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Abstract - This paper presents a precomputation-based 
guarding technique to reduce both dynamic and static power 
consumptions in CMOS VLSI circuits. More precisely, a high 
threshold sleep transistor is placed in series with some 
portions of the circuit. Based on the input values of the circuit, 
the sleep transistor is turned on and off, thus, saving both 
dynamic and static power. We show how to apply this 
technique to a number of common arithmetic blocks, including 
comparators, adders and multipliers. Finally, dynamic 
guarding and sleep transistor activity reduction techniques for 
improving the performance of the method are presented.  
Experimental results show 81% reduction in the power 
consumption of data path modules of a commercial VLIW 
processor can be achieved using our techniques. This is 20% 
higher than what has been achieved by previous methods. 

1. Introduction 

Low power design has become a very important design 
technology driver. Widespread use of portable battery-powered 
electronic systems is one of the key reasons for the increasing 
importance of low power design. Power dissipation in these 
kinds of systems may be divided into two major components: 
dynamic power consumption and leakage power dissipation. 
There are different factors contributing to the dynamic power 
consumption in CMOS circuits. Most of the dynamic power is 
consumed for charging and discharging the load capacitances 
of logic gates. Therefore, minimizing the number of signal 
transitions in circuits can be quite effective in reducing this 
component of power dissipation in these circuits. Another 
contributor to the dynamic power consumption in CMOS 
circuits is the short circuit current, which may also be reduced 
by minimizing the number of signal transitions. In deep sub-
micron CMOS process technologies, the largest component of 
the leakage power in VLSI circuits is the drain-source leakage 
current of the transistors. This leakage current increases 
exponentially with the threshold voltage, which is in turn 
lowered with each new process technology generation in order 
to increase the gate drive strength. 

Another reason why low power design has become 
important is the rapidly increasing temperature of VLSI chips, 
which makes the design of cooling systems more challenging 
and costly as well as decreases the reliability of circuits when 
combined with the effect of technology scaling [11]. Data path 
modules in a microprocessor are typically the hottest spots on 
a chip [10]. The high temperature of data path modules creates 
reliability problems and makes the cooling of the chip more 
difficult. The latter has a negative impact on the size and the 
cost of the system. Furthermore, the large thermal gradient 

created in the chip complicates the chip design and can create 
mechanical problems [15]. From the above discussion, the 
significance of decreasing the power consumption of the data 
path modules becomes evident. 

This paper introduces several techniques for decreasing the 
power consumption targeting data path modules. Our 
techniques combine two well-known methods namely pre-
computation for decreasing the dynamic power and guarding 
for decreasing the leakage current. Our main contributions are 
1. Using guarding technique to decrease the dynamic power 

consumption. Therefore, one method can be used to 
decrease both dynamic and static power 

2. Combining the pre-computation method with the guarding 
method 

3. Introducing two new guarding techniques, namely, 
dynamic and hybrid methods, and finally 

4. Presenting a method for reducing the switching activity of 
the sleep transistor that is used for the guarding purpose. 

We first demonstrate the effectiveness of our methods 
using stand alone circuits. After that we show how our 
techniques can decrease the power consumption of the integer 
unit of a commercial VLIW processor by 81%. 

The remainder of this paper is organized as follows. 
Section 2 describes precomputation and operand isolation 
methods for decreasing dynamic power, while Section 3 
describes the guarding method for decreasing the leakage 
current of a circuit. In Section 4, our precomputation-based 
guarding is introduced. Section 5 describes the application of 
our method for comparators, adders and multipliers. In Section 
6 two new methods for improving our guarding technique is 
introduced. Experimental results are presented in Section 7. 
Section 8 summarizes our findings and outline future work. 

2. Dynamic power reduction by precomputation 
and operand isolation 

Pre-computation is a well known technique for reducing the 
switching activity of a circuit. In this method, some inputs of a 
circuit are frozen while a smaller circuit computes the output 
values [7]. The idleness of a part of the circuit is dynamically 
detected in each clock cycle and the input registers are frozen 
by disabling their clock signals. This decreases the dynamic 
power consumption. This method has also been called signal 
gating [4]. Another method is guarded evaluation [14]. This 
method involves determining which parts of a circuit are 
computing useful results and which parts are computing results 
that are not used. Parts that are not needed are subsequently 
"shut off". We point out that the term “guarded” will be used 
in our paper in a different way compared to reference [14].   



