
Frame-Based Dynamic Voltage and Frequency Scaling for a
MPEG Decoder

Kihwan Choi, Karthik Dantu, Wei-Chung Cheng, and Massoud Pedram
Department of EE-Systems, University of Southern California, Los Angeles, CA90089

{kihwanch, dantu, wecheng}@usc.edu, pedram@ceng.usc.edu

Abstract. This paper describes a dynamic voltage and frequency
scaling (DVFS) technique for MPEG decoding to reduce the energy
consumption while maintaining a quality of service (QoS) constraint.
The computational workload for an incoming frame is predicted using
a frame-based history so that the processor voltage and frequency can
be scaled to provide the exact amount of computing power needed to
decode the frame. More precisely, the required decoding time for each
frame is separated into two parts: a frame-dependent (FD) part and a
frame-independent (FI) part. The FD part varies greatly according to
the type of the incoming frame whereas the FI part remains constant
regardless of the frame type. In the DVFS scheme presented in this
paper the FI part is used to compensate for the prediction error that
may occur during the FD part such that a significant amount of energy
can be saved while meeting the frame rate requirement. The proposed
DVFS algorithm has been implemented on a StrongArm-1110 based
evaluation board. Measurement results demonstrate a higher than 50%
CPU energy saving as a result of DVFS.

1 Introduction
Demand for portable computing and communication devices has been
increasing rapidly. Because portable devices are battery-operated, a
design objective is to minimize the energy dissipation (and thus
maximize the battery service time) without any appreciable degradation
in the QoS. DVFS is a highly effective method to achieve this design
goal. This is because energy consumption in CMOS VLSI circuits is
quadratically proportional to the supply voltage. Therefore, reducing
the supply voltage results in a large energy saving. Reducing the
voltage level, however, slows the circuit down. The key idea behind
DVFS techniques is to perform dynamic voltage scaling so as to
provide “just-enough” circuit speed to process the workload while
meeting the total compute time and/or throughput constraints, and
thereby, reduce the energy dissipation.

DVFS techniques [2-6] can be divided into two categories, one for non
real-time operation and the other for real-time operation. The most
important step in implementing DVFS is prediction of the future
workload, which allows one to choose the minimum required
voltage/frequency levels while satisfying key constraints on energy and
QoS. As proposed in [2] and [3], a simple interval-based scheduling
algorithm can be used in non real-time operation. This is because there
is no hard timing constraint. As a result, some performance degradation
due to workload misprediction is allowed. The defining characteristic
of the interval-based scheduling algorithm is that uniform-length
intervals are used to monitor the system utilization in the previous
intervals and thereby set the voltage level for the next interval by
extrapolation. This algorithm is effective for applications with
predictable computational workloads such as audio [12] or other digital
signal processing intensive applications [4]. Although the interval-
based scheduling algorithm is simple and easy to implement, it often
predicts the future workload incorrectly when a task’s workload

exhibits a large variability. One typical example of such a task is
MPEG decoding. In MPEG decoding, because the computational
workload varies greatly depending on each frame type, frequent
mispredictions may result in a decrease in the frame rate, which in turn
means a lower QoS in MPEG.

There are also many ways to apply DVFS in real-time application
scenarios [5-6]. In general, some information is given by the
application itself, and the OS can use this information to implement an
effective DVFS technique. In [5], an intra-task voltage scheduling
technique was proposed in which the application code is split into
many segments and the worst-case execution time of each segment
(which is obtained by static timing analysis) is used to find a suitable
voltage for the next segment. A method using a software feedback loop
was proposed in [6]. In this scheme, a deadline for each time slot is
provided. Furthermore, the actual execution time of each slot is usually
shorter than the given deadline, which means that a slack time exists.
The authors calculated the operating frequency of the processor for the
next time slot depending on the slack time generated in the current slot
and the worst-case execution time of each slot.

In both cases, real-time or non real-time, prediction of the future
workload is quite important. This prediction is also the most difficult
step in devising and implementing an effective DVFS technique,
especially when the workload varies dramatically from one time
instance to the next.

In this paper, an effective DVFS algorithm for MPEG decoding is
proposed in which the future workload is accurately predicted by using
a frame-type-based workload-averaging scheme where the prediction
error due to statistical variation in the workload of the frame dependent
part of the decoder is effectively compensated for by using the frame
independent part of the decoding time as a “buffer zone.” This allows
us to obtain a significant energy saving without any notable QoS
degradation. This algorithm has been implemented on a StrongARM-
1110 based platform and results in an energy reduction of more than
50%.

