabilities
for the newly generated sequence are asymptotically close to the original ones, that is

. �

We have thus proved that we can asymptoticall y reproduce an initial sequence by
preserving its matrix A. From a practical point of view, it is easy to see what are the
implications of the above corollary on total power consumption in a target circuit where
the input sequence is approximated by a new one.

Corollary 2: If P and P* are the values of the total power consumption for two sequences

satisfying the conditions in Corollary 1, then we have that . �

ai j p vj v i()=

pi j→ pi ai j⋅=

A
T

p⋅ p=

A
T

p⋅ λ p⋅=

A∗ aij
∗

[]= ai j
∗

aij εi j+=

εi j 1<

λ
∗

1=

λ
∗

1=

p p∗– 0 ε()=

aij ai j
∗

– 0 ε()=

pi j→ pi j→
∗

– 0 ε()=

P∗ P– 0 ε()=

11

Differently stated, if the new sequence is asymptotically close to the original one,
then the same holds for the corresponding total power values.

4. Constrained Sequence Compaction

In practice, we may want to generate a fixed-length sequence satisfying a certain set of
constraints or, more frequently, we may have from simulation a characteristic sequence
for a target circuit and want to compact it into a new one by preserving its statistics. The
first situation was considered in Section 2.2 for the synthesis of the stochastic machine M.
In this section, we focus on the second issue by considering the problem of synthesizing a
SSM for a given vector sequence. In addition, we provide an exact formulation of the
constrained sequence generation problem and propose a block-oriented approximation
method for solving it.

4.1 The compaction procedure

Since the SSMs are assumed to be Moore type, the generated output depends only on the
sequence of states traversed (and not on the inputs).

Example 2: Assume for the sake of simplicity, that the foll owing short sequence of 20
input vectors (v1,v2,...,v20) is representative for some target circuit:

FIGURE 7. An input sequence and its transition graph

In the right side of Fig.7, we have the transition graph corresponding to this sequence.
The ‘state’ nodes are labelled with the values that appear in the initial sequence (decimally
encoded and read from top to bottom), while the labels on the edges are conditional
probabil ities captured by analyzing this sequence. For instance, the word ‘001’ (vector v1
in the initial sequence) is always followed by the word ‘100’ then we have a14 = 1 (and

correspondingly a directed edge, labelled with probability 1, from vertex 1 to vertex 4)
while the word ‘111’ is half of the time followed by ‘101’ and the other half by itself, thus
we have a75 = 0.5 and a77 = 0.5.

Let M be the SSM associated with this sequence; as we can see, S = { 0, 1, 3, 4, 5, 6,

7} and then |S| = 7. Now, we are trying to synthesize a new machine M * , output-
equivalent with M, and eventuall y generate an equivalent (and compacted) sequence with

the initial one, using M* . To make our job easier, let’ s assume also that Y = S and Y * = S *

(i.e., M and M * are both Moore-type, and the output spaces coincide with the state
spaces).

From the very beginning, just by looking at first two conditions in Definition 5, we

may deduce that |S *| = 7 and Y *= Y = S = S *. The corresponding stochastic matrix for
the initial sequence is shown below, along with its decomposition from Theorem 1:

12

Hence, we need a single auxiliary bit w to distinguish between the two deterministic
sequential machines obtained: w = 0 specifies the first machine which corresponds to U1
and w = 1 the second machine (both with probability 0.5) which corresponds to U2. The

transition table corresponding to this example is given below:

FIGURE 8. The transition table for the SSM in Example 2

A possible implementation for M* (with D Flip-Flops) is given in Fig.9. This SSM can
now be used as a generator for a 3-bit sequence with the same stochastic characteristics as
the original one. Bit w is generated using a random number generator such that 0 and 1 are
equall y likely (i.e. probabili ty 0.5).

