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Abstract—Dynamic energy pricing is a promising technique 

in the Smart Grid that incentivizes energy consumers to consume 
electricity more prudently in order to minimize their electric bills 
meanwhile satisfying their energy requirements. This has become 
a particularly interesting problem with the introduction of 
residential photovoltaic (PV) power generation facilities. This 
paper addresses the problem of task scheduling of (a collection of) 
energy consumers with PV power generation facilities, in order 
to minimize the electricity bill. A general type of dynamic pricing 
scenario is assumed where the energy price is both time-of-use 
and total power consumption-dependent. A negotiation-based 
iterative approach has been proposed that is inspired by the 
state-of-the-art Field-Programmable Gate Array (FPGA) routing 
algorithms. More specifically, the negotiation-based algorithm is 
used to rip-up and re-schedule all tasks in each iteration, and the 
concept of congestion is effectively introduced to dynamically 
adjust the schedule of each task based on the historical 
scheduling results as well as the (historical) total power 
consumption in each time slot. Experimental results demonstrate 
that the proposed algorithm achieves up to 51.8% improvement 
in electric bill reduction compared with baseline methods. 

Keywords—Smart Grid; Dynamic Pricing; Algorithm; 
Optimization. 

I. INTRODUCTION 
With the advent of digital economy and information era, 

electric power industries are confronted with new challenges, 
including sustainable development, environmental protection, 
climate change, and the emergence of users’ demands for 
better supply quality and higher reliability [1]. The intention of 
transferring to a low-carbon economy has driven a rapid 
growth of the weight of global electricity supplied by 
renewable energy in the 21st century [2]. The photovoltaic (PV) 
system, which converts solar radiation into electricity, is 
considered to be one of the most promising types of renewable 
energy technologies and has garnered global attention in recent 
years due to the growing energy demand and concerns over 
climate change [3]. The global operating capacity of PV energy 
generation is 40GW, 71GW and 100GW in 2010, 2011 and 
2012, respectively [2]. Driven by falling prices, environmental 
concerns and government policies, industrial, commercial and 
residential consumers are increasingly becoming consumers of 
PV energy in a growing number of countries [2]. This 
necessitates the consideration of the optimal deployment and 
control of PV energy generations.  

Besides the attempt to use renewable energy such as PV 
energy generation, the smart grid is another promising 

technology that has received global attention in both industry 
and academia to maintain a robust and resilient electricity 
system [4]. A smart grid is an intelligent power grid delivering 
electricity from suppliers to industrial, commercial and 
residential consumers with various sensing and data processing 
facilities as well as embedded control and decision-making 
protocols [5]. In a smart grid, electricity is generated by 
(renewable or non-renewable) power generation facilities, 
delivered through transmission lines and distributed by the 
local distribution infrastructures to end users. A major 
challenge is that the load profile of consumers varies 
dramatically as a function of time, season and other factors 
[6][7]. Meanwhile, the amount of generation, transmission and 
distribution capacities that utility companies need to provision 
depends on the peak power demand rather than the average, 
and the huge difference between energy consumption levels at 
peak usage hours and off-peak hours has resulted in not only 
cost inefficiencies and potential power delivery failures 
(brown-outs and black-outs), but also environmental pollution 
due to the over-provisioning of the Power Grid and the resulted 
energy waste [4][6]. Without a smart grid technique, the 
conventional power grid will require the U.S. government 
alone to invest hundreds of billions of dollars in new power 
plants over the next two decades to meet the worst-case 
electricity demand, resulting in a huge cost, energy waste and 
potential environmental problems [4].  

Dynamic pricing, which is supported by the increasing 
deployment of new technologies of the smart meters on the 
consumer side [4], is an effective approach to improve the load 
management [4][6][8]. The main idea behind dynamic pricing 
is to make the electricity price dependent on users’ real-time 
electricity usage, which enables users to shape their power 
demands to lower their monthly electric bills and at the same 
time make a contribution to the grid performance, reliability 
and economics [4]. The total gain achieved by applying 
dynamic energy pricing can be as high as 10% for the entire 
energy economy [8]. Effective implementation of dynamic 
energy pricing faces many challenges. The most difficult step 
is to predict energy users’ reactions to various dynamic energy 
pricing policies, and several existing works have focused on 
this. The authors in [9] map this problem to the multiple 
knapsack problem which enables cheap and efficient solutions. 
An autonomous application scheduling scheme is proposed in 
[10] which predicts the load utilization based on history 
patterns. In [8], a task scheduling problem is formulated with 
an objective function to minimize electricity bill of cooperative 



