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Abstract

In this paper, a delay optimal clustering/partitioning algorithm for minimizing the power dissipation
of a circuit is proposed. Traditional approaches for delay optimal partitioning are based on Lawler’s
clustering algorithm that makes no attempt to explore alternative partitioning solutions that have
the same delay but better power implementations. Our algorithm provides a formal mechanism
which implicitly enumerates alternate partitionings and selects a partitioning that has the same
delay but less power dissipation. For tree circuits, the proposed algorithm produces delay and
power optimal partitioning whereas for non-tree circuits it produces delay optimal partitioning
with significantly improved power dissipation.



1 Introduction

In recent years, the focus of portable devices has shifted from low throughput devices (e.g., watches,
calculators) to high performance devices like notebook computers, PDAs, cellular phones, etc..
Minimizing power is the primary concern for these battery-powered products as for such products
longer battery life translates to extended use and better marketability. Other low power applications
include solar powered projects like communication satellites and applications emerging in the field
of biomedical engineering. With the convergence of telecommunications, computers, consumer
electronics, and biomedical technologies, the number of such low power and high performance
applications is expected to grow rapidly. Furthermore, with the advent of deep submicron devices,
excessive power consumption is becoming the limiting factor in integrating more transistors on a
single chip or a multi-chip module. Exploring the trade offs between power, performance and area
during synthesis and physical design is thus demanding more attention.

For low power physical design, a performance-driven placement tool [16], a floorplanner [3], and
a performance-driven wire/driver sizing technique [5] have been proposed. This paper presents a
low power delay optimal circuit partitioning algorithm.

Circuit partitioning is a technique to divide large circuits into smaller physical or logical sub-
components. Partitioning is necessary during synthesis and/or layout due to either of the following
reasons: physical limitations on the number of transistors a chip or module can accommodate (e.g.,
to implement a large design on multiple chip modules or on fixed size PLA/FPGAs), for performing
circuit restructuring during synthesis, for reducing complexity of synthesis or layout procedures by
reducing the problem size, etc.. In most of these applications, a net that is external to a part drives
a significantly larger load than an internal net. This implies that such inter-part nets contribute
significantly to the circuit delay. An improper assignment of gates to parts can thus seriously
degrade the performance of the circuit. Specifically, if tightly connected cells are put on different
parts, paths may cross a partition boundary many times resulting in significant degradation of
performance. Thus, it is important to partition a circuit using a performance-driven partitioning
technique.

Initial work on performance-driven circuit partitioning was presented by Lawler et al. in [8].
His approach was a bottom-up approach which is usually referred to as “clustering” in contrast
to a top-down approach which is referred to as “partitioning”. Given a constraint M on the size
of parts, Lawler’s algorithm produces a delay optimal partitioning of the circuit by labeling gates
based on the capacity of partial clusters at the input of a gate during a postorder traversal of the
circuit. The partitioning produced by Lawler’s algorithm is delay optimal under the assumption
that internal delays within a cluster are zero and the external delay from one cluster to the other
is one.

The main disadvantage of clustering algorithms based on Lawler’s algorithm is that given a
cluster size M, it arbitrarily selects one delay optimal clustering without providing the flexibility
of exploring alternative delay optimal clustering solutions. Indeed, a large number of clustering
solutions may exist with the same delay but different amount of power dissipation. For example,
consider the benchmark circuit con? in Figure 1 where the values at the output of each gate
corresponds to the switching activity as calculated by the symbolic simulation mechanism [7].
Square boxes in the figure correspond to the circuit inputs and outputs. FEach circuit input is
assumed to have a switching activity of 0.5. Figure 1(a) shows the delay optimal clustering solution
generated by the Lawler’s algorithm. Figure 1(b) corresponds to the power optimal clustering



