
Precomputation-based Guarding for Dynamic and Leakage
Power Reduction

 Afshin Abddollahi, Massoud Pedarm Farzan Fallah, Indradeep Ghosh

University of Southern California Fujitsu Labs of America

 {Afshin,Pedram}@usc.edu {farzan,ighosh}@fla.fujitsu.com

Abstract - This paper presents a precomputation-based
guarding technique to reduce both dynamic and static power
consumptions in CMOS VLSI circuits. More precisely, a high
threshold sleep transistor is placed in series with some
portions of the circuit. Based on the input values of the circuit,
the sleep transistor is turned on and off, thus, saving both
dynamic and static power. We show how to apply this
technique to a number of common arithmetic blocks, including
comparators, adders and multipliers. Finally, dynamic
guarding and sleep transistor activity reduction techniques for
improving the performance of the method are presented.
Experimental results show 81% reduction in the power
consumption of data path modules of a commercial VLIW
processor can be achieved using our techniques. This is 20%
higher than what has been achieved by previous methods.

1. Introduction

Low power design has become a very important design
technology driver. Widespread use of portable battery-powered
electronic systems is one of the key reasons for the increasing
importance of low power design. Power dissipation in these
kinds of systems may be divided into two major components:
dynamic power consumption and leakage power dissipation.
There are different factors contributing to the dynamic power
consumption in CMOS circuits. Most of the dynamic power is
consumed for charging and discharging the load capacitances
of logic gates. Therefore, minimizing the number of signal
transitions in circuits can be quite effective in reducing this
component of power dissipation in these circuits. Another
contributor to the dynamic power consumption in CMOS
circuits is the short circuit current, which may also be reduced
by minimizing the number of signal transitions. In deep sub-
micron CMOS process technologies, the largest component of
the leakage power in VLSI circuits is the drain-source leakage
current of the transistors. This leakage current increases
exponentially with the threshold voltage, which is in turn
lowered with each new process technology generation in order
to increase the gate drive strength.

Another reason why low power design has become
important is the rapidly increasing temperature of VLSI chips,
which makes the design of cooling systems more challenging
and costly as well as decreases the reliability of circuits when
combined with the effect of technology scaling [11]. Data path
modules in a microprocessor are typically the hottest spots on
a chip [10]. The high temperature of data path modules creates
reliability problems and makes the cooling of the chip more
difficult. The latter has a negative impact on the size and the
cost of the system. Furthermore, the large thermal gradient

created in the chip complicates the chip design and can create
mechanical problems [15]. From the above discussion, the
significance of decreasing the power consumption of the data
path modules becomes evident.

This paper introduces several techniques for decreasing the
power consumption targeting data path modules. Our
techniques combine two well-known methods namely pre-
computation for decreasing the dynamic power and guarding
for decreasing the leakage current. Our main contributions are
1. Using guarding technique to decrease the dynamic power

consumption. Therefore, one method can be used to
decrease both dynamic and static power

2. Combining the pre-computation method with the guarding
method

3. Introducing two new guarding techniques, namely,
dynamic and hybrid methods, and finally

4. Presenting a method for reducing the switching activity of
the sleep transistor that is used for the guarding purpose.

We first demonstrate the effectiveness of our methods
using stand alone circuits. After that we show how our
techniques can decrease the power consumption of the integer
unit of a commercial VLIW processor by 81%.

The remainder of this paper is organized as follows.
Section 2 describes precomputation and operand isolation
methods for decreasing dynamic power, while Section 3
describes the guarding method for decreasing the leakage
current of a circuit. In Section 4, our precomputation-based
guarding is introduced. Section 5 describes the application of
our method for comparators, adders and multipliers. In Section
6 two new methods for improving our guarding technique is
introduced. Experimental results are presented in Section 7.
Section 8 summarizes our findings and outline future work.

2. Dynamic power reduction by precomputation
and operand isolation

Pre-computation is a well known technique for reducing the
switching activity of a circuit. In this method, some inputs of a
circuit are frozen while a smaller circuit computes the output
values [7]. The idleness of a part of the circuit is dynamically
detected in each clock cycle and the input registers are frozen
by disabling their clock signals. This decreases the dynamic
power consumption. This method has also been called signal
gating [4]. Another method is guarded evaluation [14]. This
method involves determining which parts of a circuit are
computing useful results and which parts are computing results
that are not used. Parts that are not needed are subsequently
"shut off". We point out that the term “guarded” will be used
in our paper in a different way compared to reference [14].