users under dynamic energy prices, assuming a certain task 
cannot be scheduled outside a desired time period. The authors 
in [5] introduce an inconvenience cost to those tasks scheduled 
outside the desired time slots to make the problem more 
realistic and treat the instantaneous power consumption limit as 
a hard constraint. This mandatory upper bound of power 
consumption in [5] is essential to shave the peak loads under 
the grid’s limit and avoid blackouts or brownouts. However, it 
is not realistic for utility companies to apply a hard maximum 
power constraint to the users, and the branch and bound 
algorithm presented in [5] may not have a solution mainly 
because each iteration only rips up a certain part of the tasks 
and the remaining unchanged tasks are blocking a lot of 
possible solutions. Moreover, neither of the previous works 
[5][8][9][10] considers the special characteristics of off-grid 
PV energy, which is an important part of today’s energy 
sources.  

In this paper, our approach to minimize users’ electricity 
bills under dynamic prices takes off-grid residential PV energy 
generation into consideration and uses an iterative approach 
that is inspired by the Triptych Field-Programmable Gate 
Array (FPGA) routing software developed in [11][12]. The 
negotiation-based task scheduling algorithm in this work 
differs from the previous works in several aspects including the 
formulation of rip-up and retry as well as the introduction of 
off-grid PV energy generation. The concept of congestion is 
also introduced in the proposed algorithm which dynamically 
adjusts the congestion degree based on the historical 
scheduling results as well as the total power consumption in 
each time slot. Effective PV prediction algorithms can be 
applied to predict the PV power generation profile ahead of 
time, however, to focus on the task scheduling instead of 
predicting the PV power, we assume part of the user’s energy 
is supplied by the off-grid PV system and we use PV power 
generation profiles measured at (i) Duffield, VA, measured in 
the year 2007, and (ii) Los Angeles, CA, measured in the year 
2012 [15]. To the best of our knowledge, this is the first work 
that introduces off-grid PV energy and congestion cost into the 
demand-side task scheduling problem under dynamic pricing.  

The remaining of the paper is organized as follows. Section 
II formally presents the definition of the terminologies, system 
model and problem statement. Section III shows our 
negotiation-based task scheduling algorithm. Section IV 
reports the experimental results, and the paper is concluded in 
Section V.  

II. SYSTEM MODEL AND COST FUNCTIONS 
In this paper, we consider a single user who pays a unified 

electricity bill that covers the total energy consumed by a 
group of tenants in research laboratories, households, office 
spaces, factories, warehouses, etc. A negotiation-based task 
scheduling algorithm is developed to minimize the user’s 
electricity bills determined by a cost function comprised of a 
time-dependent price, a power-dependent electricity price and 
an inconvenience cost. Without loss of generality, we focus on 
the task scheduling problem in one day in this paper and our 
approach can be easily extended to a longer period such as 
week, month, season and year.  

We adopt a slotted time model, i.e., all system cost 
parameters and constraints as well as scheduling decisions are 

provided for discrete time intervals of constant length. In this 
model, the entire task scheduling period is divided into a fixed 
number of equal-sized time slots and the time resolution 𝜏 is 
defined as the largest size of time slot that all timing properties 
of each task can slot into. For example, if every task starts at 
the beginning of an hour, lasts integer multiples of half hours 
with deadline at the end of an hour, and the price function 
updates every 20 minutes, the time resolution 𝜏 should be 10 
minutes. Each day is thus divided into 𝑇 time slots and we use 
T= 24 and 𝜏 = 60 minutes in our experiments.  