When lowering the supply voltage to reduce energy consumption,
frequency should be decreased first in order to prevent malfunction due
to the increased gate delay. Because a minimum voltage is assigned to
each operating frequency value, in this paper, the term “voltage and
frequency scaling” will be used rather then either “voltage scaling” or
“frequency scaling.”

The remainder of this paper is organized as follows. Related works on
DVFS and MPEG are shown in Section 2. In Section 3, the proposed
DVFS algorithm is presented. The details of the actual implementation,
including both hardware and software, are described in Section 4.
Experimental results and conclusion are given in Sections 5 and 6,
respectively.

2 Background

2.1 Fundamentals of DVFS
Many kinds of application programs, which may require real-time or
non real-time operations, are executed on a general-purpose processor.
In general, DVFS techniques are very effective in reducing the energy
dissipation while meeting a performance constraint in real-time
applications such as video decoding. The energy consumption per task
running on a CMOS VLSI circuit is given by the following well-known
equation [1]:

E = CswitchedV2fclkT

where V is the supply voltage level, Cswitched is the switched capacitance
per clock cycle, fclk is the clock frequency, and T is the total execution
time of the task.

Fig. 1 illustrates the basic concept of DVFS for real-time application
scenarios. In this figure, T2 and T4 denote deadlines for tasks W1 and
W2, respectively (in practice, these deadlines are related to the QoS
requirements.) W1 finishes at T1 if the CPU is operated with a supply
voltage level of V1. The CPU will be idle during the remaining (slack)
time, S1. To provide a precise quantitative example, let’s assume T2-
T0=T4-T2=∆T, and T1-T0=∆T/2; the CPU clock frequency at V1 is
f1=n/∆T for some integer n; and that the CPU is powered down or put
into standby with zero power dissipation during the slack time. The
total energy consumption of the CPU is E1=CV1

2f1∆T/2=nCV1
2/2

where C is the effective switched capacitance of the CPU per clock
cycle. Alternatively, W1 may be executed on the CPU by using a
voltage level of V2=V1/2, and is thereby completed at T2. Assuming a
first-order linear relationship between the supply voltage level and the
CPU clock frequency, f2=f1/2. In the second case, the total energy
consumed by the CPU is E2=CV2

2f2∆T=nCV1
2/8. Clearly, there is a

75% energy saving as a result of lowering the supply voltage (this
saving is achieved in spite of “perfect” – i.e., immediate and with no
overhead - power down of the CPU). This energy saving is achieved
without sacrificing the QoS because the given deadline is met. An
energy saving of 89% is achieved when scaling V1 to V3=V1/3 and f1 to
f3=f1/3 in case of task W2.

Time

Voltage

V1

V3
V2

Deadline
for W1

W1 W2

Deadline
for W2

T1 T2 T3 T4

W1’ W2’

S1 S2

T0
Time

Voltage

V1

V3
V2

Deadline
for W1

W1 W2

Deadline
for W2

T1 T2 T3 T4

W1’ W2’

S1 S2

T0

Fig. 1. An illustration of the DVFS technique

A major requirement for implementation of an effective DVFS
technique is accurate prediction of the time-varying CPU workload for
a given computational task. A simple interval-based scheduling
algorithm is employed in [14] to dynamically monitor the global CPU
workload and adjust the operating voltage/frequency based on a CPU
utilization factor, i.e., decrease (increase) the voltage when the CPU
utilization is low (high). Two prediction schemes have been used in
interval-based scheduling: the moving-average (MA) and the weighted-
average (WA) schemes [14]. In the MA scheme, the next workload is
predicted based on the average value of workloads during a predefined
number of previous intervals, called window size. In the WA scheme, a
weighting factor, α, is considered in calculating the future workload
such that severe fluctuation of the workload is filtered out, resulting in

a smaller average prediction error. Their operations are represented in
the following equations.