Precomputation increases the delay of the previous stage in 
a pipeline. Furthermore, it is effective only if all functional 
units driven by a register are unused in the current clock cycle. 
More precisely, if a register feeds a functional unit other than 
the idle ones, then freezing the inputs of the register will result 
in incorrect operation of the circuit. Figure 1 shows the integer 
unit of FR500, a commercial VLIW processor [12]. The 
integer unit consists of five different modules namely, 
Add/Sub, Logic, Shift, Scan, and Set. The Scan module finds 
the bit position of the last (most significant) bit of the REG 
that is equal to one; it is intended to be used in Huffman 
coding. The Set module determines the low (high) order 16 
bits of its operand.  The inputs of all modules are tied together 
and are driven by the same register set, REG. Depending on 
which operation is used, the output of one of the modules is 
selected by the multiplexor. 

 

 

 

 

 

 

 

Figure 1. The integer unit of FR500 VLIW processor. 

Even when the output of a module is not used, there may 
exist some switching activity in that module. Consider a clock 
cycle in which we are only interested in the output result of the 
Add/Sub module. Applying precomputation to this module 
will result in freezing the values of some bits of REG and will 
thereby reduce the switching activity in the Add/Sub as well 
as other modules. However, this also implies that there will be 
switching activity in the other four modules where ideally 
there should be none (because their outputs are not of interest 
in that cycle.) We refer to this problem as the input sharing 
problem. In some cases, it is possible to use multiple registers 
to drive different modules and thereby solve the input sharing 
problem, but this solution may not be practical if several 
registers drive the circuit since in such a case the overhead of 
duplicating all registers can be large. Furthermore, duplication 
of registers increases the load on the previous stages of a 
processor pipeline. Finally, the duplication method cannot be 
used if the inputs to the idle units come directly from another 
functional unit or a bus. Our technique overcomes the input 
sharing problem without such large overheads and increases 
the amount of power saving that can be achieved for such a 
circuit. 

Operand isolation is another method for decreasing the 
switching activity in a circuit [8]. In this method, the inputs of 
the circuit are passed through an AND or an OR gate. This 
makes it possible to set the inputs to zero or one whenever the 
output of the circuit is not used and decrease the switching 
activity in the circuit. This method has a higher overhead than 

signal gating because of adding one extra gate for each input of 
the circuit. The overhead increases with the increase in the 
number of inputs. Another problem is that the added gates in 
the inputs increase the dynamic power consumption when the 
circuit is being used. On the other hand, unlike signal gating, 
operand isolation can be used in a circuit configuration such as 
the one depicted in Figure 1.  

3. Leakage power reduction by power 
supply/ground gating 

An effective method for leakage power reduction is power 
supply or ground gating. There are many ways in which this 
technique can be implemented, but the basic idea is to 
disconnect the power supply or ground of the idle units from 
those of the circuit so that these units do not consume any 
power. One possible implementation is to use Multiple-
Threshold Voltage CMOS (MTCMOS) [6]. In this case, two 
high threshold transistors are connected in series with low 
threshold devices used inside the logic block creating two 
sleep transistors. This means that virtual supply and ground 
rails are created whose voltage levels are very close to the real 
supply and ground lines because of the small on-resistance of 
the sleep transistors. This method is also known as guarding. 
In practice, only one virtual rail (usually the virtual ground) is 
used. Normally, one sleep transistor per gate is used. Coarser 
granularities are also practiced, which require fewer transistors 
[13]. 

4. Guarding for decreasing dynamic power and 
precomputation-based guarding 

Although the idea of using sleep transistors was originally 
developed for leakage power reduction in the standby mode, it 
can also be used to significantly reduce the dynamic power 
dissipation by decreasing the switching activity of the guarded 
circuit. This makes it possible to use the same technique for 
decreasing both dynamic and static power. 