FIGURE 9. The SSM generating the original sequence in Example 2

To generate a sequence, the SSM M* should be initialized in the most probable state:
in our case, either ‘110’ , ‘101’ or ‘111’ . Using a random number generator for the bit w,
we get the following behavior when considering ‘111’ as the initial state:

FIGURE 10. A possible behavior of the SSM

Analyzing the next state bit lines, we get the following stochastic matrix after 10
generated vectors:

A

0 1 0 0 0 0 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0.5 0 0 0 0.5

0 0 0 0 0.5 0 0.5

0.5

0 1 0 0 0 0 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

⋅ 0.5

0 1 0 0 0 0 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

⋅+

0.5 U1⋅ 0.5 U2⋅+

= =

=

13

Note: we can see that for 10 generated vectors with M * , the initial stochastic
characteristics are preserved exactly; indeed from Definition 6 with ε = 0, we have

, therefore, in this case, a compaction ratio of 2 has been achieved without
any loss of information.

We should note that using another initial vector (e.g. ‘110’ or ‘101’) as initial state of
the circuit in Fig.9, we would have obtained other output sequences, but all of them still
satisfying the inequali ty from Definition 6.

Remark: decomposing the initial matrix A (via Theorem 1), instead of directly generating
the compacted sequence from the Markov chain globall y characterized by A, has three
important advantages:

- first, it allows the hardware synthesis of the machine M;

- second, it drasticall y reduces the complexity of the generation process: instead of
using a separate generator for each individual state, we need only a single, unique,

generator for the whole process (that is, in the worst-case, we need only

instead of bits per generator, where |S| is the number of reachable states in the
Markov Chain);

- third, it allows to trade accuracy versus efficiency by keeping only a small subset of
matrices Ui from the whole set that would correspond to the exact decomposition. This
way, the transition probabilities that should be generated at the auxiliary inputs are more
uniformly distributed over the interval [0, 1] and therefore the generation procedure is
significantly simpli fied.

To conclude this section, the following general procedure can be used for sequence
generation:

FIGURE 11. The generation procedure

4.2 Complexity issues

In practice, we may have to deal with sequences that have a large number of bits (and
bit patterns) which may give rise to large number of states in the SSM. More precisely, the

theoretical space complexity of matrix A is 2n × 2n (where n is the number of bits of the
input sequence) but in practice the number of distinct transitions is far less than this limit.

A ∗

0 1 0 0 0 0 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0.5 0 0 0 0.5

0 0 0 0 0.5 0 0.5

=

A A
∗

– 0=

2 Slog⋅
S Slog⋅

14

As a consequence, the sparse matrix representation technique is of real help to handle
complexity. However, if the number of states is still too large, the manipulation of matrix
A becomes prohibitive. To handle such cases, we suggest to apply the above procedure in
a block-oriented fashion, that is first partition the whole sequence of n bits, into b smaller

groups of at most bits, and after that apply the procedure to each block, one at a time.

By doing so, we lose some accuracy by ignoring dependencies across the block
boundaries, but greatly increase our abil ity to work with sequences with a large number of
bits.

We decide whether a set of bits are in the same block or not, by considering only
correlations between pairs of bits. For instance, the set of 4 bits { x1, x2, x3, x4} may be

partitioned in two groups of two bits each by looking only at pairwise transition
probabil ities (e.g. (x1, x2), (x1, x3),..., (x3, x4)). Note that the exact procedure would require
analysis of joint transition probabili ties of 3 or 4 bits (e.g. (x1, x2, x3), (x1, x2, x4),..., (x1, x2,

x3, x4)) which is exponential in the number of bits. More formally, given a set of bits

{ xi} 1≤i≤n to be partitioned into b groups G1, G2,..., Gb, we construct a complete graph on n
vertices where each vertex corresponds to one of the bits and each edge corresponds to the
pairwise correlation between the corresponding bits. The edge weights are defined by:

 for every edge (x, y) in

the graph. Next, we have to find an assignment of each vertex to some group such that

 is minimized, where is a

weighting coeff icient that represents the correlation between inputs x and y in the circuit
involved in the compaction process. The α coeff icients are computed as the inverse of the
shortest topological distance (from primary inputs up to the point of reconvergence)
between the inputs of the circuit involved in compaction process. If two inputs do not
reconverge, their topological distance is considered infinite and they are considered
uncorrelated (α = 0). The above formulation involving the cost function is in fact a min-
cut partitioning problem which is NP-complete in the general case [13]. Fortunately,
excellent heuristics are available to solve this problem [14][15].