Precomputation increases the delay of the previous stage in
a pipeline. Furthermore, it is effective only if all functional
units driven by a register are unused in the current clock cycle.
More precisely, if a register feeds a functional unit other than
the idle ones, then freezing the inputs of the register will result
in incorrect operation of the circuit. Figure 1 shows the integer
unit of FR500, a commercial VLIW processor [12]. The
integer unit consists of five different modules namely,
Add/Sub, Logic, Shift, Scan, and Set. The Scan module finds
the bit position of the last (most significant) bit of the REG
that is equal to one; it is intended to be used in Huffman
coding. The Set module determines the low (high) order 16
bits of its operand. The inputs of all modules are tied together
and are driven by the same register set, REG. Depending on
which operation is used, the output of one of the modules is
selected by the multiplexor.

Figure 1. The integer unit of FR500 VLIW processor.

Even when the output of a module is not used, there may
exist some switching activity in that module. Consider a clock
cycle in which we are only interested in the output result of the
Add/Sub module. Applying precomputation to this module
will result in freezing the values of some bits of REG and will
thereby reduce the switching activity in the Add/Sub as well
as other modules. However, this also implies that there will be
switching activity in the other four modules where ideally
there should be none (because their outputs are not of interest
in that cycle.) We refer to this problem as the input sharing
problem. In some cases, it is possible to use multiple registers
to drive different modules and thereby solve the input sharing
problem, but this solution may not be practical if several
registers drive the circuit since in such a case the overhead of
duplicating all registers can be large. Furthermore, duplication
of registers increases the load on the previous stages of a
processor pipeline. Finally, the duplication method cannot be
used if the inputs to the idle units come directly from another
functional unit or a bus. Our technique overcomes the input
sharing problem without such large overheads and increases
the amount of power saving that can be achieved for such a
circuit.

Operand isolation is another method for decreasing the
switching activity in a circuit [8]. In this method, the inputs of
the circuit are passed through an AND or an OR gate. This
makes it possible to set the inputs to zero or one whenever the
output of the circuit is not used and decrease the switching
activity in the circuit. This method has a higher overhead than

signal gating because of adding one extra gate for each input of
the circuit. The overhead increases with the increase in the
number of inputs. Another problem is that the added gates in
the inputs increase the dynamic power consumption when the
circuit is being used. On the other hand, unlike signal gating,
operand isolation can be used in a circuit configuration such as
the one depicted in Figure 1.

3. Leakage power reduction by power
supply/ground gating

An effective method for leakage power reduction is power
supply or ground gating. There are many ways in which this
technique can be implemented, but the basic idea is to
disconnect the power supply or ground of the idle units from
those of the circuit so that these units do not consume any
power. One possible implementation is to use Multiple-
Threshold Voltage CMOS (MTCMOS) [6]. In this case, two
high threshold transistors are connected in series with low
threshold devices used inside the logic block creating two
sleep transistors. This means that virtual supply and ground
rails are created whose voltage levels are very close to the real
supply and ground lines because of the small on-resistance of
the sleep transistors. This method is also known as guarding.
In practice, only one virtual rail (usually the virtual ground) is
used. Normally, one sleep transistor per gate is used. Coarser
granularities are also practiced, which require fewer transistors
[13].

4. Guarding for decreasing dynamic power and
precomputation-based guarding

Although the idea of using sleep transistors was originally
developed for leakage power reduction in the standby mode, it
can also be used to significantly reduce the dynamic power
dissipation by decreasing the switching activity of the guarded
circuit. This makes it possible to use the same technique for
decreasing both dynamic and static power.

In our proposed method, we insert sleep transistors
between the ground and virtual ground terminals of various
parts of a circuit that need to be selectively turned off. If the
target part (module) should be active in some clock cycles,
then the enable signal turns the sleep transistor ON, permitting
the normal operation. Otherwise, the sleep transistor
disconnects the module from the ground. This eliminates all
high to low transitions in the module and decreases the activity
in the module outputs. The advantages of this method over the
signal gating and operand isolation methods are as follows:

1. This technique reduces the leakage power dissipation of
the idle units due to the cutoff of the signal paths to
ground in the off mode and due to stack effect in the on
mode [5]. Therefore, one technique can be used to
decrease both dynamic and leakage power. In contrast, the
precompuation and operand isolation cannot decrease the
leakage current.

2. Unlike precomputation, this method can be used even
when some logic blocks in the fanout of a register are

Logic

Shift

Scan

Set

Add/Sub

R
E
G

M
U
X

active (i.e., this technique does not suffer from the input
sharing problem.)