For the user of interest, we assume that there are a number 
of tasks that should be executed daily. These tasks are 
identified by index 𝑖. The set of task indices is 𝒯 = {1, … ,𝑁} 
where 𝑁 is the total number of tasks for the energy user. Each 
task 𝑖  has an earliest start time 𝑆𝑖 , a deadline 𝐸𝑖  and a fixed 
operation length 𝐷𝑖 to complete the task. We denote the power 
consumption of task 𝑖 in time slot 𝑡 by 𝑝𝑖(𝑡) as 𝑡 ranges from 1 
to 𝑇 and 𝑖 ranges from 1 to 𝑁. We assume the tasks are non-
interruptible, i.e., each task has to operate in a number of 
consecutive time slots. After the scheduling, task  𝑖 actually 
starts at time λ𝑖 and completes at 𝜆𝑖 + 𝐷𝑖 . It is preferable to 
start task 𝑖 no earlier than 𝑆𝑖 and complete it no later than 𝐸𝑖. In 
the previous papers such as [8], the earliest start time and 
deadline are hard constraints of a task. However in our model, 
we make the scheduling more realistic by allowing task 𝑖 to be 
scheduled outside the preferable time window [𝑆𝑖 ,𝐸𝑖] but with 
an incurred inconvenience cost 𝐼𝑖 which is determined by the 
user. The inconvenience cost represents the penalty to schedule 
task 𝑖  outside the preferable time window  [𝑆𝑖 ,𝐸𝑖] . Besides, 
each task consumes electricity according to a known power 
dissipation profile, i.e., the power consumption of task 𝑖 will 
follow a known profile regardless of the start time 𝜆𝑖 . The 
timing specifications, inconvenience cost and power profile for 
all tasks are assumed to be provided by the user before the 
beginning of the day and keeps unchanged during the day. 

Figure 1 gives an example of household task scheduling 
solution. Each bar represents a task which occupies a number 
of time slots. Any task that crosses the midnight can be divided 
into two equivalent parts, e.g. the two periods of air conditioner 
represents the entire air conditioner period crossing the 
midnight from 3pm to 6am.  

 
Fig. 1. Example of a household task scheduling problem. 

We use a combined price model 𝜉�𝑡, 𝜔(𝑡)� comprised of a 
time-of-use (TOU) price that is determined by the time slot 𝑡, 
and a power-dependent price that depends on 𝜔(𝑡)  which 
represents instantaneous power consumption drawn from the 
grid in time slot 𝑡 , i.e., the grid power. The price function 

 



𝜉�𝑡, 𝜔(𝑡)�  is assumed to be monotonically increasing with 
respect to 𝜔(𝑡), which means the price will rise if more power 
is consumed in a certain time slot 𝑡. Therefore, this combined 
price model incentivizes the user to shift loads from the peak 
hours to off-peak periods. However, going too far is as bad as 
not going far enough. If most users shift their tasks in the same 
way, the power plant might fail to match the load during some 
time periods which are originally considered as off-peak time. 
Considering this, we assume the utility company also sets a 
maximum power constraint in each time slot for the user so as 
to avoid potential outage. This maximum power constraint is 
denoted by 𝛽(𝑡) for time slot 𝑡 and it is considered as a soft 
upper bound in the proposed algorithm because it is not 
practical for the utility company to set a hard maximum power 
constraint in reality. The detailed meaning of the soft bound is 
that the energy price will rise dramatically when the total 
power consumption in a time slot 𝑡 exceeds 𝛽(𝑡), and the user 
can violate this bound but with an additional cost. By applying 
this soft bound, the chance to see an outage is much lower.  

As stated in the introduction, a part of the energy is 
generated by the off-grid residential PV system. The PV power 
generation available to the user in time slot 𝑡  is denoted 
by 𝑝𝑣(𝑡). We assume that the user is not equipped with energy 
storage equipment, and therefore, the unused PV energy cannot 
be stored and is wasted. The investment and maintenance of 
the PV system is not in the scope of this work and we assume 
this part of cost is covered by the user, and thus, the PV power 
generation can be considered to be free to the user. A wise 
strategy is to utilize generated PV power as much as possible. 
After introducing the off-grid PV power, the grid power 𝜔(𝑡) 
consumed by the user in time slot 𝑡 is calculated by:  

𝜔(𝑡) =

⎩
⎪
⎨

⎪
⎧ 0, 𝑖𝑓 𝑝𝑣(𝑡) ≥�𝑝𝑖(𝑡)

𝑁

𝑖=1

�𝑝𝑖(𝑡)
𝑁

𝑖=1

− 𝑝𝑣(𝑡), 𝑖𝑓 𝑝𝑣(𝑡) < �𝑝𝑖(𝑡)
𝑁

𝑖=1

 (1) 

Using the above definitions, the energy user’s cost 
minimization problem can be modeled as follows:  
Cost Minimization Problem for an Energy User. 
Find the optimal start time 𝜆𝑖 for 1 ≤ 𝑖 ≤ 𝑁. 
Minimize: 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 =  �𝜉�𝑡,𝜔(𝑡)�
𝑇

𝑡=1

∙ 𝜔(𝑡) + �𝐼𝑖(𝜆𝑖) 
𝑁

𝑖=1

 (2) 

where the inconvenience cost for task 𝑖 is given as 

𝐼𝑖(𝜆𝑖) = �0, 𝑆𝑖 ≤ 𝜆𝑖 ≤ 𝐸𝑖 − 𝐷𝑖
𝐼𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (3) 