In our proposed method, we insert sleep transistors 
between the ground and virtual ground terminals of various 
parts of a circuit that need to be selectively turned off. If the 
target part (module) should be active in some clock cycles, 
then the enable signal turns the sleep transistor ON, permitting 
the normal operation. Otherwise, the sleep transistor 
disconnects the module from the ground. This eliminates all 
high to low transitions in the module and decreases the activity 
in the module outputs. The advantages of this method over the 
signal gating and operand isolation methods are as follows: 

1. This technique reduces the leakage power dissipation of 
the idle units due to the cutoff of the signal paths to 
ground in the off mode and due to stack effect in the on 
mode [5]. Therefore, one technique can be used to 
decrease both dynamic and leakage power. In contrast, the 
precompuation and operand isolation cannot decrease the 
leakage current. 

2. Unlike precomputation, this method can be used even 
when some logic blocks in the fanout of a register are 
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active (i.e., this technique does not suffer from the input 
sharing problem.) 

3. Adding the sleep transistor may reduce the dynamic power 
even when the sleep transistor is on. The reason is that in 
many circuits some internal nodes switch more than once 
per clock cycle. Adding the sleep transistor increases the 
resistance between the internal nodes and the ground of 
the circuit. This reduces glitching in the internal nodes, 
thereby, decreasing the dynamic power consumption. 
Neither precomputation nor operand isolation has this 
feature. In fact the operand isolation method may increase 
the dynamic power consumption when the circuit is in its 
normal operation mode because of the extra gates added to 
the inputs (which increase the total switched capacitance 
of the circuit.) 

When guarding a part of a circuit, its internal nodes and 
outputs may be floating. If a floating node is driving an 
unguarded gate, a conducting path between the supply and the 
ground may be formed. As a result, a large static current flows 
from the supply to the ground of the unguarded gate. It is 
important to ensure that this situation does not occur. Consider 
the NAND gate in Figure 2 (a). When A=1, B will be the 
controlling input of the NAND gate. If B is floating at a value 
between 0 and 1 logic levels (this could happen when a 
floating signal line loses some of the charge that is stored on 
its parasitic capacitances to other signal lines due to effects 
such as charge sharing or crosstalk coupling), both PMOS and 
NMOS transistors will conduct and static (rush-thru) current 
will flow between the supply and the ground. To correct this 
situation, the NAND gate can be guarded or the gate 
generating B can be unguarded. Figure 2 (b) shows another 
example. If the control signal C of the multiplexor is generated 
by a guarded gate, it may be floating at a value between 0 and 
1 logic levels. Therefore, both pass gates may conduct at the 
same time. If A and B have different values, then a path 
between the supply and the ground will be formed through the 
drivers of A and B and the two pass gates. Thus, a static 
current will flow. To solve this problem, the gate generating C 
should be unguarded. Another option is to put two guarded 
buffers/invertors between inputs A and B and the pass gates. If 
the registers feeding the idle unit do not feed any other units, 
they can be guarded as well. The data stored in the registers 
will be lost, but this is not important in most data path modules 
as the registers are updated at every cycle. The enable signal 
for the sleep transistors, guarding the registers, may be 
different from that of the idle units because of the timing 
considerations. Guarding registers results in further power 
reduction. Adding the sleep transistor in series with gates 
reduces the speed of the high to low transition of the gate.  To 
decrease the speed penalty, careful sizing of the sleep transistor 
is necessary. From this viewpoint, increasing the size of the 
sleep transistor is helpful as it reduces the delay penalty. 
However, there is a power dissipation overhead when 
switching the gate of the sleep transistor as well as an area 
overhead associated with using a large sleep transistor i.e., 
there is a tradeoff.  

5. Precomputation-based guarding in arithmetic 
units 

Figure 2.  Two circuits that may consume static power 
after guarding. 

5.1. Comparators 

In this section, we use the precomputation-based guarding 
technique for a comparator, which compares two n-input 
numbers. Our approach is based on splitting the inputs into m 
bits in the most significant part (MSP) and n-m bits in the least 
significant part (LSP). As is well known, the idea is that if the 
MSP of two numbers are not equal, then the output of the 
comparator can be computed regardless of the value of LSP’s. 
Otherwise, one must compare the LSP’s to obtain the correct 
output of the comparator. To use this fact for reducing power 
consumption of the circuit, we ought to first split the parts of 
the circuit corresponding to MSP’s and LSP’s of its inputs and 
next disable the LSP of the circuit whenever the output can be 
determined from the MSP’s of the inputs, i.e., when the MSP’s 
are not equal. This is depicted in Figure 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  The m-bit precomputation-based guarding for 
an n-bit comparator. 