Example 3: Let us consider the input sequence in Fig.7, and let x, y, z be the 3 bits for
representing v1, v2, ...,v20 that feed the simple circuit in Fig.12a. Using the definition of

the cost function above, we get cost (x, y) = 0.68 and similarly for the other two pairs: cost
(y, z) = 0.74 and cost (x, z) = 0.48. We can now build the corresponding bit-dependency
graph (Fig.12c) assigning to each bit a vertex and weighting the edges with the cost
function (α coeff icients are α(x,y) = α(y,z) = 1/2, α(x,z) = 1/4).

FIGURE 12. An example of a bit-dependency graph

n
b

t x y,()cos p xi j→ yk l→() p xi j→() p yk l→()⋅–

i j k l, , , 0 1,=

∑=

α x y,() t x y,()cos⋅
x Gp∈

y Gq∈

∑
1 p≤ q< b≤

∑ 0 α x y,() 1≤ ≤

15

As we can see, bits y and z are the most dependent ones. If a 2-way min-cut
partitioning is desired, the solution to the problem is shown above: put x in one block and
y, z in the other one. Bits in different blocks will thus be considered to be independent.

5. Practical Considerations and Experimental Results

As stated previously, we will restrict our attention to the application of SSMs to sequence
generation and compaction although their applicability goes beyond these. When power
becomes a factor in designing digital circuits, the problem of sequence characterization
and reproducibility of experiments plays an important part. In addition, with a much
higher practical impact, input sequence compaction can significantly decrease the design
cycle time by drastically reducing the simulation time. Let us analyze all these issues in
more detail.

The problem of sequence compaction is related to that of sequence generation.
Because the latter is contained as a step in the compaction process, we will address the
generation problem through the compaction problem.

FIGURE 13. The experimental setup

Our strategy is depicted in Fig.13 and follows the steps of the algorithm in Section 4.
Basically, we verified our ability to generate and compact constrained input sequences
which may be also used as power benchmarks in the design process. In all experiments,
we target lossy compression [16], that is the process of transforming an input sequence
into a smaller one, such that the new body of data represents a good approximation of the
original data as far as power consumption is concerned. If there was an initial sequence of
length L0 and it turns out that L < L0, then the outcome of this process is a compacted

sequence, equivalent to the initial one as far as total power consumption is concerned; we
say that a compaction ratio of r = L0/L was achieved.

Starting with an n-bit input sequence of length L0, we extract the initial set of
statistics and based on it, if the number of bits n is too large to be handled as a whole, the
set of input bits is partitioned into b subsets (blocks) using the Kernighan-Lin heuristic as
described in Section 4. To each block, we then associate a stochastic machine (SSM1,

SSM2,...,SSMb in Fig.14b). This is similar to approximating a single source on a large

number of bits with many independent sources, each one having a smaller number of bits.

FIGURE 14. Two possible strategies

We note that, as a side effect, this strategy may introduce new vectors (that is, vectors that
were absent the original sequence) in the final compacted sequence.

Once a partition is obtained, we simply apply the algorithm in Section 4 to each group
of bits, that is, we build the matrix A (by preserving exactly the transition probabilities)
and after that, decompose it into a set of degenerate matrices as stated in Theorem 1. A

16

deterministic sequential machine is then constructed for each degenerate matrix in this
decomposition. The next step does the actual generation of the output sequence (of length
L): the resulting auxiliary inputs are excited by a random number generator satisfying the
probabil ity distribution from the decomposition process. From our experience, this
strategy works well (less than 5% relative error on average) for pseudorandom and
moderately biased input sequences. If the sequence to be compressed is a highly correlated
one, then this approach will result in an error level of about 5-10% on average. In such
cases, the global modeling of the SSM, if possible, (as depicted in Fig.14a) can be used to
improve accuracy.

Finally, a validation step is included in the strategy; using an in-house gate-level logic
simulator (which accounts for spurious activity in the circuits) developed under the SIS
environment, the total power consumptions of some ISCAS’85 and ISCAS’89
benchmarks are measured for the initial and the compacted sequences, making it possible
to assess the effectiveness of the compaction procedure (under both zero- and real-delay
models).