3. Adding the sleep transistor may reduce the dynamic power
even when the sleep transistor is on. The reason is that in
many circuits some internal nodes switch more than once
per clock cycle. Adding the sleep transistor increases the
resistance between the internal nodes and the ground of
the circuit. This reduces glitching in the internal nodes,
thereby, decreasing the dynamic power consumption.
Neither precomputation nor operand isolation has this
feature. In fact the operand isolation method may increase
the dynamic power consumption when the circuit is in its
normal operation mode because of the extra gates added to
the inputs (which increase the total switched capacitance
of the circuit.)

When guarding a part of a circuit, its internal nodes and
outputs may be floating. If a floating node is driving an
unguarded gate, a conducting path between the supply and the
ground may be formed. As a result, a large static current flows
from the supply to the ground of the unguarded gate. It is
important to ensure that this situation does not occur. Consider
the NAND gate in Figure 2 (a). When A=1, B will be the
controlling input of the NAND gate. If B is floating at a value
between 0 and 1 logic levels (this could happen when a
floating signal line loses some of the charge that is stored on
its parasitic capacitances to other signal lines due to effects
such as charge sharing or crosstalk coupling), both PMOS and
NMOS transistors will conduct and static (rush-thru) current
will flow between the supply and the ground. To correct this
situation, the NAND gate can be guarded or the gate
generating B can be unguarded. Figure 2 (b) shows another
example. If the control signal C of the multiplexor is generated
by a guarded gate, it may be floating at a value between 0 and
1 logic levels. Therefore, both pass gates may conduct at the
same time. If A and B have different values, then a path
between the supply and the ground will be formed through the
drivers of A and B and the two pass gates. Thus, a static
current will flow. To solve this problem, the gate generating C
should be unguarded. Another option is to put two guarded
buffers/invertors between inputs A and B and the pass gates. If
the registers feeding the idle unit do not feed any other units,
they can be guarded as well. The data stored in the registers
will be lost, but this is not important in most data path modules
as the registers are updated at every cycle. The enable signal
for the sleep transistors, guarding the registers, may be
different from that of the idle units because of the timing
considerations. Guarding registers results in further power
reduction. Adding the sleep transistor in series with gates
reduces the speed of the high to low transition of the gate. To
decrease the speed penalty, careful sizing of the sleep transistor
is necessary. From this viewpoint, increasing the size of the
sleep transistor is helpful as it reduces the delay penalty.
However, there is a power dissipation overhead when
switching the gate of the sleep transistor as well as an area
overhead associated with using a large sleep transistor i.e.,
there is a tradeoff.

5. Precomputation-based guarding in arithmetic
units

Figure 2. Two circuits that may consume static power
after guarding.

5.1. Comparators

In this section, we use the precomputation-based guarding
technique for a comparator, which compares two n-input
numbers. Our approach is based on splitting the inputs into m
bits in the most significant part (MSP) and n-m bits in the least
significant part (LSP). As is well known, the idea is that if the
MSP of two numbers are not equal, then the output of the
comparator can be computed regardless of the value of LSP’s.
Otherwise, one must compare the LSP’s to obtain the correct
output of the comparator. To use this fact for reducing power
consumption of the circuit, we ought to first split the parts of
the circuit corresponding to MSP’s and LSP’s of its inputs and
next disable the LSP of the circuit whenever the output can be
determined from the MSP’s of the inputs, i.e., when the MSP’s
are not equal. This is depicted in Figure 3.

Figure 3. The m-bit precomputation-based guarding for
an n-bit comparator.

As one can see in Figure 3, the enable signal EN, which
controls the sleep transistor of the guarded circuit, also
controls a multiplexor which selects the appropriate output of
the circuit. As stated previously, the registers corresponding to
LSP may also be guarded if they are not used to feed any other
functional unit.

The amount of power that is saved depends on the value of
m. As m increases, the probability for the two MSP’s to be
equal decreases. Consequently, the percentage of time in which
the LSP of the circuit becomes active decreases and more
power can be saved. On the other hand by increasing m, the

 A[n-1…n-m-1]

B[n-1…n-m-1]

A[n-m-2…1]

B[n-m-2…1]

EN

Out

RA1

RB1 >
RA2

RB2

=

1

0

 >

MSP

LSP

C

C

A

B
A
B

(a) (b)

size of the circuit that checks the equality of MSP’s (i.e., some
XOR and AND gates) increases and the size of the circuit that
is guarded becomes smaller, which in turn results in lower
power saving. Therefore, there is a tradeoff. The optimum
point to split the circuit and its inputs can be computed based
on the correlation of the inputs, their probability distribution
functions, and the technology used to implement the
comparator.