MA :

WindowSize = n

Workload(t +1) =
Workload(t -)

n
t n -1

Workload(t -)

t +1
otherwise

=0

n-1

=0

t

τ

τ

τ

τ

∑

∑

≥

=

,

,

WA :

Workload (0) Workload(0)

Workload(t +1) = Workload(t) +

(1-) Workload (t)

Workload(t -)

avg

avg

≡
⋅

⋅

= ⋅ − ⋅
=
∑

α
α

α α ττ

τ
()1

0

t

These two workload prediction schemes are easy to implement and
result in effective DVFS algorithms when the workload fluctuation is
not too severe. To illustrate this point, two popular software
applications, MP3 and MPEG playback, were tested using the WA
scheme. Experimental results are shown in Fig. 2 and Fig. 3. Fig. 2
shows the CPU usage measured during each time interval whereas Fig.
3 depicts the workload prediction errors for both cases. These results
show that interval-based voltage scaling which solely depends on the
global state of the system is quite effective for the MP3 playback where
the workload variation is rather small. On the other hand, it becomes
ineffective (see the large prediction errors) for MPEG decoding due to
the large variation in the CPU workload for this application. More
precisely, the global system status monitoring interval-based DVFS
algorithm for MPEG decoding cannot track the workload variation,
resulting in a significant QoS degradation.

0

50

100

0 10 20 30 40 50

No. of Measurements

C
P

U
_U

sa
g

e
[%

] MPEG

MP3

Fig. 2. CPU usage of MP3 and MPEG

0

50

100

0 10 20 30 40 50

No. of Measurements

E
rr

o
r

[%
]

MPEG

MP3

0

50

100

0 10 20 30 40 50

No. of Measurements

E
rr

o
r

[%
]

MPEG

MP3

Fig. 3. Workload prediction error

2.2 MPEG Terminology
In general, an MPEG2 video stream consists of three frame types: I-
frame (Intra-coded), P-frame (Predictive-coded), and B-frame (Bi-
directionally-coded). I-frames can be decoded independently. P-frames
have to be decoded based on the previous frame. B-frames require both
the previous and the next frames in order to be decoded. Sequences of
frames are grouped together to form a Group of Pictures (GOP). A
GOP contains 12-15 frames, starting with an I-frame. It takes several
steps to decode each frame: Parsing, Inverse Discrete Cosine
Transformation (IDCT), Reconstruction, and Dithering [7]. Among
these steps, the IDCT and Reconstruction take up half of the decoding
time [9]. The IDCT is CPU-intensive (i.e., requires iterative
multiplication-accumulation computation over an 8x8 array of integer
or float-point values) whereas the reconstruction and dithering steps are
memory-intensive (i.e., require data movement between the processed
video stream and display frame buffer). Each frame type results in a
different workload during the IDCT step, meaning that the CPU
utilization of different frame types varies by a large amount. Based on
these observations, the decoding process may be divided into two parts:
a frame-dependent part (parsing, IDCT and reconstruction) and a
frame-independent part (dithering).

2.3 Prior Work
To develop an effective DVFS technique for MPEG decoding, each
frame decoding time should be accurately determined since the supply
voltage should vary based on the expected decoding time for the frame
and the given deadline.
In [10], the authors empirically studied the relationship between the
decoding time and the data size of each frame. The results showed a
strong correlation between the two parameters with an error of less
than 25%. The code size of each frame, however, cannot be obtained
before starting the IDCT step whereas the frame type can be known
immediately after the parsing step. To overcome this limitation, a
method using feedback control was proposed in [11] in which macro
blocks1 in a frame are first divided into two parts, and the decoding
time of the second part is predicted based on the decoding time and the
code size of the first part. If the decoding time of the first part exceeds
the predicted decoding time, the voltage for the next part is increased
so that a deadline violation can be avoided. This technique thus scales
up the voltage (and correspondingly the clock speed) during the second
part to meet the deadline when a prediction error occurs in the first part.
This results in higher CPU energy consumption for performing the
IDCT step in the second part when the prediction error occurs in the
first part. However, the authors did not consider the energy-related
characteristics of each step in the decoding process. It is desirable to
scale voltage up during memory intensive steps since this does not
impact the CPU energy consumption by much. On the other hand,
scaling voltage up during CPU-intensive steps such as IDCT leads to
higher energy consumption. From this observation, it can be concluded
that it is better to compensate for the workload prediction error by
raising the supply voltage level during a memory-intensive step as
opposed to a CPU-intensive step. This would achieve the required QoS
with maximal energy saving.

