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Abstract. This paper describes a dynamic voltage and frequency 
scaling (DVFS) technique for MPEG decoding to reduce the energy 
consumption while maintaining a quality of service (QoS) constraint. 
The computational workload for an incoming frame is predicted using 
a frame-based history so that the processor voltage and frequency can 
be scaled to provide the exact amount of computing power needed to 
decode the frame. More precisely, the required decoding time for each 
frame is separated into two parts: a frame-dependent (FD) part and a 
frame-independent (FI) part. The FD part varies greatly according to 
the type of the incoming frame whereas the FI part remains constant 
regardless of the frame type. In the DVFS scheme presented in this 
paper the FI part is used to compensate for the prediction error that 
may occur during the FD part such that a significant amount of energy 
can be saved while meeting the frame rate requirement. The proposed 
DVFS algorithm has been implemented on a StrongArm-1110 based 
evaluation board. Measurement results demonstrate a higher than 50% 
CPU energy saving as a result of DVFS.  

1 Introduction 
Demand for portable computing and communication devices has been 
increasing rapidly. Because portable devices are battery-operated, a 
design objective is to minimize the energy dissipation (and thus 
maximize the battery service time) without any appreciable degradation 
in the QoS. DVFS is a highly effective method to achieve this design 
goal. This is because energy consumption in CMOS VLSI circuits is 
quadratically proportional to the supply voltage. Therefore, reducing 
the supply voltage results in a large energy saving. Reducing the 
voltage level, however, slows the circuit down. The key idea behind 
DVFS techniques is to perform dynamic voltage scaling so as to 
provide “just-enough” circuit speed to process the workload while 
meeting the total compute time and/or throughput constraints, and 
thereby, reduce the energy dissipation. 

DVFS techniques [2-6] can be divided into two categories, one for non 
real-time operation and the other for real-time operation. The most 
important step in implementing DVFS is prediction of the future 
workload, which allows one to choose the minimum required 
voltage/frequency levels while satisfying key constraints on energy and 
QoS. As proposed in [2] and [3], a simple interval-based scheduling 
algorithm can be used in non real-time operation. This is because there 
is no hard timing constraint. As a result, some performance degradation 
due to workload misprediction is allowed. The defining characteristic 
of the interval-based scheduling algorithm is that uniform-length 
intervals are used to monitor the system utilization in the previous 
intervals and thereby set the voltage level for the next interval by 
extrapolation. This algorithm is effective for applications with 
predictable computational workloads such as audio [12] or other digital 
signal processing intensive applications [4]. Although the interval-
based scheduling algorithm is simple and easy to implement, it often 
predicts the future workload incorrectly when a task’s workload 

exhibits a large variability. One typical example of such a task is 
MPEG decoding. In MPEG decoding, because the computational 
workload varies greatly depending on each frame type, frequent 
mispredictions may result in a decrease in the frame rate, which in turn 
means a lower QoS in MPEG.  

There are also many ways to apply DVFS in real-time application 
scenarios [5-6]. In general, some information is given by the 
application itself, and the OS can use this information to implement an 
effective DVFS technique. In [5], an intra-task voltage scheduling 
technique was proposed in which the application code is split into 
many segments and the worst-case execution time of each segment 
(which is obtained by static timing analysis) is used to find a suitable 
voltage for the next segment. A method using a software feedback loop 
was proposed in [6]. In this scheme, a deadline for each time slot is 
provided. Furthermore, the actual execution time of each slot is usually 
shorter than the given deadline, which means that a slack time exists. 
The authors calculated the operating frequency of the processor for the 
next time slot depending on the slack time generated in the current slot 
and the worst-case execution time of each slot.  

In both cases, real-time or non real-time, prediction of the future 
workload is quite important. This prediction is also the most difficult 
step in devising and implementing an effective DVFS technique, 
especially when the workload varies dramatically from one time 
instance to the next.  

In this paper, an effective DVFS algorithm for MPEG decoding is 
proposed in which the future workload is accurately predicted by using 
a frame-type-based workload-averaging scheme where the prediction 
error due to statistical variation in the workload of the frame dependent 
part of the decoder is effectively compensated for by using the frame 
independent part of the decoding time as a “buffer zone.” This allows 
us to obtain a significant energy saving without any notable QoS 
degradation. This algorithm has been implemented on a StrongARM-
1110 based platform and results in an energy reduction of more than 
50%. 