In Table 1, we provide our results for real-delay model and type 1 sequences of length
L0=100,000 compacted with different compaction ratios (namely r = 100 and 1000) using

the strategy in Fig.14b; this type of sequence was obtained by randomly applying a set of
logic operators (AND, OR, XOR) between the bits of a random sequence. This increases
the correlations among the bits because it changes not only the signal and transition
probabil ity of each bit, but also the pairwise transition probabilities between bits. For each
value of the compaction ratio, different sizes were allowed for the number of bits per
block (k = 4, 6). For instance, the circuit C1355 has 41 inputs which means a number of 11
blocks with a maximum number of k = 4 bits per block (and accordingly 11 stochastic
machines SSM1, SSM2,..., SSM11 in Fig.14b), or 7 blocks with a maximum number of k =
6 bits per block. For two of the sequential circuits (i.e., s298 and s386) the partitioning
step was unnecessary due to the small number of input bits (3 and 7, respectively).

TABLE 1. Total power (µW@20MHz) for sequences of type 1 (real delay)

As we can see, the quality of results is very good even when the length of the initial
sequence is reduced by 3 orders of magnitude. Thus, for C880 in Table 1, instead of
simulating 100,000 vectors with an exact power of 5990.40 µW, one can use only 1000
vectors with an estimate of 5976.60 µW (k = 6) or just 100 vectors with a power
consumption estimated as 6117.60 µW (k = 4).

This reduction in the sequence length has a significant impact on speeding-up the
simulative approaches for power estimation where the running time is proportional to the
length of the sequence which must be simulated. It should be pointed out that in the real
cases where mill ions of vectors are applied, compaction ratios of more than 1000 may be
safely used.

On the eff iciency side, in Table 2 we report the running times obtained in each step of
the process on a Sun SPARC 20. As the results show, the most time consuming step in our
proposed approach is the time it takes to do sequence generation. These values were

17

obtained using a threshold of ε = 0.001 (that is, every probability is calculated with 3 exact
digits). Setting this to a smaller value (e.g. ε = 0.01) will dramatically reduce the running
time. Differently stated, by varying ε, one can trade-off accuracy vs. efficiency (as
guaranteed by Theorem 2) if this is satisfactory from a practical point of view.

TABLE 2. CPU time (sec.) for sequences in Table 1

In Tables 3-4, we provide only the real-delay gate-level simulation results for a set of
highly biased sequences (type 2 and type 3) obtained from industry. Type 2 sequences
have a length of 4,000 and were compacted using the strategy illustrated in Fig.14a for
two compaction ratios (r = 5 and 10). Sequences of type 3, having a length of 200,000,
were compacted with the same strategy as above for three compaction ratios (r = 50, 100
and 200); the results are presented in Table 4.

TABLE 3. Total power for sequences of type 2

TABLE 4. Total power for sequences of type 3

As reported in Tables 3-4, results are still good, the average relative error being
around 5% and 3% on average, respectively. As an important observation, we note that the
values in the initial transition matrix themselves are important in the decomposition
process: some distributions of transition probabilities tend to favor a small number of
degenerate matrices, as opposed to others which result in much longer decompositions. In
these cases, the decomposition becomes the critical step as far as running time is
concerned.

In our analysis, we chose a gate-level simulator but our results were consistently good
for a more accurate simulator such as Power Mill [20]. Moreover, under a more detailed
scenario where node-by-node power values were extracted, the results are again very
good. To support this claim, in Table 5 we present the results obtained for sequences of
type 3 and compaction ratio r = 200.

TABLE 5. Node-by-node sw_act analysis for sequences of type 3

To derive the values in Table 5, we compared the switching activity estimates for the
compacted sequences against those obtained for the initial sequences considering each
internal node and primary output for every circuit. We report here the usual measures for
accuracy: maximum error (MAX), mean error (MEAN), root-mean square (RMS) and
standard deviation (STD); we exclude deliberately the relative error from this picture, due
to the misleading prognostic it gives for small values.

To summarize, huge compaction ratios (3 or more orders of magnitude) can be
obtained in a short amount of time with a small loss in accuracy for total power prediction,

18

either for combinational or sequential circuits (zero- vs. real-delay). From this perspective,
simulative approaches wil l significantly benefit from these results.