3 Proposed Algorithm
A DVFS algorithm for low-power MPEG decoding with large
workload variation is presented in this section. The decoding time
prediction is performed by maintaining a moving-average of the
decoding time for each frame type (three averages, one per frame type).
The expected decoding time for an incoming frame is thus determined

1 A macro block corresponds to a 16 by 16 pixel area of the original
image and consists of six 8 by 8 blocks on which IDCT is performed.

based on the moving average for the appropriate frame type. As stated
previously, the decoding process is divided into two parts based on the
required execution time and the expected energy consumption. One
part captures the frame-dependent (FD) portion of the decoding process
whereas the other part captures the frame-independent (FI) portion of
the decoding process as shown below:

TDecoding = TFD + TFI ; EDecoding = EFD + EFI

The parsing, IDCT and reconstruction steps are included in the frame-
dependent time whereas the dithering step is included in the frame-
independent time. This is because the dithering time is dependent upon
the frame pixel size and is otherwise constant for a given video stream.
Since the FI part tends to be memory intensive, the energy
consumption during the FI step, EFI, is nearly constant [11]. In contrast,
the energy consumption during the FD part, EFD, varies considerably.
Variations in energy consumption and decoding time due to DVFS are
captured by the following equations:

∆∆∆∆TDecoding = ∆∆∆∆TFD + ∆∆∆∆TFI ; ∆∆∆∆EDecoding = ∆∆∆∆EFD

From the above equations, it can be seen that the FI section can be used
as a kind of “buffer zone” to compensate for prediction error of TFD
since changing voltage/frequency in the FI section does not
significantly alter the energy consumption of the CPU for the decoding
process (although it will change the FI time). The basic operation of the
proposed DVFS algorithm is shown in Fig. 4.

FD FI

Voltage

Time

Deadline

FD FI

Predicted
FD Time

FD FI

Error =0

Over-predicted

FD
FI Under-predictedVx

Vx’

Vx

Vx

Vx

Vx’

PredictionFD FI

Voltage

Time

Deadline

FD FI

Predicted
FD Time

FD FI

Error =0

Over-predicted

FD
FI Under-predictedVx

Vx’

Vx

Vx

Vx

Vx’

Prediction

Fig. 4. Proposed DVFS policy

The FD part comes first. Based on the frame type and the prediction of
the required time for the FD part, voltage/frequency scaling is
performed to minimize energy dissipation while meeting the predicted
time. When a misprediction occurs (which is detected by comparing
the predicted FD time with the actual FD time), an appropriate action
must be taken during the FI part to minimize the impact of the
misprediction. If the actual FD time was smaller than the predicted
value, there will be no QoS degradation. Hence, we can scale down
voltage during the FI time and further save energy while meeting the
deadline (cf. “Over-predicted” of Fig. 4). On the other hand, if the
actual FD time was larger than the predicted value, corrective action
must be taken to preserve the required QoS. This is accomplished by
scaling up the voltage and frequency during the FI part so as to make
up for the lost time (cf. “Under-predicted” of Fig. 4). Note that this
compensation is done by scaling up the supply voltage during the
memory intensive part and hence does not result in much CPU energy
dissipation. However, this scheme cannot guarantee that one will never

encounter a QoS degradation because it is possible that the under-
prediction of the time needed for the FD part is so large that even the
highest voltage/frequency level for the FI part is unable to make up for
the lost time. But in practice, because of the way the predictor function
is constructed and the dynamic nature of its updating, the probability of
such an occurrence is very minute (as can be seen in the results). Note
also that even if this case occurs, the penalty is the loss of some video
quality for a short period of time and is not a catastrophic failure as
would have been the case if the application had a hard real-time
deadline.

To determine the FD and FI times for a given frame decoding time, the
source code for a software MPEG decoder, that is, mpeg_play [13],
was modified, and a timestamp function was inserted at each decoding
step.

Fig. 5 shows the FD and FI time distributions for each frame when
playing MPEG with a frames-per-second (fps) rate of 2. Fig. 6 depicts
the same distributions for the maximum fps rate that the CPU can
sustain (as high a fps rate as the CPU can sustain). In Fig. 5, with fps =
2, the deadline is fixed at 0.5sec. One can observe that the FD time
varies greatly depending on the frame type and that it is longer for the
I-frames and shorter for the B-frames. In Fig. 6, where a frame rate is
not set, the decoding time varies depending on the frame type. Here the
FI time is constant (~50 msec at the maximum clock frequency of
206MHz). Notice that there is a large amount of slack in the FI time in
Fig. 5. Furthermore, notice that although the FD time varies
considerably depending on the frame type, the FI time is nearly
constant for a given frame type (the FI time depends on the pixel size
of the given movie stream, which is obviously constant for the same
movie.) These plots provide empirical evidence of the claims made
earlier with regards to the FD and FI parts of the IDCT and their
relationship to the frame type.