When lowering the supply voltage to reduce energy consumption, 
frequency should be decreased first in order to prevent malfunction due 
to the increased gate delay. Because a minimum voltage is assigned to 
each operating frequency value, in this paper, the term “voltage and 
frequency scaling” will be used rather then either “voltage scaling” or 
“frequency scaling.” 

The remainder of this paper is organized as follows. Related works on 
DVFS and MPEG are shown in Section 2. In Section 3, the proposed 
DVFS algorithm is presented. The details of the actual implementation, 
including both hardware and software, are described in Section 4. 
Experimental results and conclusion are given in Sections 5 and 6, 
respectively.  



 

2 Background 

2.1 Fundamentals of DVFS 
Many kinds of application programs, which may require real-time or 
non real-time operations, are executed on a general-purpose processor. 
In general, DVFS techniques are very effective in reducing the energy 
dissipation while meeting a performance constraint in real-time 
applications such as video decoding. The energy consumption per task 
running on a CMOS VLSI circuit is given by the following well-known 
equation [1]: 

E = CswitchedV2fclkT 

where V is the supply voltage level, Cswitched is the switched capacitance 
per clock cycle, fclk is the clock frequency, and T is the total execution 
time of the task. 

Fig. 1 illustrates the basic concept of DVFS for real-time application 
scenarios. In this figure, T2 and T4 denote deadlines for tasks W1 and 
W2, respectively (in practice, these deadlines are related to the QoS 
requirements.) W1 finishes at T1 if the CPU is operated with a supply 
voltage level of V1. The CPU will be idle during the remaining (slack) 
time, S1. To provide a precise quantitative example, let’s assume T2-
T0=T4-T2=∆T, and T1-T0=∆T/2; the CPU clock frequency at V1 is 
f1=n/∆T for some integer n; and that the CPU is powered down or put 
into standby with zero power dissipation during the slack time. The 
total energy consumption of the CPU is E1=CV1

2f1∆T/2=nCV1
2/2 

where C is the effective switched capacitance of the CPU per clock 
cycle. Alternatively, W1 may be executed on the CPU by using a 
voltage level of V2=V1/2, and is thereby completed at T2. Assuming a 
first-order linear relationship between the supply voltage level and the 
CPU clock frequency, f2=f1/2. In the second case, the total energy 
consumed by the CPU is E2=CV2

2f2∆T=nCV1
2/8. Clearly, there is a 

75% energy saving as a result of lowering the supply voltage (this 
saving is achieved in spite of “perfect” – i.e., immediate and with no 
overhead - power down of the CPU). This energy saving is achieved 
without sacrificing the QoS because the given deadline is met. An 
energy saving of 89% is achieved when scaling V1 to V3=V1/3 and f1 to 
f3=f1/3 in case of task W2. 
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Fig. 1. An illustration of the DVFS technique 

A major requirement for implementation of an effective DVFS 
technique is accurate prediction of the time-varying CPU workload for 
a given computational task. A simple interval-based scheduling 
algorithm is employed in [14] to dynamically monitor the global CPU 
workload and adjust the operating voltage/frequency based on a CPU 
utilization factor, i.e., decrease (increase) the voltage when the CPU 
utilization is low (high). Two prediction schemes have been used in 
interval-based scheduling: the moving-average (MA) and the weighted-
average (WA) schemes [14]. In the MA scheme, the next workload is 
predicted based on the average value of workloads during a predefined 
number of previous intervals, called window size. In the WA scheme, a 
weighting factor, α, is considered in calculating the future workload 
such that severe fluctuation of the workload is filtered out, resulting in 

a smaller average prediction error. Their operations are represented in 
the following equations.  
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These two workload prediction schemes are easy to implement and 
result in effective DVFS algorithms when the workload fluctuation is 
not too severe. To illustrate this point, two popular software 
applications, MP3 and MPEG playback, were tested using the WA 
scheme. Experimental results are shown in Fig. 2 and Fig. 3. Fig. 2 
shows the CPU usage measured during each time interval whereas Fig. 
3 depicts the workload prediction errors for both cases. These results 
show that interval-based voltage scaling which solely depends on the 
global state of the system is quite effective for the MP3 playback where 
the workload variation is rather small. On the other hand, it becomes 
ineffective (see the large prediction errors) for MPEG decoding due to 
the large variation in the CPU workload for this application. More 
precisely, the global system status monitoring interval-based DVFS 
algorithm for MPEG decoding cannot track the workload variation, 
resulting in a significant QoS degradation.  
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Fig. 2. CPU usage of MP3 and MPEG 
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Fig. 3. Workload prediction error 



 