As one can see in Figure 3, the enable signal EN, which 
controls the sleep transistor of the guarded circuit, also 
controls a multiplexor which selects the appropriate output of 
the circuit. As stated previously, the registers corresponding to 
LSP may also be guarded if they are not used to feed any other 
functional unit.  

The amount of power that is saved depends on the value of 
m. As m increases, the probability for the two MSP’s to be 
equal decreases. Consequently, the percentage of time in which 
the LSP of the circuit becomes active decreases and more 
power can be saved. On the other hand by increasing m, the 
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size of the circuit that checks the equality of MSP’s (i.e., some 
XOR and AND gates) increases and the size of the circuit that 
is guarded becomes smaller, which in turn results in lower 
power saving. Therefore, there is a tradeoff. The optimum 
point to split the circuit and its inputs can be computed based 
on the correlation of the inputs, their probability distribution 
functions, and the technology used to implement the 
comparator. 

5.2. Adders 

One of the most prevalent arithmetic units in a digital circuit is 
the adder. When designing the functional units of a data path, 
the word length is determined based on the maximum dynamic 
range of the input data. However, actual data ranges, in most 
cases, are very small. A two’s-complement number can be 
partitioned into two parts: sign extension bits (leading zeros or 
ones) and significand bits. We define the effective bit range 
(EBR) of an input operand as the bit width of the significand 
part. For the sign extension bits it is not necessary to perform 
expensive computation.  

Figure 4. The precomputation-based guarding for an 
adder. 

An effective method for precomputation-based guarding of 
an adder circuit is to divide the circuit into two parts, one part 
operating on the LSP’s of the two operands while the other 
part operates on the MSP’s and the carry propagated from the 
first part. This decomposition is done in a way that for most 
ADD operations performed by the adder, the EBR of the inputs 
is smaller than the LSP. A logic unit verifies whether the range 
of the significand bits exceeds the maximum range of the LSP. 
If this is the case, the functional unit performs computation in 
both the MSP and the LSP. Otherwise, the functional unit 
performs computation in only the LSP’s of the inputs; the MSP 
of the circuit is disabled and simple sign-extension logic 
produces the correct output. Note that it is possible to make the 
precomputation more complex and detect more special cases. 
For example, one can devise a precomputation method which 
detects if one of the inputs is zero and disables the entire adder 
and sets the output of the circuit equal to the other input. A 

potential problem with such a method is that the 
precomputation condition tends to occur infrequently and the 
amount of power saved may become smaller than the power 
overhead of adding one or two extra multiplexors to the 
circuit.1   

Figure 4 illustrates the implementation of a partially 
guarded circuit for a ripple carry adder. The inputs of the 
detection logic are MSP’s of the operands and leading bits of 
LSP’s of the two operands. Note that the most significant bits 
of the LSP’s are needed since there may be an overflow when 
we add the two LSP’s. For each input operand, the detection 
logic checks whether or not all bits in the MSP and the leading 
bit of the LSP are identically zero or one. If this is true, then 
the significand bits of both input operands do not exceed the 
LSP, which in turn implies that the output of the detection 
logic should be set to zero i.e., Reg1 and Adder MSP will be 
disabled and the adder will perform the operation with partial 
precision. Otherwise, this output should be set to one i.e., the 
adder will perform the operation with full precision. 

 

 

 

 

 

 

 

Figure 5. Timing diagram of the guarded adder circuit. 