6. Conclusion

In this paper, we addressed the problem of stochastic machines synthesis targeting
constrained sequence generation or compaction. Shifting the attention from the ‘circuit
problem’ to the ‘ input problem’ , we proposed an original approach to generate input
sequences (which must satisfy a set of constraints) and to compact an existing sequence
into a much shorter equivalent one.

The mathematical foundation of this approach relies in probabilistic automata theory
and based on this, a general procedure for SSM synthesis is revealed. After that, these
machines can be used in a stand-alone mode for sequence generation or compaction. The
issues brought into attention on this paper are new to the CAD community and represent a
first step to reduce the gap between simulative and probabil istic techniques which are
currently the norm.

19

7. References

[1] M. Pedram, ‘Power Minimization in IC Design: Principles and Appli cations’, in
ACM Trans. on Design Automation of Electronic Systems, vol.1, No.1, pp. 1-54,
Jan.1996.

[2] A. Ghosh, S. Devadas, K. Keutzer, and J. White, ‘Estimation of Average Switching
Activity in Combinational and Sequential Circuits’ , in Proc. ACM/IEEE Design
Automation Conference, pp. 270-275, June 1992.

[3] F. N. Najm, ‘Transition Density, A Stochastic Measure of Activity in Digital
Circuits’ , in Proc. ACM/IEEE Design Automation Conference, pp. 644-649, June
1991.

[4] C.-Y. Tsui, M. Pedram, and A. M. Despain, ‘Efficient Estimation of Dynamic
Power Dissipation with an Application’ , in Proc. IEEE/ACM Intl. Conference on
Computer Aided Design, pp. 224-228, Nov. 1993.

[5] T. L. Chou, K. Roy, and S. Prasad, ‘Estimation of Circuit Activity Considering
Signal Correlations and Simultaneous Switching’ , in Proc. IEEE/ACM Intl.
Conference on Computer Aided Design, pp. 300-303, Nov. 1994.

[6] F. N. Najm, ‘Feedback, Correlation and Delay Concerns in the Power Estimation of
VLSI Circuits’ , in Proc. ACM/IEEE Design Automation Conference, pp. 612-617,
June 1995.

[7] R. Marculescu, D. Marculescu, and M. Pedram, ‘Probabilistic Modeling of
Dependencies During Switching Activity Analysis’ , in IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol.17, No.2, pp. 73-83, Feb.
1998.

[8] P. H. Bardell , W. H. McAnney, and J. Savir, ‘Built-in Test for VLSI: Pseudorandom
Techniques’ , J. Wiley & Sons Inc. 1987.

[9] J. Monteiro and S. Devadas, ‘Techniques for Power Estimation of Sequential Logic
Circuits Under User-Specified Input Sequences and Programs’ , in Proc. Intl.
Workshop on Low Power Design, pp. 33-38, April 1994.

[10] J. Von Neumann, ‘Probabilistic Logics and Synthesis of Reliable Organisms from
Unreliable Components’ , in Annals of Mathematics Studies, Vol.34, pp.43-98,
Princeton Univ. Press, Princeton, New Jersey 1956.

[11] A. Davis, ‘Markov Chains as Random Input Automata’, in American Mathematical
Monthly, Vol.68, pp. 264-267, 1961.

[12] M. Rabin, ‘Probabil istic Automata’ , in Information and Control, Vol.6, pp. 230-
245, 1963.

[13] M. Garey, and D. Johnson, ‘Computers and Intractability’ , New York: Freeman,
1979.

[14] B. Kernighan and S. Lin, ‘An Efficient Heuristic Procedure for Partitioning
Graphs’ , in Bell Systems Technical Journal, Vol.49, No.2, pp.291-307, 1970.

[15] C. Fiduccia and R. Matheyses, ‘A Linear-Time Heuristic for Improving Network
Partitions’ , in Proc. ACM/IEEE Design Automation Conference, pp. 175-181, June
1982.

[16] J. Storer, ‘Data Compression: Methods and Theory’ , Chapter 1, Computer Science
Press, 1988.

[17] A. Paz, ‘I ntroduction to Probabilistic Automata’ , Academic Press 1971.