2.2 MPEG Terminology 
In general, an MPEG2 video stream consists of three frame types: I-
frame (Intra-coded), P-frame (Predictive-coded), and B-frame (Bi-
directionally-coded). I-frames can be decoded independently. P-frames 
have to be decoded based on the previous frame. B-frames require both 
the previous and the next frames in order to be decoded. Sequences of 
frames are grouped together to form a Group of Pictures (GOP). A 
GOP contains 12-15 frames, starting with an I-frame. It takes several 
steps to decode each frame: Parsing, Inverse Discrete Cosine 
Transformation (IDCT), Reconstruction, and Dithering [7]. Among 
these steps, the IDCT and Reconstruction take up half of the decoding 
time [9]. The IDCT is CPU-intensive (i.e., requires iterative 
multiplication-accumulation computation over an 8x8 array of integer 
or float-point values) whereas the reconstruction and dithering steps are 
memory-intensive (i.e., require data movement between the processed 
video stream and display frame buffer). Each frame type results in a 
different workload during the IDCT step, meaning that the CPU 
utilization of different frame types varies by a large amount. Based on 
these observations, the decoding process may be divided into two parts: 
a frame-dependent part (parsing, IDCT and reconstruction) and a 
frame-independent part (dithering). 

2.3 Prior Work 
To develop an effective DVFS technique for MPEG decoding, each 
frame decoding time should be accurately determined since the supply 
voltage should vary based on the expected decoding time for the frame 
and the given deadline.  
In [10], the authors empirically studied the relationship between the 
decoding time and the data size of each frame. The results showed a 
strong correlation between the two parameters with an error of less 
than 25%. The code size of each frame, however, cannot be obtained 
before starting the IDCT step whereas the frame type can be known 
immediately after the parsing step. To overcome this limitation, a 
method using feedback control was proposed in [11] in which macro 
blocks1 in a frame are first divided into two parts, and the decoding 
time of the second part is predicted based on the decoding time and the 
code size of the first part. If the decoding time of the first part exceeds 
the predicted decoding time, the voltage for the next part is increased 
so that a deadline violation can be avoided. This technique thus scales 
up the voltage (and correspondingly the clock speed) during the second 
part to meet the deadline when a prediction error occurs in the first part. 
This results in higher CPU energy consumption for performing the 
IDCT step in the second part when the prediction error occurs in the 
first part. However, the authors did not consider the energy-related 
characteristics of each step in the decoding process. It is desirable to 
scale voltage up during memory intensive steps since this does not 
impact the CPU energy consumption by much. On the other hand, 
scaling voltage up during CPU-intensive steps such as IDCT leads to 
higher energy consumption. From this observation, it can be concluded 
that it is better to compensate for the workload prediction error by 
raising the supply voltage level during a memory-intensive step as 
opposed to a CPU-intensive step. This would achieve the required QoS 
with maximal energy saving. 

3 Proposed Algorithm 
A DVFS algorithm for low-power MPEG decoding with large 
workload variation is presented in this section. The decoding time 
prediction is performed by maintaining a moving-average of the 
decoding time for each frame type (three averages, one per frame type). 
The expected decoding time for an incoming frame is thus determined 

                                                           

1 A macro block corresponds to a 16 by 16 pixel area of the original 
image and consists of six 8 by 8 blocks on which IDCT is performed. 

based on the moving average for the appropriate frame type. As stated 
previously, the decoding process is divided into two parts based on the 
required execution time and the expected energy consumption. One 
part captures the frame-dependent (FD) portion of the decoding process 
whereas the other part captures the frame-independent (FI) portion of 
the decoding process as shown below:  

TDecoding = TFD + TFI ;    EDecoding = EFD  + EFI  

The parsing, IDCT and reconstruction steps are included in the frame-
dependent time whereas the dithering step is included in the frame-
independent time. This is because the dithering time is dependent upon 
the frame pixel size and is otherwise constant for a given video stream. 
Since the FI part tends to be memory intensive, the energy 
consumption during the FI step, EFI, is nearly constant [11]. In contrast, 
the energy consumption during the FD part, EFD, varies considerably. 
Variations in energy consumption and decoding time due to DVFS are 
captured by the following equations: 

∆∆∆∆TDecoding = ∆∆∆∆TFD + ∆∆∆∆TFI ;      ∆∆∆∆EDecoding = ∆∆∆∆EFD  

From the above equations, it can be seen that the FI section can be used 
as a kind of “buffer zone” to compensate for prediction error of TFD 
since changing voltage/frequency in the FI section does not 
significantly alter the energy consumption of the CPU for the decoding 
process (although it will change the FI time). The basic operation of the 
proposed DVFS algorithm is shown in Fig. 4.  
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Fig. 4. Proposed DVFS policy 