The inputs of the detection logic are connected to the inputs 
of the registers to have EN1 asserted before the next input data 
is loaded into the guarded registers, which is crucial for correct 
guarding. However SEL, which is connected to the sign 
extension logic and the latch that transfers the carry out from 
the LSP of the adder to the MSP, is asserted after the rising 
edge of the clock. This guarantees the output of the functional 
unit to be loaded correctly into the input register of the other 
functional units. The detection logic generates EN2 in such a 
way that the high to low transition of EN2 occurs before the 
rising edge of the clock to completely block the switching 
activity in the idle unit. Furthermore, the low to high transition 
occurs after the rising edge of the clock to prevent the 
switching activity in the idle unit at the end of the current 
clock cycle. Figure 5 shows the timing diagram of the circuit 
operation. In the above discussion, we used a ripple carry 
adder to illustrate the basic technique. It is straightforward to 
apply the same technique to other types of adders (carry 

                                                 
1 Our current precomputation-based guarding technique for an 
adder can save power even in some cases when the above 
condition holds (i.e., when one of the inputs is zero and the 
other satisfies the BER test.) 
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bypass or look-ahead) by properly partitioning the input 
operand bits into the MSP and the LSP. 

5.3. Multipliers 

In this section we discuss the technique for an n-bit 
multiplier which usually is designed by using an array of 
single-bit carry save adders (CSA) followed by an n-bit carry 
propagation adder (CPA) as illustrated in Figure 6. To guard a 
multiplier, first it is checked whether the EBRs (Effective Bit 
Ranges) of the input operands are smaller than a predetermined 
value. If they are, a guarding logic will be activated, the 
multiplier will work as a low-precision multiplier and the 
result will be restored to the full-precision by sign extension. 
Otherwise, the multiplier will work as a normal full-width 
multiplier. For the multiplier architecture, it is possible to use a 
two-dimensional guarding technique. Two dimensional 
guarding inserts two guarding lines for the two input variables. 
Guarding may occur in one or both directions based on the 
precision of the input data.  

 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. A multiplier using CSA array and one CPA. 

The precisions of the inputs are detected by using the 
previously-described logic. The two guarding signals g1 and g2 
are generated corresponding to input1 (yi) and input2 (xi), 
respectively (generated with a detection logic similar to the 
detection logic of adder circuit in Figure 4.) The CSA is 
partitioned into four regions (see Figure 7.) When g1 is active, 
the left two regions are guarded. When g2 is active, the bottom 
two portions are guarded. The right upper region is always 
unguarded and the left bottom region will be guarded if any of 
g1 or g2 is active. The inputs of the CPA are selected through 
the multiplexor MUX1. If g2 is inactive, the inputs will be the 
data from the last row of CSA. Otherwise, the inputs will come 
from the output of an intermediate set of adders (i.e., the 
output of the adders in the last row of upper region) of the 
CSA corresponding to the guarding line of input2. In this case, 
the outputs of the CPA have to be shifted right by k bits where 
k is the number of precomputation bits for input2. This shift is 
done by MUX2. If g1 is active, the left parts of MUX1, CPA 
and MUX2 are disabled. Finally, sign restoration is performed 

by MUX3 using the sign bit (sb), which is easily done by 
computing the XOR of the most significant bits of the input 
data. In the above discussion, we used a carry save multiplier 
to illustrate the basic technique. The method can be applied to 
other types of multipliers e.g., Wallace tree by properly 
partitioning the input operand bits into the MSP and the LSP. 
Note that it is possible to use a precomputation scheme where 
the multiplier is turned off when one of the inputs is 0, +2 p, or 
-2p, where p is some integer. The problem with such a scheme 
is that the precompuation condition does not happen very 
frequently. Therefore, the amount of power which can be 
saved is less than the power overhead of adding extra 
multiplexors in the output.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The precomputation-based guarding for a 
multiplier. 

6. Improving the precomputation-based guarding 
technique 

In this section two modifications to the basic technique are 
introduced to improve the power saving.  