The effectiveness of the proposed frame-based workload prediction
scheme is verified by calculating the prediction error ratio in B-frames,
which exhibit the largest variation among the frame types. The MA
scheme with a window size of six is used for the prediction. Results are
shown in Fig. 7. The movie clip used in the experiment has 660 frames
(320 X 240) including I-, P-, and B-type frames. Based on the
measured FD time, the prediction error was calculated. 95% of the
decoded frames were within an error rate of 15% while 97% of the
frames are within a 20% error rate. I- frames and P-frames see
prediction error of less than 10%. Prediction error for B-frames is 20%.
Note that although the prediction error for B-frames is high, it takes
less than half the time to decode as compared to an I-frame thereby
giving us double the time to correct it in the FI time.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50

Frame number

D
ec

o
d

in
g

 T
im

e
[s

ec
]

Decoding Time

FID Time

FD Time
0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50

Frame number

D
ec

o
d

in
g

 T
im

e
[s

ec
]

Decoding Time

FID Time

FD Time

Fig. 5. Decoding time with fps = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50

Frame number

D
ec

o
d

in
g

 T
im

e
[s

ec
]

Decoding Time
FD Time

FID Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50

Frame number

D
ec

o
d

in
g

 T
im

e
[s

ec
]

Decoding Time
FD Time

FID Time

 Fig. 6. Decoding time without setting a fps rate (as high a

fps rate as the CPU can sustain)

-50

-25

0

25

50

0 100 200 300 400

Frame number
E

rr
o

r
[%

]

B-Frames

-50

-25

0

25

50

0 100 200 300 400

Frame number
E

rr
o

r
[%

]

B-Frames

Fig. 7. Errors in B-frame workload prediction

QoS for the MPEG decoding can be defined as the ratio of the
number of deadline-missed frames to the total number of decoded
frames in the movie stream. The QoS value was calculated by
counting the number of frames that violate the deadline, and the
results are shown in Fig. 8. Two cases were compared: with and
without using the FI region as a timing buffer. In case of without
using the FI buffer zone, voltage applied during the FD time is kept
maintaining during the FI. Both of the MA and WA schemes were
used for each case in the workload prediction. There is little QoS
difference between the MA and WA schemes while a considerably
better QoS can be achieved by using the FI time as a buffer zone. At
a frame rate of three, about 20% better QoS was obtained by using
our proposed scheme.

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Frame rate [fps]

R
at

io
 o

f
d

ea
d

lin
e-

m
is

se
d

fr
am

es
 t

o
 w

h
o

le
 f

ra
m

es
 [

%
]

Using FI timing
buffer

Not using FI

MA
WA

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Frame rate [fps]

R
at

io
 o

f
d

ea
d

lin
e-

m
is

se
d

fr
am

es
 t

o
 w

h
o

le
 f

ra
m

es
 [

%
]

Using FI timing
buffer

Not using FI

MA
WA

Fig. 8. QoS in MPEG decoding

4 Implementation
To implement the frame-based prediction algorithm for low-power
MPEG decoding, a software MPEG player program, mpeg_play [13],
was used and the required functions for calculating the moving
averages and calculating the clock speeds and voltages were inserted.
A device driver operating under the Linux OS environment was written
to implement the CPU clock speed changes. Pseudo code for
maintaining statistics and prediction error compensation is shown in
Fig. 9.

��������	�
�
���
��������
�������

��������������	��
�

��
���� ��	��
�

������������
�
	������������������� ��	���

������ ��!����������������

���"�#"�������� ��	���

$���%�

��
���� ��	��
�

������������
�
	������������������� ��	���

������ ��!����������������

���"�#"�������� ��	���

$���%�

��
��&� ��	��
�

������������
�
	�����������������&� ��	���

������ ��!����������������

���"�#"������&� ��	���

$���%�

'

��������	
���
�	��
��	������	
���	�

�

�	��
��	�
����������������
�����	
���	�

��� �!
"�	�#	�
�

���$�������
��% �
	�
���	&

�	�'����	��
��	�
��&

(

��������	
���
�	��
��	������	
���	�

�

�	��
��	�
����������������
�����	
���	�

��� �!
"�	�#	�
�

���$�������
��% �
	�
���	&

�	�'����	��
��	�
��&

(

��������	
����
���
����	���������

�

�	����	������������

�	� ��������� ��� ���� � !�"#!�$!���%!���$!