20

[18] A. Papoulis, ‘Probabili ty, Random Variables, and Stochastic Processes’ , McGraw-
Hil l Co., 1984.

[19] J.H.Wilkinson, ‘The Algebraic Eigenvalue Problem’ , Clarendon Press, 1988.
[20] C. X. Huang, B. Zhang, A.-C. Deng, and B. Swirski, ‘The Design and

Implementation of PowerMill’ , in Proc. Intl. Workshop on Low Power Design, pp.
105-110, April 1995.

[21] A. Gill, ‘Synthesis of Probabili ty Transformers’ , J. Franklin Inst., 274, pp. 1-19,
July 1962.

[22] A. Gill, ‘On a Weight Distribution Problem with Application to the Design of
Stochastic Generators’ , Journal of ACM, 10, pp. 110-121, Jan. 1965.

[23] C.-Y. Tsui, J. Monteiro, M. Pedram, S. Devadas, A. M. Despain, and B. Lin,
‘Power Estimation Methods for Sequential Logic Circuits’ , in IEEE Trans. on VLSI
Systems, vol.3, No.3, pp. 404-416, Sept. 1995.

21

List of Figures

FIGURE 1. The input problem
FIGURE 2. Constrained sequence generation
FIGURE 3. The general structure of the SSM
FIGURE 4. The behavior of the SSM in Example
FIGURE 5. A possible implementation of the SSM in Example
FIGURE 6. Output equivalence
FIGURE 7. An input sequence and its transition graph
FIGURE 8. The transition table for the SSM in Example 2
FIGURE 9. The SSM generating the original sequence in Example 2
FIGURE 10. A possible behavior of the SSM
FIGURE 11. The generation procedure
FIGURE 12. An example of a bit-dependency graph
FIGURE 13. The experimental setup
FIGURE 14. Two possible strategies

22

FIGURE 1. The input problem

 4-bit Full Adder

S1

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 1 1 0 1 0 0 0
0 1 1 1 0 1 0 0
0 0 1 1 1 0 1 0
0 0 0 1 1 1 0 1
1 0 0 0 1 1 1 0
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
0 1 1 1 0 0 0 1
1 0 1 1 1 0 0 0
1 1 0 1 1 1 0 0
1 1 1 0 1 1 1 0
1 1 1 1 0 1 1 1
0 1 1 1 1 0 1 1
0 0 1 1 1 1 0 1
0 0 0 1 1 1 1 0

S2

0 1 1 1 0 1 1 0
0 1 1 1 0 1 1 1
0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 1
0 1 1 1 1 0 1 0
0 1 1 1 1 0 1 1
0 1 1 1 1 1 0 0
0 1 1 1 1 1 0 1
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0
1 0 0 0 0 0 1 1
1 0 0 0 0 1 0 0
1 0 0 0 0 1 0 1
1 0 0 0 0 1 1 0
1 0 0 0 0 1 1 1
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 1

 Sum[0:3]

 B[0:3] A[0:3]

 4-bit Full Adder

S1

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 1 1 0 1 0 0 0
0 1 1 1 0 1 0 0
0 0 1 1 1 0 1 0
0 0 0 1 1 1 0 1
1 0 0 0 1 1 1 0
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
0 1 1 1 0 0 0 1
1 0 1 1 1 0 0 0
1 1 0 1 1 1 0 0
1 1 1 0 1 1 1 0
1 1 1 1 0 1 1 1
0 1 1 1 1 0 1 1
0 0 1 1 1 1 0 1
0 0 0 1 1 1 1 0

S3

1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
0 1 1 1 0 0 0 1
1 0 1 1 1 0 0 0
1 1 0 1 1 1 0 0
1 1 1 0 1 1 1 0
1 1 1 1 0 1 1 1
0 1 1 1 1 0 1 1
0 0 1 1 1 1 0 1
0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

 Sum[0:3]

 B[0:3] A[0:3]

(a) (b)

23

FIGURE 2. Constrained sequence generation

input SSM
FFs

auxiliary
inputs logic

INPUT SSM

input sequence target

(uncorrelated)

(a)