6.1. Dynamic and hybrid guarding 

In the precomputation-based guarding technique which was 
described previously, the value for BER is pre-selected. If the 
BER of the actual data is larger than the pre-selected BER, the 
operation is performed as usual and no power is saved. On the 
other hand, if the BER of the actual data is much smaller than 
the pre-selected BER, some opportunity for power saving is 
lost. To improve the performance, a finer granularity method 

 



can be used for the precomputation. In the dynamic guarding 
method, we detect the sign extension portion of the input data 
and deactivate the corresponding parts. Such dynamic 
guarding requires gating logic for every bit. In this case, the 
“right” portion of the logic is dynamically guarded, which 
results in the maximum power saving because the guarding 
signal is activated more often. This case should be contrasted 
with the static guarding where the guarding signal is activated 
only if the sign extension portion of the input data is larger 
than a fixed, pre-selected length (cf. Section 7.) In some cases, 
the dynamic guarding technique may result in an unacceptable 
delay, area and power dissipation overhead.  For example, this 
method is ineffective for adders because the value of the sign 
bit depends on one of many internal carry signals of the 
adders. Which internal carry is used depends on the length of 
the sign extension portion of the inputs. This implies that a 
large multiplexor and a large number of wires are required. On 
the other hand, in multipliers, the sign extension bit is the XOR 
of the most significant bits of the input data which can easily 
be calculated. Therefore, using this technique for adders 
requires considerable amount of interconnect and consequently 
a large area overhead. However, this method is appropriate for 
guarding multipliers in the direction corresponding to input1 
(cf. Figure 7.) The reason is that signal g1 only controls MUX3, 
which selects the output between its inputs from the upper 
stages and signal sb, which as mentioned before can be easily 
computed. On the other hand, dynamic guarding for input2 
requires significant wiring overhead since MUX1 would be 
required to select between several rows of CSA.   

In cases that the overhead of the dynamic guarding is too large, 
a hybrid method can be used. In hybrid guarding, multiple 
values for BER are selected and depending on the input values, 
one guarding line is selected (see Section 7). 

6.2. Reducing the switching activity of sleep transistors 

Every time a sleep transistor is turned on and off, some 
dynamic power is consumed. If the guarding signal switches 

frequently, the power dissipation of switching the sleep 
transistor may overweigh the power saving due to the 

guarding. To address this problem, we use a circuit to limit the 
switching frequency of the sleep transistor. The proposed 
technique is based on generating a new guarding signal 

depending on the recent values of the original guarding signal. 
In this method the circuit is guarded if the guarding signal was 

active for a number of consecutive cycles as illustrated in 
Figure 8. In this figure, D units represent one cycle delay, 

which can be implemented by flip-flops. The circuit depicted 
in Figure 8 acts as a low pass filter and reduces the number of 
times a sleep transistor is switched. The number of delay units 

depends on the ratio of the delay overhead associated with 
switching the sleep transistor in comparison to the power 
saving in each clock cycle. In addition, it depends on the 

expected switching frequency of the original guarding signal. 
For example a more frequently-changing guarding signal 

requires more delay units in the circuit. The number of times a 
sleep transistor switches for a given trace and a given number 
of delay elements can easily be found by simulating the circuit 
for a given input trace. From simulation results, the percentage 
of time that the sleep transistor is off can be determined. This 

Figure 8. Limiting the switching frequency of the guarding 
signal. 

value can then be used to estimate the power that is saved in 
the circuit and the power that is consumed to switch the sleep 
transistor for a given number of delay elements. From these 
estimations, a small set of candidate values for the number of 
delay elements can be determined. More accurate calculations 
can be performed by power simulating the circuit with 
different number of delay elements. 

7. Results 

We applied our techniques to several 32-bit functional units 
implemented in a 70nm technology with 0.9V supply voltage 
and 0.2V and -0.22V threshold voltage for NMOS and PMOS 
transistors, respectively [16]. The threshold voltage of the 
sleep transistors was 0.5V. We used PowerMill to estimate the 
power in gate-level and included the power of the added 
circuitry in all experiments. To compute the delay of circuits, 
we used SPICE. Figure 9 shows the percentage of the total 
power saving resulted from applying our guarding method on a 
32-bit comparator for different number of bits in the MSP of 
the circuit. We drove the comparator using a trace of 1000 
vectors extracted from a JPEG encoder. As one can see, it is 
possible to reduce the power by about 62% using our method.  

Figure 9. Power saving for a 32-bit comparator. 

Furthermore, the saving is relatively insensitive to the number 
of bits used in precomputation. In our example, if the number 
of bits changes between 8 to 14 bits, the saving stays around 
60%. The delay and the area overhead of using the sleep 
transistor for the comparator were 25% and 30%, respectively.  