Subject to (Soft Bound1): 

𝜔(𝑡) ≤ 𝛽(𝑡) (4) 

The available PV energy 𝑝𝑣(𝑡) in time slot 𝑡 is efficiently 
utilized when the following condition is satisfied:  

�𝑝𝑖(𝑡)
𝑁

𝑖=1

≥ 𝑝𝑣(𝑡) (5) 

III. NEGOTIATION-BASED ENERGY COST MINIMIZATION 
In this section, a negotiation-based approach inspired by an 

adaptive routing algorithm in commercial FPGAs [11][12] is 
developed to find a suitable solution to the cost minimization 
problem (task scheduling problem) described in Section II. 
This section is organized as follows: part A provides a general 
description of the congestion-based routing approach in FPGAs; 
part B explains the motivation to introduce the concept of 
negotiation-based routing method to the task scheduling 
problem; part C presents the proposed negotiation-based task 
scheduling algorithm.  

A. Negotiation-Based Routing Algorithm in FPGAs 
Routing is an important step of the Computer Aided Design 

(CAD) process that is necessary to implement a circuit in 
FPGA [13]. The goal of a routing algorithm is to find a feasible 
solution which connects input signals of digital logic elements 
to output signals according to the gate-level logic descriptions 
using the limited routing resources such as physical wires and 
switches. On top of that, an effective routing algorithm tries to 
reduce the length of the longest path (i.e., the critical path) that 
determines the performance of the circuit. As explained in [11], 
the main constraint in the routing problem is that different 
signals cannot share the same routing resources, e.g. two 
signals cannot share the same physical wire in an FPGA. 

In reference work [11], congestion in a routing problem 
indicates sharing of routing resources. As stated above, a 
routing solution must resolve congestion in every routing 
resource node. In [11], a signal router that only considers 
performance chooses the shortest path for each signal, which 
generates the fastest circuit but leads to a significant amount of 
congestions. Thus, a congestion cost function is introduced to 
each routing resource node and a global router guides the 
signal router to avoid those resources with high congestion cost. 
A solution is found when there is no congestion in the circuit. 

Besides the introduction of the concept of congestion, the 
algorithm in [11] is implemented in an iterative manner. In 
each iteration, every signal is ripped-up and re-routed based on 
the latest congestion cost that is updated at the end of the 
previous iteration. To avoid the situation where a resource 
node is always shared, a history term is introduced to the 
congestion cost formula of every resource node. The effect of 
the history term is to permanently increase the cost of using 
congested nodes so that routes through other nodes are 
attempted [11]. In some sense, the rationality behind this rip-up 
and re-route scheme is to guide the signal router to look at a 
larger scope of possible scheduling paths because a fixed signal 
may block a large number of potential routing solutions. The 
negotiation-based routing algorithm provides the best solution 
known so far for the FPGA routing problem.  

B. Motivation to Introduce Negotiation-Based Routing 
Method to Task Scheduling Problem 
The cost minimization problem described in Section II, also 

known as the task scheduling problem, is an integer nonlinear 
programming problem subject to nonlinear constraints. In this 
kind of problems, no theoretically optimal results can be 
derived in polynomial time, nor are they likely to ever be 
available [14]. Using nonlinear optimizers to find the optimal 
solution in a task scheduling problem with a large set of 

1The scheduler is encouraged to satisfy the soft bound in all time slots. 
However, if there is no such solution, the scheduler can violate this soft bound 
and the penalty in energy cost is already captured in the objective function (2).  



unknowns is impractical because of the unacceptable run time 
[5]. Therefore, instead of finding the optimal task scheduling 
solution, we seek for a good enough solution so that the 
implementation of the proposed algorithm is feasible with 
respect to computational complexity and the result is much 
better than the baseline approach.  

Let us first analyze and conclude the similarities between 
the FPGA routing problem and the task scheduling problem: 

• Finding the optimal solution incurs an extremely long 
run time, thus in both problems it is reasonable to find a 
suitable solution instead of the optimal one. 

• Certain times of rip-up and retry are required to find a 
suitable solution, and hence, an iterative approach 
should be applied in both problems.  

• There are limited resources in both problems with a cost 
in each resource node. The cost is delay and congestion 
in the FPGA routing problem, while the cost is price 
(increase) in the task scheduling problem.  