(b)

circuit

target
circuit

24

FIGURE 3. The general structure of the SSM

 combinational
 logic delays output

 logic

 Inputs X Outputs Y

(auxiliary inputs)
Source P, Σ

 Next states

Present
states S

 sk

 xl

 σm
sj

25

FIGURE 4. The behavior of the SSM in Example 1

w1 w2

0 0
0 0
0 0
0 0
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

x

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

s1
n()

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

s1
n 1+()

0
1
0
0
1
0
1
1
1
1
0
1
1
1
1
1

y

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

26

FIGURE 5. A possible implementation of the SSM in Example 1

D
Y

X

w1

w2

S

27

FIGURE 6. Output equivalence

si • • sj

•

h

Λ∗(sj) Λ(si)

Y = Y*

S* S

28

FIGURE 7. An input sequence and its transition graph

0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0
0 1 1 0 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 0
0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1

v20 v2 v1 5

6

7

4 1

03

 1 1

 0.5 1

 1
0.5

 ⇒

 Initial Sequence
Transition Graph

 0.5

 0.5
 1

29

FIGURE 8. The transition table for the SSM in Example 2

w

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

y1
n()

y2
n()

y3
n()

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

y1
n 1+()

y2
n 1+()

y3
n 1+()

0 0 1
1 0 0
– – –
0 0 0
1 0 1
1 1 0
0 1 1
1 0 1
0 0 1
1 0 0
0 1 0
0 0 0
1 0 1
1 1 0
1 1 1
1 1 1

30

FIGURE 9. The SSM generating the original sequence in Example 2

 y1

 y2

 y3
D

D

D

w

31

FIGURE 10. A possible behavior of the SSM

step

1
2
3
4
5
6
7
8
9
10

w

0
1
1
1
0
1
0
0
0
1

y1
n()

y2
n()

y3
n()

1 1 1
1 0 1
1 1 0
1 1 1
1 1 1
1 0 1
1 1 0
0 1 1
0 0 0
0 0 1

y1
n 1+()

y2
n 1+()

y3
n 1+()

1 0 1
1 1 0
1 1 1
1 1 1
1 0 1
1 1 0
0 1 1
0 0 0
0 0 1
1 0 0

32

FIGURE 11. The generation procedure

procedure Generate_Sequence ()

begin

 A = Construct_Matrix (); /* either user specified or from another sequence */

 /* for a given level of accuracy ε, do decomposition of matrix A */

 while | Σpi -1 | < ε do

 Decompose_Matrix (); /* recursive procedure implementing Theorem 1 and
Theorem 2 */

 end while;

 /* let t be the number matrices Ui in the decomposition */

 {σi} = Encode_Symbols (t);

 /* construct the transition table for the SSM and synthesize the circuit */

 Table = Construct_Table ({Ui});

 Circuit = Construct_Circuit (Table);

 /* generate the new sequence providing corresponding values for the auxiliary
inputs wi */

 Gen_Sequence (Circuit);

end Generate_Sequence;

33

FIGURE 12. An example of a bit-dependency graph
0.

74
 ×

 0
.5

x
y

z

0.68 × 0.5

0.48 × 0.25

x

y
z

•
• •t

x

y

z

t

1
1

1

1
(a) (b) (c)

1

1

34

FIGURE 13. The experimental setup

Initial Sequence
 L0

Compacted Sequence
 L « L0

Partition input bits Build matrix A for
each block in the partition

Generate compacted
 sequence

Decompose matrix A
 according to Th.1

Comparison

 Gate-level logic
simulation

 Gate-level logic
simulation

35

FIGURE 14. Two possible strategies

 target
 circuit

target
circuit

SSM1

SSM2

SSMb

 o
i

....

 global SSM

 o

(a) (b)

36

List of Tables

TABLE 1. Total power (mW@20MHz) for sequences of type 1 (real
delay)

TABLE 2. CPU time (sec.) for sequences in Table 1
TABLE 3. Total power for sequences of type 2
TABLE 4. Total power for sequences of type 3
TABLE 5. Node-by-node sw_act analysis for sequences of type 3