�%%!��#$!��&'!��""!�� '!�'�&!�''��(�

����)����)*�'�)++���

����������������)� �– 	���������

���������,�����--�������*����	���������

	��������������������)� �

(

(

.���/0)1���
�.����	����������

(

��������	
����
���
����	���������

�

�	����	������������

�	� ��������� ��� ���� � !�"#!�$!���%!���$!

�%%!��#$!��&'!��""!�� '!�'�&!�''��(�

����)����)*�'�)++���

����������������)� �– 	���������

���������,�����--�������*����	���������

	��������������������)� �

(

(

.���/0)1���
�.����	����������

(

���������������	
���
���
����

�

�����������������
����
���
�����–
��
�����������
��

����������������

 �!
����"�#$���� #$������
� % ������&�

'(#)�*���+�
����, ����
�-� ��– #'�
�����

	+
 ��)	
-�� �!
����"�#$��

.

.

���������������	
���
���
����

�

�����������������
����
���
�����–
��
�����������
��

����������������

 �!
����"�#$���� #$������
� % ������&�

'(#)�*���+�
����, ����
�-� ��– #'�
�����

	+
 ��)	
-�� �!
����"�#$��

.

.

Fig. 9. Pseudo code for DVFS

The decoding time prediction for the next frame is based on the moving
average (over the last six frames of the same type) as explained in
Section 2. In selecting the proper frequency value, the overhead of
DVFS itself was also considered.

������������ �����	
��������	
��������	
��������	
���

��
��
��
��

����	
�	
����	
�	
����	
�	
����	
�	

�����	������	������	������	�

������������������������

�
�
�
�����
�
�
�
�
��������	

�	����	
��	����	
��	����	
��	����	
�
�����������	

��	�
��	

��	������

������	
�������

������	

��
�

�	����	��	����	��	����	��	����	�

������������ �����	
��������	
��������	
��������	
���

��
��
��
��

����	
�	
����	
�	
����	
�	
����	
�	

�����	������	������	������	�

������������������������

�
�
�
�����
�
�
�
�
��������	

�	����	
��	����	
��	����	
��	����	
�
�����������	

��	�
��	

��	������

������	
�������

������	

��
�

�	����	��	����	��	����	��	����	�

Fig. 10. Variable voltage generator on test bed

The hardware used is the Intel’s StrongARM 1110 evaluation board [8],
which supports 12 different frequencies from 59MHz to 221MHz. A
D/A converter was used as a variable operating voltage generator to
control the reference input voltage to a DC-DC converter that supplies
operating voltage to the CPU. Inputs to the D/A converter are
generated using the General Purpose Input Output (GPIO) signals. The
extra hardware was designed, built and interfaced to the standard Intel
Assabet board as a separate module. In Fig. 10, the block diagram of
the variable voltage generator is shown.

When the CPU clock speed is changed, a minimum operating voltage
level should be applied at each frequency to avoid a system crash due
to increased gate delays. In our implementation, these minimum
voltages are measured and stored in a table so that these values are
automatically sent to the variable voltage generator when the clock
speed changes. Voltage levels mapped to each frequency are
distributed from 1.1V @59MHz to 1.67V @221MHz.

0

20

40

60

80

100

0 50 100 150

No. of Frames

C
lo

ck
 C

yc
le

s[
X

1e
6] P-Frames

>= 162MHz

< 162MHz

Fig. 11. Non-linearity in memory performance as a function of the

CPU clock frequency

In anticipating the workload for the next frame, there is a discontinuity
in the calculated workload between the lower frequencies (upper) and
the higher frequencies (bottom) because when the CPU frequency
changes, the memory clock characteristics are also affected, resulting
in non-linear performance scaling, which is a typical occurrence in a
StrongARM-based processor [11]. This phenomenon is illustrated in
Fig. 11. To correct for this non-linearity, a weight factor for each
frequency is extracted from the measurement and included in the
workload calculation.