Visible Power : 0.5+ 0.43+0.49+0.38=1.8 Visible Power: 0.5 + 0.43 + 0.22 =1.15

Total Power : 6.77 + 0.38 = 7.15 Total Power : 6.77
Gate replication ratio = 18/17 = 1.059 Gate replication ratio = 17/17 = 1.0
(a) Lawlers Algorithm (b) Our Algorithm

Figure 1: Two delay optimal clusterings under size constraint 8 for circuit conl.

solution generated by our algorithm that also has optimal depth. By selecting an alternative
solution, the visible power dissipation of con! is reduced by 36% whereas the total power dissipation
is reduced by about 5%. Hence, if the objective is to minimize the power dissipation during circuit
clustering, it is necessary to explore alternative clustering solutions.

We propose a systematic approach for delay optimal clustering that implicitly enumerates all
clustering solutions for a tree and selects a power optimal clustering from all delay optimal clustering
solutions. The main idea is to maintain only the power optimal clustering solution for different
delay values at every gate. This is achieved by enumerating all cluster patterns of size M at
every gate starting from the primary inputs in a postorder fashion and selecting the power optimal
cluster pattern for each delay value!. It is shown here that the problem of enumeration of all
cluster patterns of size M at a gate ¢ is related to the problem of enumerating all alphabetic trees
of size m rooted at ¢ where m = [%} and w,,;, is the size of the smallest gate. This approach
is similar in concept to the approach proposed for technology mapping in [4] with two significant
differences: 1) technology mapping works within the context of available library patterns whereas
in this case, all cluster patterns need to be enumerated thereby requiring an algorithm to efficiently
enumerate all cluster patterns; 2) In this case, cluster enumeration needs to be performed on non-
binary trees whereas technology mapping procedures operate only on binary trees. When applied to
tree structures, the algorithm proposed here produces delay and power optimal clustering whereas
Lawler’s algorithm produces only delay optimal clustering.

Apart from allowing a simultaneous optimization of power dissipation of the circuit, our al-

! An approach to enumerate different cluster patterns in the context of FPGA mapping was proposed by Murgai
et al. [10]. However, they are enumerating clusters under a constraint on the number of inputs to a cluster whereas
we enumerate clusters under a constraint on the size of the cluster.



gorithm has the following advantages as compared to traditional delay optimal partitioning algo-
rithms.

o It produces a delay optimal clustering under a generalized load independent delay model.

e The proposed algorithm can be used to minimize objective functions other than power dissi-
pation.

e The proposed algorithm produces a set of non-inferior power-delay solutions, allowing for an
informed trade-off between delay and power dissipation of the circuit.

e If required, minimum cluster size constraints can be easily incorporated in the proposed
algorithm, thereby allowing a partitioning solution with approximately equal size partitions.

e The method can be easily adapted to perform partitioning in a hierarchical manner thereby
allowing larger partition sizes at little gate replication penalty.

The rest of the paper is organized as follows. In the next section, we present the power model
used for power estimation/minimization in this paper. Section 1.2 presents a brief description
of Lawler’s algorithm and describes other work in performance-driven clustering. In Section 2,
our approach for power optimal clustering for tree structures is presented. Generalization of this
approach for DAGs and the consequences are described in Section 3. Section 5 presents experimental
results and some empirical studies that characterize the impact of maximum cluster size M on the
algorithm. Concluding remarks are presented in Section 6.

1.1 The Power Model

Power consumption in ¢MOSs circuits is caused by three sources: the charging and discharging
of capacitive loads during output switchings, the short circuit current which flows during output
transitions and leakage current. The last two sources can be made small with proper device and
circuit design techniques. CAD tools have thus concentrated on the dynamic power consumption.

The average dynamic power consumed by a cmos logic gate ¢ (if the gate is a part of a syn-
chronous digital system controlled by a global clock) is given by

2
Piave'rage — 0‘5}:ddle Ciloadjvi (1)
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where ;2% is the load capacitance, Vyq is the supply voltage, Tycle is the global clock period, and
N; is the number of gate output transitions per clock cycle (i.e., switching activity of gate ).