5.2. Adders

One of the most prevalent arithmetic units in a digital circuit is
the adder. When designing the functional units of a data path,
the word length is determined based on the maximum dynamic
range of the input data. However, actual data ranges, in most
cases, are very small. A two’s-complement number can be
partitioned into two parts: sign extension bits (leading zeros or
ones) and significand bits. We define the effective bit range
(EBR) of an input operand as the bit width of the significand
part. For the sign extension bits it is not necessary to perform
expensive computation.

Figure 4. The precomputation-based guarding for an
adder.

An effective method for precomputation-based guarding of
an adder circuit is to divide the circuit into two parts, one part
operating on the LSP’s of the two operands while the other
part operates on the MSP’s and the carry propagated from the
first part. This decomposition is done in a way that for most
ADD operations performed by the adder, the EBR of the inputs
is smaller than the LSP. A logic unit verifies whether the range
of the significand bits exceeds the maximum range of the LSP.
If this is the case, the functional unit performs computation in
both the MSP and the LSP. Otherwise, the functional unit
performs computation in only the LSP’s of the inputs; the MSP
of the circuit is disabled and simple sign-extension logic
produces the correct output. Note that it is possible to make the
precomputation more complex and detect more special cases.
For example, one can devise a precomputation method which
detects if one of the inputs is zero and disables the entire adder
and sets the output of the circuit equal to the other input. A

potential problem with such a method is that the
precomputation condition tends to occur infrequently and the
amount of power saved may become smaller than the power
overhead of adding one or two extra multiplexors to the
circuit.1

Figure 4 illustrates the implementation of a partially
guarded circuit for a ripple carry adder. The inputs of the
detection logic are MSP’s of the operands and leading bits of
LSP’s of the two operands. Note that the most significant bits
of the LSP’s are needed since there may be an overflow when
we add the two LSP’s. For each input operand, the detection
logic checks whether or not all bits in the MSP and the leading
bit of the LSP are identically zero or one. If this is true, then
the significand bits of both input operands do not exceed the
LSP, which in turn implies that the output of the detection
logic should be set to zero i.e., Reg1 and Adder MSP will be
disabled and the adder will perform the operation with partial
precision. Otherwise, this output should be set to one i.e., the
adder will perform the operation with full precision.

Figure 5. Timing diagram of the guarded adder circuit.

The inputs of the detection logic are connected to the inputs
of the registers to have EN1 asserted before the next input data
is loaded into the guarded registers, which is crucial for correct
guarding. However SEL, which is connected to the sign
extension logic and the latch that transfers the carry out from
the LSP of the adder to the MSP, is asserted after the rising
edge of the clock. This guarantees the output of the functional
unit to be loaded correctly into the input register of the other
functional units. The detection logic generates EN2 in such a
way that the high to low transition of EN2 occurs before the
rising edge of the clock to completely block the switching
activity in the idle unit. Furthermore, the low to high transition
occurs after the rising edge of the clock to prevent the
switching activity in the idle unit at the end of the current
clock cycle. Figure 5 shows the timing diagram of the circuit
operation. In the above discussion, we used a ripple carry
adder to illustrate the basic technique. It is straightforward to
apply the same technique to other types of adders (carry

1 Our current precomputation-based guarding technique for an
adder can save power even in some cases when the above
condition holds (i.e., when one of the inputs is zero and the
other satisfies the BER test.)

clock

input

EN1

SEL

EN2

sign extension

Reg1 Reg2 Detection Logic

Adder
MSP

Adder
LSP

inputs(MSP) inputs(LSP)

CLK CLK

EN1

output(MSP) output(LSP)

0 1

latch

EN2

SEL

SEL

bypass or look-ahead) by properly partitioning the input
operand bits into the MSP and the LSP.

5.3. Multipliers

In this section we discuss the technique for an n-bit
multiplier which usually is designed by using an array of
single-bit carry save adders (CSA) followed by an n-bit carry
propagation adder (CPA) as illustrated in Figure 6. To guard a
multiplier, first it is checked whether the EBRs (Effective Bit
Ranges) of the input operands are smaller than a predetermined
value. If they are, a guarding logic will be activated, the
multiplier will work as a low-precision multiplier and the
result will be restored to the full-precision by sign extension.
Otherwise, the multiplier will work as a normal full-width
multiplier. For the multiplier architecture, it is possible to use a
two-dimensional guarding technique. Two dimensional
guarding inserts two guarding lines for the two input variables.
Guarding may occur in one or both directions based on the
precision of the input data.