Despite the similarities stated above, the task scheduling 
problem is quite different from the FPGA routing problem. 
Different tasks in the task scheduling problem can share a time 
slot even if the power consumption drawn from the grid (i.e., 
the grid power) exceeds the power limit in the time slot, 
whereas in the routing problem resources (physical wires and 
switches) cannot be shared by different signals. Besides the 
difference in resource sharing, these two problems have 
different objective functions. In the task scheduling problem, 
the goal is to schedule all tasks in 𝒯 = {1, … ,𝑁} so that the 
total energy cost function (2) is minimized, whereas the 
objective function in the routing problem is to minimize the 
critical path delay represented by the sum of delay values of all 
the routing resources in that path. Moreover, the price function 
𝜉�𝑡, 𝜔(𝑡)� in the cost minimization problem is a function of 
time slot 𝑡  and instantaneous grid power consumption  𝜔(𝑡), 
and hence the price function of a time slot is more complex 
than the delay function of a routing resource. Based on the 
above differences, we cannot directly map the FPGA routing 
problem into to the cost minimization problem. However, we 
apply the concept of congestion used in the routing problem to 
help solve the cost minimization problem.  

C. Negotiation-Based Task Scheduling Algorithm  
A Negotiation-Based Task Scheduling (NBTS) algorithm, 

which is inspired by the congestion-based FPGA routing 
algorithm in [11], is proposed to find a suitable solution with a 
low computational complexity.  

At the beginning of the day, the user provides the properties 
of each task 𝑖, namely, 𝑆𝑖, 𝐸𝑖, 𝐷𝑖, 𝐼𝑖 and its power profile, and 
the utility company provides the price function and power 
constraint in each time slot 𝑡 . The measured PV power 
generation 𝑝𝑣(𝑡) is also given for each time slot 𝑡 [15]. These 
are the inputs to the problem. The set of scheduled start times 
of all tasks in 𝒯  is denoted by 𝛬 = {𝜆1, … , 𝜆𝑁}.  This is the 
output of the proposed algorithm. In the context of our problem 
formulation, a suitable solution is described as a schedule 𝛬 in 
which most time slots utilize the PV energy efficiently and no 
slots or only a few slots exceed the power constraint set by the 
utility company. As mentioned in Section II, an iterative 

approach is applied in the proposed algorithm. We set 𝐾 as the 
maximum iteration times. 

At the beginning of the 𝑖 -th iteration, all the tasks are 
ripped-up, and then we schedule task 1 to task 𝑁 one by one. 
To introduce the iterative method, let 𝜔𝑖

𝑗(𝑡) denote the total 
grid power consumed in time slot 𝑡 after the 𝑗-th task has been 
scheduled in the 𝑖-th iteration where 𝑡 ∈ [1,𝑇], 𝑗 ∈ [1,𝑁] and 
𝑖 ∈ [1,𝐾]. In the remaining subsection, we will introduce the 
concept of congestion during the discussion of each step in the 
proposed algorithm.  

First, we analyze the 1st iteration and introduce the concept 
of intra-iteration congestion (to be precisely defined later). 
Before we schedule the 1st task, 𝜔11(𝑡) is zero in all slots since 
no task is scheduled. We find the best possible start time 𝜆1 to 
schedule task 1 so that the overall energy cost 
∑ 𝜉�𝑡,𝜔11(𝑡)�𝑇
𝑡=1 ∙ 𝜔11(𝑡) + 𝐼1(𝜆1) is minimized. Then the final 

grid power profile 𝜔11(𝑡) for 𝑡 ∈ [1,𝑇] is calculated based on 
the power profile of task 1.  

The time slots occupied by task 1 are more likely to see a 
higher energy price since the price function in each slot 𝑡 is 
monotonically increasing with respect to 𝜔(𝑡). Therefore, it is 
reasonable to lower the priority of these slots in the following 
steps in this iteration. We define a congested time slot as the 
time slot that is occupied by at least one task within the 
iteration. To quantify the congestion degree of a time slot, we 
define the intra-iteration congestion term 𝑅(𝑡) as the number 
of tasks that have been scheduled to occupy time slot 𝑡 in one 
iteration. Before task 1 is scheduled, 𝑅(𝑡) is 0 in all slots and 
after task 1 has been scheduled, 𝑅(𝑡) becomes 1 in those slots 
chosen by task 1. 