The fanout load C°? in equation (1) consists of two components: the gate load C'9%% which
accounts for the input capacitances of fanout gates and the drain to ground capacitance of the driver,
and the wire load C*"¢ which accounts for the load due to the interconnection tree formed between
the driver and its fanout gates. Logic synthesis for low-power attempts to minimize >, C;9**¢ N;,
whereas physical design for low-power should minimize )", C;vire N;.

Estimating Switching Activities

The number of transitions N a gate makes during a clock cycle is a complex function of its global
logic function, delays in the circuit, and the input sequences applied. Given a set of input vector



L1616 52 YU T[T



A Simplified Power Model for Circuit Partitioning

The fanout load C;"*? in equation (1) consists of two components: the basic net load C;****¢ which
accounts for the load capacitances seen by gates in absence of any partitioning, and the extra load
C;*'"* which accounts for the additional load capacitance due to the external connections of the
net. Note that for a net with no external connections C;**¥"% = (.

Then, the total power dissipation of the circuit G is given by

Pg = 0572 Tieg (C*7° + C#*7*)N; (2)

When a circuit partitioning corresponds to a physical partitioning, the additional load driven
by gate ¢ driving an external net, namely, C;***"”, is one to three orders of magnitude larger than
that of an internal net (i.e., C;>**'¢ << C;**%"%). In this case, the power model given in (2) can be
simplified further as follows. First, it can be assumed that the power dissipation contribution that
can be attributed to variations of C;***° under different partitioning solutions is negligible, i.e.,
C;b%ic = 0 Vi € G. Furthermore, considering that the fixed overhead capacitance for an external
net is dominant within C;°*'"%, it can be assumed that C;**'"® is identical for each net. Under these
assumptions, the objective function to be minimized during partitioning is given by

Og = 3 ieg, Ni (3)

where G, corresponds to the set of gates that are visible, i.e., the set of gates that drive a load
external to the partition. As described in Section 5, the algorithm proposed here can minimize
power dissipation under both the basic power dissipation model given in equation (2) and the
simplified power dissipation model given in equation (3) (i.e., when C;*5%¢ << C;¥tr2),

Note that depending on the application, i.e., whether targeting a physical partitioning or a
logical partitioning, the proposed algorithm can be used to optimize either equation (3) or equation

(2).

1.2 Background

Given a directed acyclic combinatorial circuit G, the set of inputs of a gate ¢ € G are denoted by
Z;. The weight (i.e., area) of gate 7 is denoted by w; and the label of the gate is denoted by I;. Let
Wi(l;) denote the total weight of all the gates with label /; in the transitive fanin of gate 1.

A cluster is defined as a connected rooted DAG where the vertices correspond to the gates
belonging to the cluster, edges correspond to the connections between the gates and the root of the
cluster is the gate reachable by all the gates in the cluster (i.e., all the gates in the cluster are in
the transitive fanin of the root of the cluster).

Let the constraint on the size of the cluster (i.e., sum of the weights of gates belonging to that
cluster) be M. Then, Lawler’s algorithm [8] produces a depth-optimal partitioning as follows:

1. Gates with in-degree 0 (i.e., circuit inputs) are given the label 0.

2. Find any unlabeled gate ¢ such that all gates belonging to Z; have been labeled. Let k be
the largest label applied to any of these gates. If w; + W;(k) < M then [; = k. Otherwise,
L=k+1.



3. After the gates are labeled, locate all gates that have a label distinct from all of its outputs.
Such gates correspond to the roots of a cluster. The root gate and all the gates in the
transitive fanin of the root with the same label constitute a cluster.

Figure 1(a) illustrates the partitioning obtained by applying Lawler’s algorithm to the benchmark
circuit conl with a size restriction 8.