Figure 6. A multiplier using CSA array and one CPA.

The precisions of the inputs are detected by using the
previously-described logic. The two guarding signals g1 and g2
are generated corresponding to input1 (yi) and input2 (xi),
respectively (generated with a detection logic similar to the
detection logic of adder circuit in Figure 4.) The CSA is
partitioned into four regions (see Figure 7.) When g1 is active,
the left two regions are guarded. When g2 is active, the bottom
two portions are guarded. The right upper region is always
unguarded and the left bottom region will be guarded if any of
g1 or g2 is active. The inputs of the CPA are selected through
the multiplexor MUX1. If g2 is inactive, the inputs will be the
data from the last row of CSA. Otherwise, the inputs will come
from the output of an intermediate set of adders (i.e., the
output of the adders in the last row of upper region) of the
CSA corresponding to the guarding line of input2. In this case,
the outputs of the CPA have to be shifted right by k bits where
k is the number of precomputation bits for input2. This shift is
done by MUX2. If g1 is active, the left parts of MUX1, CPA
and MUX2 are disabled. Finally, sign restoration is performed

by MUX3 using the sign bit (sb), which is easily done by
computing the XOR of the most significant bits of the input
data. In the above discussion, we used a carry save multiplier
to illustrate the basic technique. The method can be applied to
other types of multipliers e.g., Wallace tree by properly
partitioning the input operand bits into the MSP and the LSP.
Note that it is possible to use a precomputation scheme where
the multiplier is turned off when one of the inputs is 0, +2 p, or
-2p, where p is some integer. The problem with such a scheme
is that the precompuation condition does not happen very
frequently. Therefore, the amount of power which can be
saved is less than the power overhead of adding extra
multiplexors in the output.

Figure 7. The precomputation-based guarding for a
multiplier.

6. Improving the precomputation-based guarding
technique

In this section two modifications to the basic technique are
introduced to improve the power saving.

6.1. Dynamic and hybrid guarding

In the precomputation-based guarding technique which was
described previously, the value for BER is pre-selected. If the
BER of the actual data is larger than the pre-selected BER, the
operation is performed as usual and no power is saved. On the
other hand, if the BER of the actual data is much smaller than
the pre-selected BER, some opportunity for power saving is
lost. To improve the performance, a finer granularity method

can be used for the precomputation. In the dynamic guarding
method, we detect the sign extension portion of the input data
and deactivate the corresponding parts. Such dynamic
guarding requires gating logic for every bit. In this case, the
“right” portion of the logic is dynamically guarded, which
results in the maximum power saving because the guarding
signal is activated more often. This case should be contrasted
with the static guarding where the guarding signal is activated
only if the sign extension portion of the input data is larger
than a fixed, pre-selected length (cf. Section 7.) In some cases,
the dynamic guarding technique may result in an unacceptable
delay, area and power dissipation overhead. For example, this
method is ineffective for adders because the value of the sign
bit depends on one of many internal carry signals of the
adders. Which internal carry is used depends on the length of
the sign extension portion of the inputs. This implies that a
large multiplexor and a large number of wires are required. On
the other hand, in multipliers, the sign extension bit is the XOR
of the most significant bits of the input data which can easily
be calculated. Therefore, using this technique for adders
requires considerable amount of interconnect and consequently
a large area overhead. However, this method is appropriate for
guarding multipliers in the direction corresponding to input1
(cf. Figure 7.) The reason is that signal g1 only controls MUX3,
which selects the output between its inputs from the upper
stages and signal sb, which as mentioned before can be easily
computed. On the other hand, dynamic guarding for input2
requires significant wiring overhead since MUX1 would be
required to select between several rows of CSA.

In cases that the overhead of the dynamic guarding is too large,
a hybrid method can be used. In hybrid guarding, multiple
values for BER are selected and depending on the input values,
one guarding line is selected (see Section 7).