Next we applied our method to a 32-bit adder for two 
different numbers of bits in the MSP of the circuit and 
compared the results of our method with the results of the 
signal-gating [4] and the operand isolation method. For the 
operand isolation, we used AND gates in the input and used 
the precomputation logic to selectively freeze the inputs. Table 
1 shows the percentage of power saving in the registers and the 
adder separately. Test data corresponds to a comparator and an 
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adder in the data-path of a processor executing a JPEG decoder 
program. Because of higher overhead of operand isolation than 
other methods its power saving is smaller. This is due to the 
dynamic power consumption of the added gates in the inputs.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Power saving for a 32-bit adder. 

Table 2 shows the results of using the improvement methods 
described in Section 6 on a 32-bit adder. We used hybrid 
18&11-bit precomputation method in which based on the input 
data, the portion of the adder corresponding to 18 or 11 most 
significant bits of operands are disabled. As one can see, the 
hybrid method significantly increases the amount of the power 
saving. 

 

 

 

 

 
 
 
 
 

 

Table 2. Power saving for a 32-bit adder using the 
improved techniques. 

Precomputation-based guarding performs better than signal 
gating. The reasons are that,  

1- by adding the sleep transistor, the dynamic power 
consumption of both the adder and the registers in 

the normal mode are decreased. The reason is the 
decrease in the glitch of internal nodes. 

2- The leakage current is reduced due to the use of the 
sleep transistor. 

The saving is more than what can be achieved by signal 
gating or our non-hybrid method (see Table 2). Also, limiting 
the switching frequency of the guarding signal reduces the 
power overhead although the power saving may reduce also. 
However in most cases using this technique improves the 
overall power saving. We used two delay units for the 18-bit 
precomputation and results are shown in Table 2. As one can 
see this method can improve the result, but in this specific 
experiment the saving achieved was less than the hybrid 
method. Table 3 shows the results of using our improved 
methods on a 32-bit multiplier. As one see, using dynamic and 
hybrid guarding techniques improve the power saving in 
comparison to the vanilla precomputation-based guarding 
technique. 

 

 

 

 

Table 3. Power saving for a 32-bit multiplier using the 
improved technique 

Table 4 includes delay and area overhead of our method for 
three different circuits. As one can see the amount of saving 
achieved for the multiplier is more than the adder. 

 

 

 

 

 

 

 

Table 4. Comparing the delay and the area overhead 
 

Finally, we applied our techniques to the integer unit of 
FR500 VLIW processor depicted in Figure 1. The processor 
was implemented in a 0.18um technology with 1.8V supply 
voltage. We used SPICE to exhaustively simulate modules 
using some worst case or near-worst case input vectors with 
and without the sleep transistors and conservatively sized the 
sleep transistors. When sizing the sleep transistors, we took 
advantage of the timing slack of the faster modules to decrease 
the width of sleep transistors. We used an instruction set 
simulator to generate a trace for the integer unit. The power 
consumption of the unit under the trace was 1.012mW.  For 

 

Method Regs Multiplier 
Total 

Saving 
22_bit_input1 
16_bit_input2 

gating 
41% 58% 49% 

22_bit_input1 
16_bit_input2 

guarding 
43% 60% 52% 

22_bit_input1 
guarding 

input2_dynamic 
guarding 

49% 67% 56% 

22&16_bit_input1 
hybrid guarding 
input2_dynamic 

guarding 

51% 71% 60% 

Circuit Guarding Method 
Delay 

Overhead 
Area 

Overhead 

Comparator 
10_bit 

guarding 
25% 30% 

Adder 

18-bit 
guarding 

(reduced switching 
activity) 

15% 10% 

Multiplier 

22&16_bit_input1 
hybrid guarding 
input2_dynamic 

guarding 

9% 6% 

 

 Regs Adder Total Saving 
18&11-bit 

hybrid_guarding 
57% 59% 56% 

18-bit 
guarding (reducing 
switching activity) 