As a consequence of the labeling scheme, when a gate has multiple fanouts, it is likely that the
gate is replicated in clusters containing each of its fanouts. Thus, the delay optimality is achieved
at the cost of an increase in the gate area. This gate area can be recovered by some post-clustering
operation during which clusters are merged into larger clusters such that the size constraint is
not violated and the gate replication is reduced. Lawler indicates that the problem of merging to
minimize the gate replication is similar to that of rectangle covering which is shown to be NP-hard.
Lawler also proposes a heuristic to minimize gate replication. Murgai et al. [9] have proposed some
heuristics to reduce the number of clusters and to reduce the gate replication. Touati [13] has also
developed a gate area recovery mechanism based on a relabeling scheme.

Murgai et al. [9] have modified Lawler’s algorithm to allow a generalized load independent delay
model, i.e., a delay model in which each gate ¢ has delay of §(7) time units and each inter-cluster
net has delay of d time units?. However, they show that the modified Lawler’s algorithm they
propose is delay optimal only under certain special conditions. Recently, a clustering algorithm
that produces delay optimal clustering under a load independent delay model has been proposed
in [12]. Both these algorithms still rely on the basic framework of Lawler’s algorithm and hence,
have no flexibility to explore alternative clustering solutions.

2 Power Optimal Partitioning for Trees

2.1 Definitions and Notations

A Cluster Pattern at a gate z, denoted P;, is defined as a cluster of size less than or equal to
M with gate ¢ as the root of the cluster. The concept of cluster patterns is illustrated in Figure
3. Note that each cluster pattern has a set of leaf nodes associated with it. The set of leaf nodes
associated with a cluster pattern P; is referred to as its leaf set ;.

A clustering solution at a gate 7 is characterized by a PD-point (power-delay point) which
is a 3-tuple {a;, p;, LP;} where a; gives the delay value (i.e., arrival time) associated with the PD-
point, p; gives the corresponding power cost of the clustered sub-circuit rooted at gate ¢ and LP;
denotes the corresponding set of PD-points at the leaf nodes of the cluster pattern. It should be
noted that a clustering solution at gate ¢ determines the clustering solution of the entire sub-circuit
rooted at gate 1.

Given LP;, the power cost p; and the arrival time a; are calculated as follows.

pi=Nit+ > m (4)
leELP;

a; = mazecp,{ar+di} +d (5)

?To emphasize that in spite of being more general than unit delay model, this model still assumes that gate delays
are independent of the load driven by gates, we refer to this delay model as a “generalized load independent delay
model” in contrast to the term “generalized delay model” used in [9].






2.2 An Enumerative Clustering Algorithm

A power optimal clustering can be obtained by exhaustively enumerating all possible clustering
solutions of the circuit. However, such an approach is computationally infeasible. Instead, we
propose a dynamic programming approach that generates power optimal clustering solutions at a
gate given the power optimal clustering solution at each gate in its transitive fanin.

In order to apply a dynamic programming approach to explore alternative clustering solutions
and to identify the delay and power optimal clustering solution for the circuit, the clustering
mechanism should satisfy the following two conditions: 1) It should provide the freedom to explore
all cluster patterns at a gate; 2) For each pair of such patterns, it should be able to correctly
characterize the relative delay and power cost of each pattern and select the best cluster pattern
which guarantees delay and power optimality of the entire circuit.

Assuming that mechanisms that satisfy both of these conditions (i.e., mechanisms that enumer-
ate and characterize cluster patterns at each gate) can be provided, the outline of our algorithm is
as follows. POWER_CLUSTER visits each gate in a postorder (i.e., all inputs of a gate are visited
before the gate is visited) and generates a power optimal clustering at each gate. In fact, the
algorithm maintains a set of non-inferior power-delay solutions at each gate. The inherent benefit
of maintaining such non-inferior solutions during a dynamic programming algorithm is that if the
cost of the solution to a problem is monotone in the cost of the solutions to its subproblems, then
these non-inferior solutions are sufficient to guarantee optimality of the main problem.