The FD part comes first. Based on the frame type and the prediction of 
the required time for the FD part, voltage/frequency scaling is 
performed to minimize energy dissipation while meeting the predicted 
time. When a misprediction occurs (which is detected by comparing 
the predicted FD time with the actual FD time), an appropriate action 
must be taken during the FI part to minimize the impact of the 
misprediction. If the actual FD time was smaller than the predicted 
value, there will be no QoS degradation. Hence, we can scale down 
voltage during the FI time and further save energy while meeting the 
deadline (cf. “Over-predicted” of Fig. 4). On the other hand, if the 
actual FD time was larger than the predicted value, corrective action 
must be taken to preserve the required QoS. This is accomplished by 
scaling up the voltage and frequency during the FI part so as to make 
up for the lost time (cf. “Under-predicted” of Fig. 4). Note that this 
compensation is done by scaling up the supply voltage during the 
memory intensive part and hence does not result in much CPU energy 
dissipation. However, this scheme cannot guarantee that one will never 



 

encounter a QoS degradation because it is possible that the under-
prediction of the time needed for the FD part is so large that even the 
highest voltage/frequency level for the FI part is unable to make up for 
the lost time. But in practice, because of the way the predictor function 
is constructed and the dynamic nature of its updating, the probability of 
such an occurrence is very minute (as can be seen in the results). Note 
also that even if this case occurs, the penalty is the loss of some video 
quality for a short period of time and is not a catastrophic failure as 
would have been the case if the application had a hard real-time 
deadline.  

To determine the FD and FI times for a given frame decoding time, the 
source code for a software MPEG decoder, that is, mpeg_play [13], 
was modified, and a timestamp function was inserted at each decoding 
step.  

Fig. 5 shows the FD and FI time distributions for each frame when 
playing MPEG with a frames-per-second (fps) rate of 2. Fig. 6 depicts 
the same distributions for the maximum fps rate that the CPU can 
sustain (as high a fps rate as the CPU can sustain). In Fig. 5, with fps = 
2, the deadline is fixed at 0.5sec. One can observe that the FD time 
varies greatly depending on the frame type and that it is longer for the 
I-frames and shorter for the B-frames. In Fig. 6, where a frame rate is 
not set, the decoding time varies depending on the frame type. Here the 
FI time is constant (~50 msec at the maximum clock frequency of 
206MHz). Notice that there is a large amount of slack in the FI time in 
Fig. 5. Furthermore, notice that although the FD time varies 
considerably depending on the frame type, the FI time is nearly 
constant for a given frame type (the FI time depends on the pixel size 
of the given movie stream, which is obviously constant for the same 
movie.) These plots provide empirical evidence of the claims made 
earlier with regards to the FD and FI parts of the IDCT and their 
relationship to the frame type.  

The effectiveness of the proposed frame-based workload prediction 
scheme is verified by calculating the prediction error ratio in B-frames, 
which exhibit the largest variation among the frame types. The MA 
scheme with a window size of six is used for the prediction. Results are 
shown in Fig. 7. The movie clip used in the experiment has 660 frames 
(320 X 240) including I-, P-, and B-type frames. Based on the 
measured FD time, the prediction error was calculated. 95% of the 
decoded frames were within an error rate of 15% while 97% of the 
frames are within a 20% error rate. I- frames and P-frames see 
prediction error of less than 10%. Prediction error for B-frames is 20%. 
Note that although the prediction error for B-frames is high, it takes 
less than half the time to decode as compared to an I-frame thereby 
giving us double the time to correct it in the FI time. 
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Fig. 5. Decoding time with fps = 2 
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        Fig. 6.  Decoding time without setting a fps rate  (as high a 

fps rate as the CPU can sustain) 
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Fig. 7. Errors in B-frame workload prediction 

QoS for the MPEG decoding can be defined as the ratio of the 
number of deadline-missed frames to the total number of decoded 
frames in the movie stream. The QoS value was calculated by 
counting the number of frames that violate the deadline, and the 
results are shown in Fig. 8. Two cases were compared: with and 
without using the FI region as a timing buffer. In case of without 
using the FI buffer zone, voltage applied during the FD time is kept 
maintaining during the FI. Both of the MA and WA schemes were 
used for each case in the workload prediction. There is little QoS 
difference between the MA and WA schemes while a considerably 
better QoS can be achieved by using the FI time as a buffer zone. At 
a frame rate of three, about 20% better QoS was obtained by using 
our proposed scheme.  
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Fig. 8. QoS in MPEG decoding 