37

TABLE 1. Total power (µW@20MHz) for sequences of type 1 (real delay)

r = 100 r = 1000

Circ. #Inp.
Exact
Power

k = 4 k = 6 k = 4 k = 6

C1355 41 4218.00 4276.80 4236.00 4336.80 4134.60
C1908 33 6990.00 6894.00 6966.60 6597.60 6921.00
C3540 50 19603.20 19497.00 19102.20 19626.60 18646.20
C432 36 3070.80 3065.40 3024.60 3024.00 3052.20
C499 41 5374.20 5431.20 5397.00 5530.80 5235.60

C6288 32 347886.0 354933.60 349987.20 359386.80 336701.40
C880 60 5990.40 6084.00 5976.60 6117.60 5871.00
s1196 14 7698.60 7594.20 7452.60 7914.60 6989.40
s344 9 1814.40 1851.60 1865.40 1975.80 2062.80
s641 35 2908.80 2805.00 2806.20 2674.80 2713.20
s838 34 1551.00 1554.60 1503.60 1551.60 1438.20

s9234 36 21693.60 21679.20 21042.60 21064.20 21875.40
Average Error (%) 1.05 1.81 3.50 3.32

s298 3 975.00 972.60 954.60
s386 7 1996.80 2023.20 2030.40

Average Error (%) 0.78 1.89

38

TABLE 2. CPU time (sec.) for sequences in Table 1

Partition Decomposition
Generation

r = 100
Generation

r = 1000

Circ. k = 4 k = 6 k = 4 k = 6 k = 4 k = 6 k = 4 k = 6
C1355 0.02 0.01 0.10 0.73 2.22 2.02 0.25 0.22
C1908 0.01 0.01 0.08 0.59 1.63 1.51 0.19 0.16
C3540 0.03 0.02 0.13 0.84 2.22 2.02 0.25 0.22
C432 0.01 0.01 0.09 0.57 1.81 1.73 0.20 0.18
C499 0.02 0.01 0.10 0.73 2.22 2.02 0.25 0.22

C6288 0.01 0.01 0.07 0.54 1.54 1.45 0.17 0.16
C880 0.04 0.02 0.17 1.13 3.92 3.55 0.43 0.37
s1196 0.01 0.01 0.03 0.06 0.55 0.51 0.06 0.06
s344 0.01 0.01 0.13 0.02 0.13 0.11 0.02 0.01
s641 0.01 0.01 0.08 0.60 1.75 1.67 0.19 0.17
s838 0.01 0.01 0.08 0.59 1.70 1.55 0.18 0.17
s9234 0.01 0.01 0.09 0.57 1.81 1.73 0.20 0.18
s298 - 0.01 0.04 0.01
s386 - 0.11 0.07 0.01

39

.

TABLE 3. Total power for sequences of type 2

Circ. Exact Power r = 5 r = 10
C1355 3783.17 3863.27 3918.51
C1908 6352.03 6683.00 6592.43
C3540 14471.32 12603.73 13034.91
C432 1809.95 1706.08 1860.58
C499 4390.45 4470.10 4467.74

C6288 104117.45 95628.77 92198.86
C880 3787.93 3526.17 3716.96

Avg. Error (%) 6.11 5.06

40

TABLE 4. Total power for sequences of type 3

Circ. Exact Power r = 10 r = 50 r = 200
C1355 1878.10 1882.05 1895.54 1900.87
C1908 977.69 958.75 989.99 958.95
C3540 674.15 591.81 592.93 581.40
C432 1033.16 1041.26 1049.38 986.68
C499 2323.73 2316.62 2304.67 2289.72
C6288 2073.94 2048.41 2024.81 2014.79
C880 1355.13 1344.20 1329.08 1380.29

Avg. Error (%) 2.50 2.99 3.94

41

TABLE 5. Node-by-node sw_act analysis for sequences of type 3

Circ. MAX MEAN RMS STD
C1355 0.0286 0.0032 0.0070 0.0063
C1908 0.0206 0.0008 0.0032 0.0031
C3540 0.0448 0.0025 0.0082 0.0078
C432 0.0300 0.0036 0.0068 0.0057
C499 0.0286 0.0031 0.0070 0.0063
C6288 0.0538 0.0004 0.0018 0.0018
C880 0.0208 0.0013 0.0042 0.0040