6.2. Reducing the switching activity of sleep transistors

Every time a sleep transistor is turned on and off, some
dynamic power is consumed. If the guarding signal switches

frequently, the power dissipation of switching the sleep
transistor may overweigh the power saving due to the

guarding. To address this problem, we use a circuit to limit the
switching frequency of the sleep transistor. The proposed
technique is based on generating a new guarding signal

depending on the recent values of the original guarding signal.
In this method the circuit is guarded if the guarding signal was

active for a number of consecutive cycles as illustrated in
Figure 8. In this figure, D units represent one cycle delay,

which can be implemented by flip-flops. The circuit depicted
in Figure 8 acts as a low pass filter and reduces the number of
times a sleep transistor is switched. The number of delay units

depends on the ratio of the delay overhead associated with
switching the sleep transistor in comparison to the power
saving in each clock cycle. In addition, it depends on the

expected switching frequency of the original guarding signal.
For example a more frequently-changing guarding signal

requires more delay units in the circuit. The number of times a
sleep transistor switches for a given trace and a given number
of delay elements can easily be found by simulating the circuit
for a given input trace. From simulation results, the percentage
of time that the sleep transistor is off can be determined. This

Figure 8. Limiting the switching frequency of the guarding
signal.

value can then be used to estimate the power that is saved in
the circuit and the power that is consumed to switch the sleep
transistor for a given number of delay elements. From these
estimations, a small set of candidate values for the number of
delay elements can be determined. More accurate calculations
can be performed by power simulating the circuit with
different number of delay elements.

7. Results

We applied our techniques to several 32-bit functional units
implemented in a 70nm technology with 0.9V supply voltage
and 0.2V and -0.22V threshold voltage for NMOS and PMOS
transistors, respectively [16]. The threshold voltage of the
sleep transistors was 0.5V. We used PowerMill to estimate the
power in gate-level and included the power of the added
circuitry in all experiments. To compute the delay of circuits,
we used SPICE. Figure 9 shows the percentage of the total
power saving resulted from applying our guarding method on a
32-bit comparator for different number of bits in the MSP of
the circuit. We drove the comparator using a trace of 1000
vectors extracted from a JPEG encoder. As one can see, it is
possible to reduce the power by about 62% using our method.

Figure 9. Power saving for a 32-bit comparator.

Furthermore, the saving is relatively insensitive to the number
of bits used in precomputation. In our example, if the number
of bits changes between 8 to 14 bits, the saving stays around
60%. The delay and the area overhead of using the sleep
transistor for the comparator were 25% and 30%, respectively.

Next we applied our method to a 32-bit adder for two
different numbers of bits in the MSP of the circuit and
compared the results of our method with the results of the
signal-gating [4] and the operand isolation method. For the
operand isolation, we used AND gates in the input and used
the precomputation logic to selectively freeze the inputs. Table
1 shows the percentage of power saving in the registers and the
adder separately. Test data corresponds to a comparator and an

0

20

40

60

80

7 8 9 10 11 12 13 14 15 16

Number of bits in the MSP of the circuit

P
ow

er
 S

av
in

g
P

er
ce

nt
ag

e

`

D D D

Guard
Signal New

Guard Signal

adder in the data-path of a processor executing a JPEG decoder
program. Because of higher overhead of operand isolation than
other methods its power saving is smaller. This is due to the
dynamic power consumption of the added gates in the inputs.

Table 1. Power saving for a 32-bit adder.

Table 2 shows the results of using the improvement methods
described in Section 6 on a 32-bit adder. We used hybrid
18&11-bit precomputation method in which based on the input
data, the portion of the adder corresponding to 18 or 11 most
significant bits of operands are disabled. As one can see, the
hybrid method significantly increases the amount of the power
saving.

Table 2. Power saving for a 32-bit adder using the
improved techniques.

Precomputation-based guarding performs better than signal
gating. The reasons are that,

1- by adding the sleep transistor, the dynamic power
consumption of both the adder and the registers in

the normal mode are decreased. The reason is the
decrease in the glitch of internal nodes.

2- The leakage current is reduced due to the use of the
sleep transistor.

The saving is more than what can be achieved by signal
gating or our non-hybrid method (see Table 2). Also, limiting
the switching frequency of the guarding signal reduces the
power overhead although the power saving may reduce also.
However in most cases using this technique improves the
overall power saving. We used two delay units for the 18-bit
precomputation and results are shown in Table 2. As one can
see this method can improve the result, but in this specific
experiment the saving achieved was less than the hybrid
method. Table 3 shows the results of using our improved
methods on a 32-bit multiplier. As one see, using dynamic and
hybrid guarding techniques improve the power saving in
comparison to the vanilla precomputation-based guarding
technique.

Table 3. Power saving for a 32-bit multiplier using the
improved technique

Table 4 includes delay and area overhead of our method for
three different circuits. As one can see the amount of saving
achieved for the multiplier is more than the adder.