 

4 Implementation 
To implement the frame-based prediction algorithm for low-power 
MPEG decoding, a software MPEG player program, mpeg_play [13], 
was used and the required functions for calculating the moving 
averages and calculating the clock speeds and voltages were inserted. 
A device driver operating under the Linux OS environment was written 
to implement the CPU clock speed changes. Pseudo code for 
maintaining statistics and prediction error compensation is shown in 
Fig. 9. 
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Fig. 9. Pseudo code for DVFS 

The decoding time prediction for the next frame is based on the moving 
average (over the last six frames of the same type) as explained in 
Section 2. In selecting the proper frequency value, the overhead of 
DVFS itself was also considered.  
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Fig. 10. Variable voltage generator on test bed 

The hardware used is the Intel’s StrongARM 1110 evaluation board [8], 
which supports 12 different frequencies from 59MHz to 221MHz. A 
D/A converter was used as a variable operating voltage generator to 
control the reference input voltage to a DC-DC converter that supplies 
operating voltage to the CPU. Inputs to the D/A converter are 
generated using the General Purpose Input Output (GPIO) signals. The 
extra hardware was designed, built and interfaced to the standard Intel 
Assabet board as a separate module. In Fig. 10, the block diagram of 
the variable voltage generator is shown.  

When the CPU clock speed is changed, a minimum operating voltage 
level should be applied at each frequency to avoid a system crash due 
to increased gate delays. In our implementation, these minimum 
voltages are measured and stored in a table so that these values are 
automatically sent to the variable voltage generator when the clock 
speed changes. Voltage levels mapped to each frequency are 
distributed from 1.1V @59MHz to 1.67V @221MHz. 
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Fig. 11. Non-linearity in memory performance as a function of the 

CPU clock frequency 

In anticipating the workload for the next frame, there is a discontinuity 
in the calculated workload between the lower frequencies (upper) and 
the higher frequencies (bottom) because when the CPU frequency 
changes, the memory clock characteristics are also affected, resulting 
in non-linear performance scaling, which is a typical occurrence in a 
StrongARM-based processor [11]. This phenomenon is illustrated in 
Fig. 11. To correct for this non-linearity, a weight factor for each 
frequency is extracted from the measurement and included in the 
workload calculation.  



 

5 Experimental Results 
The DVFS policies for MPEG decoding were implemented on the 
StrongARM evaluation board. Due to the performance limitation of the 
StrongARM processor, frame rates higher than 3 fps were not 
achievable. Frame rates of 1 and 2 fps, which are very low for real 
video applications, but are sufficient to demonstrate the capability of 
DVFS, were chosen. Fig. 12 and Fig. 13 show the power consumption 
drawn from the system supply rail (6 volts) without and with DVFS 
while playing MPEG2 at fps=1. The power consumption is measured at 
a 2 KHz sampling frequency. While the CPU frequency is 206 MHz 
without DVFS, the frequency is lowered down to 89MHz with the 
proposed DVFS technique, depending on the frame type. Average 
board-level power consumptions for both cases are 2.94 W (0.49A 
@6V) and 2.46 W (0.41A @6V), respectively, which represent a 16% 
reduction in the total system energy. Since the StrongARM CPU 
consumes about 30% of the total energy, it can safely be concluded that 
the CPU energy consumption was reduced by about 53% as a result of 
applying the proposed frame-type-based DVFS technique.  
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Fig. 12. Power consumption without DVFS at fps=1 
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Fig. 13. Power consumption with DVFS at fps=1 

6 Conclusion 
A frame-based workload prediction algorithm for DVFS in MPEG 
decoding was proposed and implemented on a StrongARM-based 
portable system. In this DVFS, each frame type is handled individually 
for more accurate decoding time prediction, less than 10% ~ 20% 
prediction error ratio in all frame types. To avoid QoS degradation due 
to misprediction, the whole decoding time for a frame is divided into 
two parts: frame-dependent and frame-independent. During the FI step, 
in which the required operation is memory intensive, CPU voltage 
increase does not affect the energy consumption since the power supply 

of the memory subsystem is separated from that of the CPU. Using this 
property, the FI period is used as a timing buffer when misprediction 
occurs in FD workload prediction. When applied to a dedicated MPEG 
player, more than 50% of CPU energy was saved by the proposed 
DVFS scheme.  
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