Algorithm 1 POWER_CLUSTER (G, Muin, Muaz)
01 for each gate i € G (in postorder) do

02 for size = M,;n to Max

03 L = first leaf_set(z, children(?), size)

04 do

05 for each set of arrival times a, for £

06 a = output_arrival_time(L, az,?)

07 p = power_dissipation_after_merge(L, ar)
08 update_PD-set(a, p)

09 L = next_leaf set(z, children(z), £, size)

10 while (L # NULL)

11 £ = set of primary outputs

12 for each set of arrival times a, for £

13 a, = max(ag)

14 p, = power_dissipation_after merge(L, ar)
15  update_PD-set(a,, p,)

16 Select_a non-inferior_solution

In the following, we describe the operation of POWER_CLUSTER in the context of tree circuits®.
Modification of this algorithm to handle general DAGs will be presented in Section 3.

*The same analysis is also applicable to leaf-DAGs, i.e., circuits that have multiple fanouts only at the circuit
inputs.



Original Cluster Pattern

PD-set for "i"

Figure 4: An illustration of PD-set.

The routines first_leaf sel and next_leaf set on Line 3 and Line 9, respectively, identify each
cluster pattern as will be described in Section 2.4. Once the leaf set L corresponding to a cluster
pattern P; is available, the sets of arrival times at gate ¢ are determined. Since the worst size of
[Ain, Amaz] is D, the maximum number of arrival time sets and the maximum number of execution
of Lines 5-8 for each cluster pattern is D. Thus, maintaining a PD-set as opposed to maintaining
a single delay optimal clustering at each gate increases the time complexity of the algorithm by a
multiplicative factor D.

Given the PD-sets at each element in leaf set £, Line 5 in POWER_CLUSTER enumerates all
arrival time set a; for the leaf set £. For example, if the leaf set £ = {a,b,c} and if

S, = {{1,05,£P,'},{3,0.2,LP,*},{4,0.1,LP>}}
Sy = {{2,0.7,LP'},{3,0.4,LP*}, {5,0.1,LP>}}
S = {{3,03,LP.1},{4,02,LP.2},{5,0.1,LP>}}

then A,.in = 3, Apar = D and the arrival time sets are given by {3,3,3},{4,3,4} and {4,5,5} where
the first, second and the third elements correspond to the leaf nodes a,b and ¢ respectively. The
output PD-set corresponding to the above example is shown in Figure 4.

For generalized load independent delay model, the delay from the leaf node to the root is first
added to the value of each PD-point of the leaf before identifying A,.;, and A,,,,. For example, if
the delays from leaf nodes a,b and ¢ to the root of the cluster are 3,1 and 2, respectively, then the
modified PD-sets (denoted by S,', S}’ and S./, respectively) are given by

S, = {{4,05,LP,'},{6,0.2,LP,*},{7,0.1,LP,*}}
Sy = {{3,0.7,LPy'},{4,0.4,LP,?},{6,0.1, LP,*}}



S = {{5,0.3,LP.},{6,0.2,LP.2},{7,0.1, LP.2}}.

Apart from this, the rest of the algorithm is independent of the delay model used. For each such
arrival time set, Line 6 of the algorithm calculates the arrival time at the output of the cluster.
This is simply computed by adding d to the maximum value in the arrival time set. Thus, the
overall time complexity of Line 6 is O(1) for unit delay model and O(m) for the generalized load
independent model.

Line 7 computes the power cost corresponding to this clustering solution for gate ¢ using equation
(4). For example, for arrival time set {3,3,3} (under unit delay model) the power cost of the
clustering solutions for the transitive cone corresponding to each leaf is given by 0.2 4 0.4 4+ 0.3 =
0.9. As illustrated in Figure 4, if the switching activity of gate ¢ is 0.3 then p is calculated as
0.9 + 0.3 = 1.2. Thus, at the end of Line 7, we have identified a PD-point for gate i with a« = 4
(i.e., 3+ 1) and p = 1.2. The time complexity of power_dissipation_after_merge is O(m).

