Interconnect Design Methods for Memory

Chanseok Hwang, Massoud Pedram

University of Southern California Department of Electrical Engineering Los Angeles CA, USA

Layout Design of Peripheral Circuits: Features

- High layout complexity
 - Error-prone task with low productivity requiring full-custom approaches
- Layout area minimization is the goal
- High-speed and crosstalk-immune signal designs are the constraints
 - Mixed analog and digital signals
- Lack of adequate design automation

Our Solution

Fixing the net topologies

- Pre-define net topology for all nets
- Well-known design (timing-critical signals, noisesensitive signals)
- Quality comparable to handcrafted layout
- Crosstalk-aware over-the-cell channel routing
 - Satisfy peak crosstalk noise constraints for noisesensitive signals
 - Minimize channel height by using the over-the-cell area efficiently

- We define four types of routing topologies according to the performance constraints:
 - Delay critical and crosstalk noise sensitive nets, $N_{\rm C}$, for address and data signal nets
 - Crosstalk noise sensitive nets, N_S, such as analog signal nets
 - Delay critical nets, N_{T} , for signals that lie on the timing-critical paths
 - Non-critical digital nets, N_B , for signals with enough noise margin and timing slack

Example Comparison of the Fixed Net Topologies

Topology type	I	II	111	IV
Critical sink delay	117 (39%)	93 (10%)	84	110 (30%)
Total routing length	12	11	12	12
Consumed channel area	12	7	8	3

Crosstalk-aware Over-the-Cell Channel Routing

- Propose practical models for delay, crosstalk effect, and the cell layout
- Performance-driven net partitioning (PDNP)
- Performance-driven track assignment (PDTA)

An Example of Computing the Peak Crosstalk Noise

Crosstalk-aware Over-the-Cell Channel Routing

- Propose practical models for delay, crosstalk effect, and the cell layout
- Performance-driven net partitioning (PDNP)
- Performance-driven track assignment (PDTA)

Performance-Driven Net Partitioning (PDNP)

- Create a performance-driven tree for each net type
 - BRT for N_C , MST for N_S , CSRT for N_T , and MCAT for N_B
 - Split a net into subnets
 - Preserve the fixed-topologies during the routing process

PDNP (Cont'd)

- Bus Routing Tree (BRT) for N_C
 - Bus signals such as address and data signal nets need to be routed in a similar routing topology
 - Obtain a steiner tree on a single track (nets are not split into subnets)

Forming BRT for N_c

PDNP (Cont'd)

- Critical Sink Routing Tree (CSRT) for N_T
 - Minimize the delay from the source to the critical sink (CS)
 - Based on the ERT algorithm
 - Create a MST for (*T* {cs}) and then connect CS to *T* at the right point
 - Obtain a tree with the minimum critical sink delay from the source

Forming CSRT for N_{τ}

Crosstalk-aware Over-the-Cell Channel Routing

- Propose practical models for delay, crosstalk effect, and the cell layout
- Performance-driven net partitioning (PDNP)
- Performance-driven track assignment (PDTA)

Performance-Driven Track Assignment (PDTA)

- Assign nets or sub-nets to tracks while meeting the following constraints
 - Horizontal constraints (HC) for all nets
 - Vertical constraints (VC) for all nets
 - Noise constraints (NC)
 - $PN(n_i) \le AN(n_i)$ for a net $n_i \in \{N_C, N_S\}$, where $PN(n_i)$: Peak crosstalk noise for n_i $AN(n_i)$: Allowable peak crosstalk noise for n_i

VCV Checking Rules

- Efficient determination of whether a VCV occurs
 - If the track has been selected from the bottom part of the channel, then a VCV will occur exactly if
 - net enters from the top, and
 - the net that is entering from the bottom in the same column has not yet been assigned to the track
- No vertical constraint graph is needed to check the VCV's

TANAR Algorithm

- 1. All nets are classified into four types and split into subnets according to their types using PDNP;
- 2. Sort subnets in the increasing order of their leftmost end positions;
- 3. Select a track *T* from the over-the-cell region toward the middle of a channel;
- 4. Select the next subnet *n* with the lowest left-end position;
 - If *n* satisfies *HC*, *VC* and *NC*
 - Place *n* on the current track *T*;
 - Delete *n* from the sorted list;

Else Goto 4 if there is an untried subnet in the list

Repeat step 3 and 4 until all subnets are assigned

Experimental Results

- We randomly assigned net types for the example circuits
 N_C(10%), N_S(15%), N_T(25%) and N_B(50%)
- We assigned the maximum allowable peak noise AN, ranging from 10% to 30% of supply power voltage, for nets in N_c or N_s

Circuits	# of Nets	# of Columns	Channel Density	
Deutsch	72	174	19	
Rand100	100	220	20	
Rand200	200	480	39	
Rand300	300	720	60	
Rand400	400	870	81	
Rand500	500	1200	90	

The characteristics of benchmark circuits

Experimental Results (Cont'

Test Circuits	TANAR				CONV			
	Deck Noise	CS-Delay (ps) for N ₇	# of Used Tracks		Peak	CS-	# of Used Tracks	
	V for $N_{\rm S}$ and $N_{\rm C}$		In- the- Chan nel	Over- the- Cell	Noise (V) for <i>N_S</i> and <i>N_C</i>	Delay (ps) for <i>N_T</i>	In- the- Chan nel	Over -the- Cell
Deutsch	ח 0.17 (-67.0%)	28.9(-4.0%)	13	24	0.53	30.4	16	15
Rand10	0 0.06 (-40.9%)	26.5(-5.6%)	16	27	0.10	28.1	17	14
Rand20	0 0.20 (-67.7%)	33.8(-7.3%)	25	45	0.62	36.5	26	28
Rand30	0 0.36 (-60.0%)	36.9(-7.7%)	44	77	0.90	40.0	46	40
Rand40	0 0.41 (-62.0%)	40.7(-13.5%)	41	86	1.08	47.1	45	47
Rand50	0 0.52 (-57.4%)	46.4(-16.5%)	54	92	1.22	55.6	56	56

Conclusion

- We solved the automatic routing problem of memory peripheral circuits as an over-the-cell channel routing problem under performance constraints
- Our approach handles noise sensitive nets and timing critical nets at the same time while efficiently utilizing the over-the-cell area
- Experimental showed that the proposed routing algorithm reduces the peak crosstalk noise by 40%~67% and the critical-sink delay by 4%~16% while reducing (or preserving) the channel height