5 Experimental Results
The DVFS policies for MPEG decoding were implemented on the
StrongARM evaluation board. Due to the performance limitation of the
StrongARM processor, frame rates higher than 3 fps were not
achievable. Frame rates of 1 and 2 fps, which are very low for real
video applications, but are sufficient to demonstrate the capability of
DVFS, were chosen. Fig. 12 and Fig. 13 show the power consumption
drawn from the system supply rail (6 volts) without and with DVFS
while playing MPEG2 at fps=1. The power consumption is measured at
a 2 KHz sampling frequency. While the CPU frequency is 206 MHz
without DVFS, the frequency is lowered down to 89MHz with the
proposed DVFS technique, depending on the frame type. Average
board-level power consumptions for both cases are 2.94 W (0.49A
@6V) and 2.46 W (0.41A @6V), respectively, which represent a 16%
reduction in the total system energy. Since the StrongARM CPU
consumes about 30% of the total energy, it can safely be concluded that
the CPU energy consumption was reduced by about 53% as a result of
applying the proposed frame-type-based DVFS technique.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5000 10000 15000 20000

No. of Measurements

C
u

rr
en

t
@

 6
V

 [
A

] Avg. Current = 0.49A

Fig. 12. Power consumption without DVFS at fps=1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5000 10000 15000 20000

No. of Measurements

C
u

rr
en

t
@

 6
V

 [
A

] Avg. Current = 0.41A

Fig. 13. Power consumption with DVFS at fps=1

6 Conclusion
A frame-based workload prediction algorithm for DVFS in MPEG
decoding was proposed and implemented on a StrongARM-based
portable system. In this DVFS, each frame type is handled individually
for more accurate decoding time prediction, less than 10% ~ 20%
prediction error ratio in all frame types. To avoid QoS degradation due
to misprediction, the whole decoding time for a frame is divided into
two parts: frame-dependent and frame-independent. During the FI step,
in which the required operation is memory intensive, CPU voltage
increase does not affect the energy consumption since the power supply

of the memory subsystem is separated from that of the CPU. Using this
property, the FI period is used as a timing buffer when misprediction
occurs in FD workload prediction. When applied to a dedicated MPEG
player, more than 50% of CPU energy was saved by the proposed
DVFS scheme.

7 References
[1] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power digital

design,” IEEE Symp. on Low Power Electronics, 1994, pp. 8-11.

[2] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced CPU energy,” in Proc. 1st Symp on Operating Systems
Design Implementation, 1994, pp. 13-23.

[3] K. Govil, E. Chan, and H. Wasserman, “Comparing algorithms for
dynamic speed-setting of a low power CPU,” in Proc. 1st ACM
Int. Conf. Mobile Computing Networking, 1995, pp.13-25.

[4] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, “Data driven
signal processing: an approach or energy efficient computing,”
ISLPED-96: ACM/IEEE International Symposium on Low Power
Electronics and Design, 1996, pp.347-352.

[5] D. Shin, J. Kim, and S. Lee, “Low-energy intra-task voltage
scheduling using static timing analysis,” in Proc. Design
Automation Conference, 2001, pp. 438-443.

[6] S. Lee and T. Sakurai, “Run-time power control scheme using
software feedback loop for low-power real-time applications,” in
Proc. ASP-DAC, 2000, pp. 381-386.

[7] J. Mitchell, W. Pennebaker, C. Fogg, and Didier LeGall, MPEG
video compression standard, Champman and Hall, 1996.

[8] http://developer.intel.com/design/strong.

[9] K. Patel, B. Smith, and L. Rowe, “Performance of a software
MPEG video decoder,” First ACM Int’l Conf. on Multimedia,
1993, pp.75-82.

[10] A. Bavier, A. Montz, and L. Peterson, “Predicting MPEG
execution times,” SIGMETRICS / PERFORMANCE ’98, Int’l
Conf. On Measurement and Modeling of Computer Systems, 1998,
pp. 131-140.

[11] J. Pouwelse, K. Langendoen, R. Lagendijk, and H. Sips, “Power-
aware video decoding,” presented at the 22nd Picture Coding
Symposium, Seoul, Korea, 2001.

[12] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A dynamic
voltage scaled microprocessor system,” IEEE Journal of Solid-
State Circuit, vol. 35, no.11, Nov. 2000, pp. 1571-1580.

[13] http://bmrc.berkeley.edu/frame/research/mpeg.

[14] T. Pering, T. Burd, and R. Broderson, “ The simulation and
evaluation of dynamic voltage scaling algorithms,” 1998
International Symposium on Low Power Electronics and Design,
pp.76-81.