Line 8 of the algorithm adds this PD-point to the PD-set of gate ¢ if it has lower power dissipation
with respect to the faster solutions. Whenever a PD-point is introduced to a PD-set, all the slower
solutions that have become inferior (i.e., have worse power cost) to the newly introduced PD-point
are removed. Since the size of the PD-set is limited by D, the time complexity of update_PD-sel is
O(D).

Lines 11-15 apply a similar technique to the leaf set corresponding to the primary outputs of
the circuit. This identifies non-inferior PD-points for the entire circuit in the context of the slowest
primary output. In other words, if the earliest arrival time at an output is 4, then it is not necessary
to select a clustering solution with arrival time 2 at another output when a clustering solution with
lower power dissipation but with arrival time 3 is available at that output. Finally, Line 16 of
the algorithm allows one to select the solution based on the delay and/or power constraints. This
determines the selection of PD-points corresponding to each primary output. Using these PD-points
a clustering solution is generated by traversing the circuit top-down (i.e., from primary outputs to
primary inputs). Specifically, given that PD-point j is chosen at a gate ¢, the clustering solution
at the corresponding inputs is generated by recursively generating a clustering solution for each
element in LP;7.

The time complexity of POWER_CLUSTER is given by |G|* - m - O(D) - (O(m) + O(D)) -
number _of _patterns = O(|G|? - (Dm? + mD?) - number_of _patterns).

2.3 Number of Distinct Cluster Patterns

PowEeR_CLUSTER crucially depends on effective and eflicient enumeration of cluster patterns. In
this section, a cluster enumeration algorithm is described and it is shown that the number of
cluster patterns with size M is limited by the number of alphabetic trees with m(7 — 1) + 1
leaf nodes. Specifically, it is shown that if m and T are bounded by a constant, the runtime of
PowER_CLUSTER, though exponential in m and 7', is polynomial is the circuit size |G|. Before
relating the number of cluster patterns (and hence the time complexity of POWER_CLUSTER) to
the number of alphabetic trees, we define alphabetic trees and some relevant notations. Further
details on alphabetic trees can be found in [15].

An alphabetic tree is a tree generated on an ordered set of leaf nodes such that internal edges
do not cross each other. The number of alphabetic trees on n leaf nodes are denoted by &, " where
each internal node has arity ¢ (i.e., number of children). Let ®, denote the number of alphabetic
trees when there is no arity restriction. Likewise, let 1Ip; denote the number of cluster patterns
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For non-binary tree structures, the worst case m is given by [ , which leads to the following.

Theorem 2.3
Iy < @pro1y41 = o™= (7)

where ®,, denoles the number of alphabetic trees on n leaf nodes without any restriction on the arity
of the nodes.

Proof Since m = [WLL any cluster pattern generated under size constraint M can not have
mn

more than m gates. If the arity of each gate is at most T, the maximum number of leaf node that
an m node tree may have is m(7 — 1) 4+ 1. From Lemma 2.1, each cluster pattern corresponds to
an alphabetic tree. Thus, in the worst case, the number of cluster patterns can never be more than
P, (7—1)41- It has been shown [17] (see [15] for further details) that @, (p_1)11 = O(Gm(T_l)‘H). n

This implies that the number of cluster patterns that need to be enumerated is independent of
the circuit size and is exponential only in m and 7" which are usually fixed to be a small number.
However, in the case where clusters of larger size are required, by using a hierarchical clustering
approach, the number of cluster patterns can still be kept low. This and other extensions are
discussed in Section 5.

2.4 Cluster Pattern Enumeration

Since different cluster patterns of size M are enumerated based on m which is the maximum number
of gates that can be contained in a cluster of size M, it is likely that an infeasible cluster (i.e., a
cluster with the actual size greater than M) is returned by the procedures enumerating clusters.
However, enumerating based on m guarantees that all feasible clusters are enumerated. In the
actual implementation, infeasible clusters can be easily avoided by keeping track of current size of
clusters during the cluster pattern enumeration algorithm. Thus, the value of m has significance
only in terms of deriving an upper bound on the runtime of the proposed algorithm.