Before we schedule the 𝑗-th task in the 1st iteration, the total 
grid power in each slot 𝑡 is 𝜔1

𝑗−1(𝑡), the price in each slot is 
𝜉(𝑡,𝜔1

𝑗−1(𝑡)), and the value of 𝑅(𝑡) is in the range of 0 to 
𝑗 − 1 . We will find the best start time of the 𝑗 -th task to 
minimize the congestion cost of the 𝑗-th task. The congestion 
cost is defined as follows: 

𝐶𝐶 = 𝛴𝑡=1𝑇 �𝜉 �𝑡,𝜔1
𝑗(𝑡)� ∙ 𝜔1

𝑗(𝑡) − 𝜉 �𝑡,𝜔1
𝑗−1(𝑡)� ∙

𝜔1
𝑗−1(𝑡)� ∙ (𝐴0𝑅(𝑡) + 1) + 𝐼𝑗(𝜆𝑗)  

(6) 

where 𝛴𝑡=1𝑇 �𝜉 �𝑡,𝜔1
𝑗(𝑡)� ∙ 𝜔1

𝑗(𝑡) − 𝜉 �𝑡,𝜔1
𝑗−1(𝑡)� ∙ 𝜔1

𝑗−1(𝑡)� 

+𝐼𝑗(𝜆𝑗) is the cost increase after scheduling task 𝑗 in the 1st 
iteration, and the term 𝐴0𝑅(𝑡)  ( 𝐴0  is a positive weight 
coefficient) is added to guide the scheduler to avoid congested 
slots. The 𝜆𝑗 value that minimizes (6) is chosen as the start time 
for task 𝑗, and then the final value of 𝜔1

𝑗(𝑡) for each time slot t 
is updated based on the chosen 𝜆𝑗.  

At the end of the 1st iteration, we obtain a schedule 𝛬 that 
consists of 𝜆𝑗 for 𝑗 ∈ [1,𝑁]. When the power constraint is tight, 
it is possible that the total energy cost is not minimized and 
some time slots fail to use PV energy efficiently even though 
the term 𝑅(𝑡) has been introduced to avoid congestion within 
the 1st iteration. Thus, we need more iterations to achieve a 
lower total energy cost. In the subsequent iterations, it is 
reasonable to lower the priority of those congested slots that 



result in high energy cost in the 1st iteration. Meanwhile, it is 
also reasonable to increase the priority of the time slots in 
which PV energy generation has not been utilized efficiently in 
the 1st iteration.  

To guide the scheduler to achieve these two goals, we 
introduce two inter-iteration congestion terms. The 1st term is 
denoted by 𝐻1(𝑡) , which represents the total times in the 
previous iterations when the power constraint has been 
exceeded in time slot 𝑡. The 2nd term is denoted by 𝐻2(𝑡) that 
is the total times in the previous iterations when PV energy 
generation is not fully utilized in time slot 𝑡. The inter-iteration 
congestion terms are updated at the end of each iteration 
(whereas the intra-iteration term is updated within one 
iteration). After introducing the two inter-iteration congestion 
terms, we integrate the three congestion terms into  

𝐶𝑠𝑙𝑜𝑡(𝑡) = 𝐴0𝑅(𝑡) + 𝐴1𝐻1(𝑡) − 𝐴2𝐻2(𝑡) + 1 (7) 

where 𝐴1  and 𝐴2  are positive weights of 𝐻1(𝑡)  and 𝐻2(𝑡) , 
respectively2. Thus, when the scheduler is scheduling the 𝑗-th 
task to start execution at time 𝜆𝑗 in the 𝑖 -th iteration, the 
congestion cost 𝐶𝐶′ of the 𝑗-th task is then redefined by  

𝐶𝐶′ = 𝛴𝑡=1𝑇 �𝜉 �𝑡,𝜔𝑖
𝑗(𝑡)� ∙ 𝜔𝑖

𝑗(𝑡) − 𝜉 �𝑡,𝜔𝑖
𝑗−1(𝑡)� ∙

𝜔𝑖
𝑗−1(𝑡)� ∙ 𝐶𝑠𝑙𝑜𝑡(𝑡) + 𝐼𝑗(𝜆𝑗)  

(8) 

In (7) and (8), the term 𝐴1𝐻1(𝑡) guides the scheduler to 
lower the priority of the time slots which violate the power 
constraint in the previous iterations. Meanwhile, the term 
𝐴2𝐻2(𝑡) slightly lowers the cost of the time slots in which PV 
energy generation are not used efficiently in previous iterations. 
The 𝜆𝑗  value that minimizes the objective function (8) is 
chosen as the start time for task 𝑗. After that, we update the 
final value of 𝜔𝑖

𝑗(𝑡)  for 𝑡 ∈ [1,𝑇]  based on the chosen 𝜆𝑗 
before scheduling the next task.  