10% 19% 15% 

Method Regs Adder Total Saving 
11-bit signal-gating 32% 21% 26% 

11-bit operand-isolation 0% 17% 14% 
11-bit guarding 41% 24% 37% 

12-bit signal-gating 32% 25% 26% 
12-bit operand-isolation 0% 21% 17% 

12-bit guarding 44% 25% 38% 
13-bit operand-isolation 0% 24% 14% 

13-bit guarding 47% 27% 40% 
14-bit signal-gating 34% 35% 27% 

14-bit guarding 50% 28% 41% 
15-bit signal-gating 34% 40% 27% 

15-bit operand-isolation 0% 32% 15% 

16-bit signal-gating 35% 45% 27% 

16-bit operand-isolation 0% 35% 15% 

16-bit guarding 55% 52% 48% 

17-bit signal-gating 7% 46% 1% 
17-bit operand-isolation 0% 35% 2% 

17-bit guarding 11% 22% 3% 
18-bit signal-gating 8% 49% 1% 

18-bit operand-isolation 0% 36% 2% 
18-bit guarding 12% 23% 3% 



Add/Sub module, we used the precompuation-based guarding 
method to disable a part of the circuit. For other modules, we 
used full guarding to disconnect the entire modules when they 
were not used to execute any instruction (i.e., we used one 
sleep transistor for each module.) The reasons for these choices 
were that additions and subtractions are used much more 
frequently than the other integer instructions [9]. This means 
that the percentage of the time the Add/Sub module can be 
fully turned off is relatively small. Therefore, the dynamic 
power overhead of turning the module on and off can be large. 
On the other hand, the inputs to the Add/Sub module are 
usually small positive or negative numbers, which makes the 
module a good candidate for applying the precomputation-
based guarding technique. At the same time, the other modules 
are rarely used and, to the best of our knowledge, their inputs 
distribution does not have a well behaved statistical pattern  
which can be exploited for precomputation-based guarding. 
Therefore, we opted to use full guarding for these modules 
(i.e., we turned the entire module off if it was not used, and 
turned it on otherwise).  

Based on the simulation results for the original module plus 
the extra circuitry, we were able to decrease the power 
consumption of the module by 81%. The power saving is 
mostly because of the reduction in dynamic power as the sub-
threshold leakage in 0.18um technology is small. 
Unfortunately, we did not have FR500 processor design in 
technologies with smaller feature sizes. The area and delay 
overheads of adding the extra circuitry (i.e., the sleep 
transistors and the logic for controlling them) were 9% and 
12%, respectively. This 12% delay overhead may not be 
serious with regard to the performance of the microprocessor 
as the critical path usually corresponds to the cache circuitry. 
Even if the Add/Sub module in Figure 1 is on the critical path, 
the other modules can be guarded without any delay penalty as 
they have some time slack. Note that only a part of the 
Add/Sub module is guarded. Therefore, for technologies that 
have high sub-threshold leakage, the leakage of the module 
will not be zero if the circuit is in the standby mode. This can 
be solved by adding one extra sleep transistor to the module to 
disconnect the low bits of the module from the ground 
whenever the circuit goes to the standby mode. We also power 
simulated the Add/Sub module when the sleep transistor was 
always on. The results showed an 8% reduction in the dynamic 
power. In other words, just adding a sleep transistor that is 
always turned on helps reduce the dynamic power 
consumption. We applied the operand isolation method to the 
modules of Figure 1. We used some AND gates to freeze the 
inputs of each module if its output was not used in the current 
cycle. The power reduction and the area overhead achieved by 
this method were 58% and 11%, respectively. Next, we 
combined the precomputation idea and the operand isolation to 
selectively freeze some inputs of the adder to see if it helps to 
improve the results. In this case, the power saving and the area 
overhead were 61% and 14%, respectively.  

8. Conclusions  

This paper described the idea of precomputation-based 
guarding. In this method precomputation is used to control a 
sleep transistor, which turns off parts of a circuit based on its 

input values. This reduces both the dynamic and the leakage 
power of the circuit while the circuit is working. Our current 
results are for modules used in the data-path of a processor. 
This approach results in a significant power saving in the case 
that many of the input vectors of the module are not at full bit-
level precision. We are planning to evaluate our method for the 
comparators and adders used in other parts of a processor (e.g., 
memory-address calculator) and other data-path modules (e.g., 
divider).  
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