Given the cluster size m in terms of the number of gates in a cluster, two routines are proposed
to enumerate all cluster patterns rooted at a gate. The first routine, namely, first_leaf set returns
the leaf set corresponding to the first cluster pattern at a gate with a given size. Given the current
leaf set, routine nezi_leaf set returns the next leaf set of the same size. The topological order
amongst the cluster pattern is formally defined as follows.

Let P; and P’; correspond to two cluster patterns of the same size m at gate 7. Let 41 through i
correspond to the inputs of ¢ ordered from left to right. The part of cluster P; rooted at the inputs
of gate ¢ is denoted by FP;;, through P;; , and let W; through W; correspond to the size of each
such partial cluster, respectively. We refer to the set of these sizes as Wy ;. We define W; 1 < W', 1
iff

!
L] Wj < W]' or
® Wit1,1 <Wijpr
Then, we define P; > P/; iff:

. WLI < W/LI or

12



e Wir=W)rand P; =P Vj <k and P;; > P';; forany k€ [1,I].

Z]_J Z,Zj_l

This concept of cluster pattern ordering is illustrated in Figure 3 and 5. Specifically, Figure
3 shows the order between the clusters and Figure 5 illustrates the corresponding tree structures.
Based on the above order definition, cluster patterns are enumerated starting from the first cluster
pattern to the last cluster pattern by routine firsi_leaf set and routine nezi leaf sel. We provide
efficient implementations of these routines as follows.

In these routines we use “{ }” as a set forming operator. Procedure “max size(gate)’
the number of gates in the transitive fanin which is computed in a preprocessing step. It should
be noted that these routines only give a general outline of the actual routines. Certain special
considerations, e.g., handling of DAG circuits, are not included in these routines.

’ returns

Routine 1 first_leaf_set (gate, children, size)

begin

01 if (size == 1) return { gate }

02 else (size = size - 1)

03 currentSet = NULL

04 forEach child starting from the right most of children
05  children = children - { child }

06  childSize = min(max_size({ child }), size)

04  grandChildren = get_children(child)

07  currentSet = currentSet U first leaf_set (child, grandChildren, childSize)
08  size = size - childSize

09 if (size == 0)

10 currentSet = currentSet U children
11 break;

12 return currentSet

end

The routine first_leaf_sel generates the first topological pattern by generating a tree which is
as much right-biased as possible. This is achieved by including as many gates as possible starting
from the branch that is farthest right and including as many gates as possible before including the
sibling to the left of the right most branch.

13



Routine 2 next_leaf_set (gate, children, leafSet, size)

begin
01 if ((size == 1)||(size == 0)) return NULL
02 if (|children| == 1)

03  gate = left_most( children)
04  children = get_children(gate)
05  return next_leaf set(gate, children, leafSet, size - 1)
06 leftMostChild = left_most(children)
07 children = children - {leftMostChild}
08 leftLeafSet = left leaf_set(leafSet)
09 rightLeafSet = leafSel - leftLeafSel
10 newRightSel = rightLeafSel
11 if (size(rightLeafSet) > 0)
12 newRightSet = next leaf_set(gate, children,
rightLeafSet, size(rightLeafSet))
13 if (newRightSet # NULL) return leftLeafSet U newRightSet
14 newRightSet = first leaf_set(gate, children, size(rightLeafSet))
15 if (size(leftLeafSet) > 0)
16  newleftSet = next leaf_set(gate, {leftMostChild},
leftLeafSet, size(leftLeafSet))
17 if (newLeftSet # NULL) return newLeftSet U newRightSet
17 if (size(rightLeafSet) == 0) return NULL
18  size(rightLeafSet) = size(rightLeafSet) —1
19 size(leftLeafSet) = size(leftLeafSetl) +1
20 if (max_size(leftMostChild) i size(leftLeafSet)) return NULL
21 if (size(rightLeafSet) > 0)
22 newRightSet = first_leaf_set(gate, children, size(rightLeafSet))
23 else newRightSet = NULL
24 newlLeftSet = first leaf_set(gate, {leftMostChild}, size(leftLeafSet))
25 return newlLeftSet U newRightSel
end