To solve the problem that a number of suitable solutions 
are blocked when a task always occupies the same time slots, 
we introduce the 3rd inter-iteration congestion term ℎ(𝑗, 𝑡) 
which indicates the number of times in the previous iterations 
when task 𝑗 occupies time slot 𝑡. Initially, ℎ(𝑗, 𝑡) is 0 for all 
tasks in all time slots. This term permanently increases if this 
task 𝑗 occupies the time slot t in one iteration, and after several 
iterations, the task may give up those time slots due to the 
increasing congestion cost. Of note, the difference between 
ℎ(𝑗, 𝑡) and the above-mentioned three congestion terms is that 
ℎ(𝑗, 𝑡) is introduced to each task and each time slot while the 
other three terms are integrated to each time slot.  

When the scheduler is scheduling the task 𝑗  in the 𝑖 -th 
iteration and it tries to set 𝜆𝑗  as the start time, the final 
congestion cost 𝐶𝐶′′ is recalculated by  

𝐶𝐶′′ = 𝛴𝑡=1𝑇 �𝜉 �𝑡,𝜔𝑖
𝑗(𝑡)� ∙ 𝜔𝑖

𝑗(𝑡) − 𝜉 �𝑡,𝜔𝑖
𝑗−1(𝑡)� ∙

𝜔𝑖
𝑗−1(𝑡)� ∙ (𝑎ℎ(𝑗, 𝑡) + 1) ∙ 𝐶𝑠𝑙𝑜𝑡(𝑡) + 𝐼𝑗�𝜆𝑗�  

(9) 

where a is the weight of ℎ(𝑗, 𝑡). The 𝜆𝑗 value that minimizes (9) 
is chosen, and we update the final value of 𝜔𝑖

𝑗(𝑡) for 𝑡 ∈ [1,𝑇] 
based on the chosen start time before scheduling the next task.  

The proposed algorithm terminates when the total energy 
cost calculated by (2) is not decreased in 𝐿  consecutive 
iterations or the 𝐾-th iteration is completed. The computational 
complexity of the proposed algorithm is 𝑂(𝐾𝑁𝑇2). Figure 2 
shows the pseudo code for the proposed algorithm.  

 
Fig. 2. The proposed negociation-based task scheduling algorithm.  

IV. SIMULATION RESULTS 
In this section, to demonstrate the effectiveness of the 

proposed NBTS algorithm, cases corresponding to the 
abovementioned pricing models are examined. As mentioned 
above, the duration of a time slot is set to one hour, and we 
examine the task scheduling problem in one day. For this 
reason, the duration of a task is integer multiples of one hour 
and it cannot exceed 24 hours. Moreover, power consumptions 
of the tasks are determined with a granularity of one hour.  

We assume the input data from the user are given at the 
beginning of the day and remain unchanged during the day. 
The preferable start time, end time, duration and inconvenience 
cost are generated arbitrarily for each task. The power profile 
of each task is randomly generated based on power 
consumption data about real appliances. Besides, PV profile of 
that day is predicted using effective PV power generation 
prediction algorithms. We examine a household task 
scheduling case. The user owns a 6,000-watt (6 kW) PV 
system that can provide around 6 kilowatts of electricity per 
hour under optimum conditions. According to Phillips, the 
Florida Solar Energy Center has determined there are 1,489 
optimum solar generating hours per year, accompanied with 
hours of less than optimum generation [16]. Therefore, the 6 
kW PV system has around 4 hours per day on average under 
optimum generation conditions.  

We also assume the input data from the utility company are 
available at the start of the day and keep unchanged through 
the day. The utility company will set the TOU-dependent price 
and the power limit for each time slot. The price function 
presented in the task scheduling problem is assumed to be 
monotonically increasing. The part of the power consumption 
that exceeds the power limit will incur twice higher energy 
prices in our experiments.  

2The proposed algorithm can be applied to a user without off-grid PV 
energy supply by setting 𝐴2 = 0.  