Table 4. Comparing the delay and the area overhead

Finally, we applied our techniques to the integer unit of
FR500 VLIW processor depicted in Figure 1. The processor
was implemented in a 0.18um technology with 1.8V supply
voltage. We used SPICE to exhaustively simulate modules
using some worst case or near-worst case input vectors with
and without the sleep transistors and conservatively sized the
sleep transistors. When sizing the sleep transistors, we took
advantage of the timing slack of the faster modules to decrease
the width of sleep transistors. We used an instruction set
simulator to generate a trace for the integer unit. The power
consumption of the unit under the trace was 1.012mW. For

Method Regs Multiplier
Total

Saving
22_bit_input1
16_bit_input2

gating
41% 58% 49%

22_bit_input1
16_bit_input2

guarding
43% 60% 52%

22_bit_input1
guarding

input2_dynamic
guarding

49% 67% 56%

22&16_bit_input1
hybrid guarding
input2_dynamic

guarding

51% 71% 60%

Circuit Guarding Method
Delay

Overhead
Area

Overhead

Comparator
10_bit

guarding
25% 30%

Adder

18-bit
guarding

(reduced switching
activity)

15% 10%

Multiplier

22&16_bit_input1
hybrid guarding
input2_dynamic

guarding

9% 6%

 Regs Adder Total Saving
18&11-bit

hybrid_guarding
57% 59% 56%

18-bit
guarding (reducing
switching activity)

10% 19% 15%

Method Regs Adder Total Saving
11-bit signal-gating 32% 21% 26%

11-bit operand-isolation 0% 17% 14%
11-bit guarding 41% 24% 37%

12-bit signal-gating 32% 25% 26%
12-bit operand-isolation 0% 21% 17%

12-bit guarding 44% 25% 38%
13-bit operand-isolation 0% 24% 14%

13-bit guarding 47% 27% 40%
14-bit signal-gating 34% 35% 27%

14-bit guarding 50% 28% 41%
15-bit signal-gating 34% 40% 27%

15-bit operand-isolation 0% 32% 15%

16-bit signal-gating 35% 45% 27%

16-bit operand-isolation 0% 35% 15%

16-bit guarding 55% 52% 48%

17-bit signal-gating 7% 46% 1%
17-bit operand-isolation 0% 35% 2%

17-bit guarding 11% 22% 3%
18-bit signal-gating 8% 49% 1%

18-bit operand-isolation 0% 36% 2%
18-bit guarding 12% 23% 3%

Add/Sub module, we used the precompuation-based guarding
method to disable a part of the circuit. For other modules, we
used full guarding to disconnect the entire modules when they
were not used to execute any instruction (i.e., we used one
sleep transistor for each module.) The reasons for these choices
were that additions and subtractions are used much more
frequently than the other integer instructions [9]. This means
that the percentage of the time the Add/Sub module can be
fully turned off is relatively small. Therefore, the dynamic
power overhead of turning the module on and off can be large.
On the other hand, the inputs to the Add/Sub module are
usually small positive or negative numbers, which makes the
module a good candidate for applying the precomputation-
based guarding technique. At the same time, the other modules
are rarely used and, to the best of our knowledge, their inputs
distribution does not have a well behaved statistical pattern
which can be exploited for precomputation-based guarding.
Therefore, we opted to use full guarding for these modules
(i.e., we turned the entire module off if it was not used, and
turned it on otherwise).

Based on the simulation results for the original module plus
the extra circuitry, we were able to decrease the power
consumption of the module by 81%. The power saving is
mostly because of the reduction in dynamic power as the sub-
threshold leakage in 0.18um technology is small.
Unfortunately, we did not have FR500 processor design in
technologies with smaller feature sizes. The area and delay
overheads of adding the extra circuitry (i.e., the sleep
transistors and the logic for controlling them) were 9% and
12%, respectively. This 12% delay overhead may not be
serious with regard to the performance of the microprocessor
as the critical path usually corresponds to the cache circuitry.
Even if the Add/Sub module in Figure 1 is on the critical path,
the other modules can be guarded without any delay penalty as
they have some time slack. Note that only a part of the
Add/Sub module is guarded. Therefore, for technologies that
have high sub-threshold leakage, the leakage of the module
will not be zero if the circuit is in the standby mode. This can
be solved by adding one extra sleep transistor to the module to
disconnect the low bits of the module from the ground
whenever the circuit goes to the standby mode. We also power
simulated the Add/Sub module when the sleep transistor was
always on. The results showed an 8% reduction in the dynamic
power. In other words, just adding a sleep transistor that is
always turned on helps reduce the dynamic power
consumption. We applied the operand isolation method to the
modules of Figure 1. We used some AND gates to freeze the
inputs of each module if its output was not used in the current
cycle. The power reduction and the area overhead achieved by
this method were 58% and 11%, respectively. Next, we
combined the precomputation idea and the operand isolation to
selectively freeze some inputs of the adder to see if it helps to
improve the results. In this case, the power saving and the area
overhead were 61% and 14%, respectively.