𝑖 = 𝑖 + 1 

Algorithm Negociation-Based Task Scheduling () 
// Schedule tasks to minimize users’ eletricity bills 
Initialize tasks, PV profile, price functions, inconvenience cost 
functions, constraints and congestion terms 
Set iteration counter 𝑖 = 0 
Do  

Rip up all tasks  
Loop over all tasks 𝑗  

Loop over all time slots 𝑡 ∈ [1,𝑇 − 𝐷𝑗 + 1 ]  
Set the start time 𝜆𝑗 = 𝑡 

Choose the 𝜆𝑗 that minimizes (9) 
Update the intra-iteration congestion term 𝑅(𝑡) 

Loop over all time slots 𝑡 
Update 𝐻1(𝑡) and 𝐻2(𝑡) 
Loop over all tasks 𝑗  

Update ℎ(𝑗, 𝑡) 
Calculate the overall energy cost by (2) 

Until total energy cost is not decreased for 𝐿 iterations or 𝑖 > 𝐾  
Return 𝛬  



The baseline is implemented using the greedy algorithm 
that schedules each task to start at the best possible time slot 
based on the TOU-dependent price component of the energy 
pricing model and the total power consumption of all 
previously scheduled tasks. The baseline algorithm will check 
whether the power constraint is satisfied in each time slot and it 
will reschedule from the 1st task that has no possible start time 
to satisfy the power constraints in all time slots. For example, 
in a task scheduling problem with 5 tasks, if tasks 1, 2 and 3 
have been scheduled and task 4 cannot be scheduled to make 
sure that the power constraint is satisfied in every time slot, in 
the next iteration, task 4 will be scheduled with the highest 
priority. Of note, our baseline is not aware of the part of PV 
energy, and in order to make the comparison fair, the peak PV 
energy cannot cover more than 6 tasks in a time slot.  

Table I shows the simulation results of the proposed NBTS 
algorithm compared to the baseline greedy optimization 
method when the power limit in each slot is set so that greedily 
scheduling each task to its best start time will violate the power 
constraint. The total task number 𝑁 is set as a parameter of the 
program and we arbitrarily generate 10,000 cases for task 
number ranging from 5 to 50 and report the average 
performance in Table I. In order to test the effectiveness of the 
rip-up policy in both algorithms, we consider a task scheduling 
problem that has 25 tasks and arbitrarily generate 10,000 cases 
for different degrees of power constraint, i.e., medium, tight 
and very tight, and define a figure-of-merit called error rate 
that is the number of cases whose schedule violate power 
constraint in at least one time slot over the total number of the 
simulated cases. The results are shown in the Table II.  

TABLE I. PERFORMANCE AND TIME COMPLEXITY OF THE NEGOCIATION-
BASED TASK SCHEDULING ALGORITHM AND THE BASELINE  

Task 
Number 

Average 
total price 
of baseline 

(cents) 

Average 
price of 
NBTS 
(cents) 

Average 
performance 

increase 
factor 

Average time 
complexity of 

NBTS (s) 

5 103.94 68.46 1.518 0.004 
10 227.43 154.69 1.470 0.010 
15 372.71 260.44 1.430 0.018 
20 530.19 391.91 1.352 0.029 
25 726.54 560.11 1.297 0.041 
30 954.16 746.20 1.278 0.060 
35 1161.51 955.03 1.216 0.086 
40 1403.74 1171.31 1.198 0.115 
45 1657.40 1417.57 1.169 0.108 
50 1931.87 1649.42 1.171 0.153 

TABLE II.  PERFORMANCE AND AVERAGE ERROR RATE OF THE 
NEGOCIATION-BASED TASK SCHEDULING ALGORITHM AND THE BASELINE  

Constraint 
Intensity 

Average 
performance 

increase factor 

Average Error 
Rate of Baseline  

Average Error 
Rate of NBTS  

Medium 1.297 11.40% 0.76% 
Tight 1.389 27.29% 1.59% 

Very Tight 1.593 61.04% 5.77% 

It can be seen from Table I that the proposed algorithm can 
achieve 21.6%-51.8% improvement when 𝑁 is below 40 and 
more than 15% improvement when 𝑁  is from 40 to 50. 
Meanwhile, the simulation time of the NBTS is not large. 
Moreover, the proposed algorithm is effective when the power 

constraint in each time slot is tighter, and it achieves less than 
6% error rate under the very tight constraint condition while 
the greedy baseline has 61.04% error rate.  

V. CONCLUSION 
The overarching goal of this paper was to develop an 

effective algorithm to minimize the user’s electric bills under 
dynamic energy prices. The concept of congestion and off-grid 
PV power generation was introduced to the proposed 
negotiation-based task scheduling algorithm, and the proposed 
algorithm was implemented and tested for different test 
schemes. The results demonstrated the ability of the proposed 
algorithm for up to 51.8% energy cost saving compared to a 
greedy baseline method.  
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