8. Conclusions

This paper described the idea of precomputation-based
guarding. In this method precomputation is used to control a
sleep transistor, which turns off parts of a circuit based on its

input values. This reduces both the dynamic and the leakage
power of the circuit while the circuit is working. Our current
results are for modules used in the data-path of a processor.
This approach results in a significant power saving in the case
that many of the input vectors of the module are not at full bit-
level precision. We are planning to evaluate our method for the
comparators and adders used in other parts of a processor (e.g.,
memory-address calculator) and other data-path modules (e.g.,
divider).

9. Acknowledgment

We would like to thank Zhijun Huang form UCLA who kindly
provided us with the trace of input vectors extracted from a
JPEG decoder.

References
[1] A. Raghunathan and N. K. Jha, “Behavioral synthesis for low power,”
Proceedings of International Conference on Computer Design, pp. 318-322,
Oct. 1994.
[2] L. Benini, P. Vuillod, G. D. Micheli, and C. Coelho, “Synthesis of low
power selectively-clock systems from high-level specification,” Proceedings
of International Symposium on System Synthesis, pp. 57-63, Nov. 1996.
[3] D. Kim and K. Choi, “Power conscious high level synthesis using loop
folding,” Proceedings of Design Automation Conference, pp. 441-445, 1997.
[4] Zhijun Huang; Ercegovac, M.D., “On signal-gating schemes for low-power
adders”, Signals, Systems and Computers, 2001. Conference Record of the
Thirty-Fifth Asilomar Conference on, 2001 Page(s): 867 -871 vol.1
[5] Johnson, M., Somasekhar, D. and Roy, K., "Leakage Control with Efficient
Use of Transistor Stacks in Single Threshold CMOS ", Proceedings of the 36th
Design Automation Conference (DAC), June 1999, pp. 442-445.
[6] Mutoh, S., Douskei, T., Matsuya, Y., Aoki, T., Shigematsu, S. and Yamada
J., "1-V Power Supply High-Speed Digital Circuit Technology with Multi-
threshold Voltage CMOS", IEEE Journal of Solid-state Circuits, pp. 847-854,
August 1995.
[7] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou,
"Precomputation-Based Sequential Logic Optimization for Low Power", IEEE
Transactions on VLSI Systems, pp. 426-436, December 1994.
[8] M. Münch, B. Wurth, R. Mehra, J. Sproch, N. When, "Automating RT-
level operand isolation to minimize power consumption in datapaths",
Proceedings of the conference on Design, automation and test in Europe
January 2000.

[9] Hennessy, Patterson, Computer Architecture, A Quantitative Approach,
Second Edition, Morgan Kaufmann Publishers, 1996.

[10] J. D. Warnock, et al., “The Circuit and Physical Design of the Power4
Microprocessor”, IBM Journal of Research and Development, Volume 46,
Number 1, 2002.
[11] Amir H. Ajami, Kaustav Banerjee, Amit Mehrotra, and Massoud
Pedram, "Analysis of IR-Drop Scaling with Implications for Deep
Submicron P/G Network Designs," Proc. IEEE/ACM International
Symposium on Quality Electronic Design (ISQED), San Jose, CA, March
2003
[12] Takao Sukemura, "FR500 VLIW-architecutre High-performance
Embedded Microprocessor", Fujitsu Scientific & Technical Journal, Vol.36,
No.1, pp.31-38, June 2000.
[13] Mohab Anis, Mohamed Mahmoud, Mohamed I. Elmasry, Shawki
Areibi, “Dynamic and leakage power reduction in MTCMOS circuits
using an automated efficient gate clustering technique”, Proceedings of
Design Automation Conference, pp. 480-485, 2002.
[14] V. Tiwari, S. Malik and P. Ashar, "Guarded Evaluation: Pushing
power management to the Logic Synthesis/Design Level", International
Symposium on Low Power Design, 95.
[15] Amir H. Ajami, Kaustav Banerjee, and Massoud Pedram, "Non-
Uniform Chip-Temperature Dependent Signal Integrity," Proc. IEEE
Symposium on VLSI Technology, Kyoto, Japan, June 2001.
[16] Y. Cao, T. Sato, D. Sylvester, M. Orchansky, and C. Hu, "New
Paradigm of Predictive MOSFET and Interconnect Modeling for Early
Circuit Design," Proc. IEEE CICC, Orlando, FL, June 2000.