The routine nezt_leaf set identifies leaf set associated with the next topological cluster pattern
by recursively traversing to the right most gate j whose part of the original cluster F;, namely P; ;
can be restructured by removing a gate from one branch to add another gate to a branch on the left
of it. In essence, this routine incrementally turns a right-biased clustering pattern to a left-biased
clustering pattern.

Next, we show that this enumeration along with proper characterization of power is sufficient
for power optimality of the clustering solution.

2.5 Optimality of POWER_CLUSTER

Theorem 2.4 For tree structures, POWER_CLUSTER generales delay and power optimal clustering
solution under the generalized load independent delay model.
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Proof This is shown by induction on the original depth (i.e., depth before clustering). The
algorithm generates a power and delay optimal solution at original depth 1 as the only solution
at depth 1 is to cluster each gate individually. Assume that all the solutions for original depths
1 to k are delay and power optimal. Now, to prove the theorem it needs to be shown that the
solution generated by POWER_CLUSTER for a gate ¢ at original circuit depth k + 1 is delay and
power optimal.

Delay Optimality: Since the algorithm evaluates every feasible cluster pattern under the size
constraint M, it identifies every cluster pattern that leads to the optimal arrival time value
at gate 1.

Power Optimality: To guarantee delay and power optimality, POWER_CLUSTER chooses the min-
imal power solution from the solutions that result in optimal delay at gate i. Thus, to show
the power and delay optimality of the algorithm, need to show that: 1) no other solution
with less power for the same delay exists; and 2) a selection based on the power cost of each
cluster pattern minimizes the power contribution of the clustering solution at gate ¢ to the
power dissipation of the entire circuit.

The first is true based on the assumption that clustering solution at each gate in the transitive
fanin cone is delay and power optimal and the fact that all feasible cluster patterns at gate
¢ are enumerated. 2) is true due to the tree structure of the circuits. By selecting power
optimal cluster pattern from all cluster patterns at gate i, POWER_CLUSTER guarantees the
power optimality of the sub-circuit rooted at gate :. However, for tree structures, power cost
of the sub-circuit rooted at ¢ also corresponds to the power contribution of the sub-circuit to
the entire circuit.

Thus, POWER_CLUSTER generates delay and power optimal circuits at gates with original depth
k+1. =

In should be noted that if area cost is measured in terms of minimal gate duplication,
PoweRrR_CLUSTER also generates area optimal circuits as any clustering on tree structures causes
no gate duplication.

Taking into account the maximum number of cluster patterns the final time complexity of
PowER_CLUSTER is given by O(|G|?-(Dm?+mD?)-number of _patterns) = O(|G|?-(Dm?+mD?)-
6m(T_1)+1). This complexity may appear prohibitive but it should be noted that the runtime is
exponential only in terms of the cluster size and not in terms of the circuit size. By keeping the
size of each cluster small relative to the size of individual gate sizes, the runtime penalty can be
kept to a minimum. In cases where clusters of larger size are required, the clustering algorithm can
be applied in a hierarchical fashion to achieve the larger size as described in Section 5

3 Low Power Partitioning for DAGs

To be able to handle general combinational circuits (i.e., DAGs) correctly, a few modifications must
be made to POWER_CLUSTER.

Cluster Pattern Enumeration: Consider a gate ¢ which fans out to gates z and y that are
input to another gate z. Due to the re-convergent fanout at gate z, when enumerating cluster
patterns at z, gate ¢ will be encountered in two subtrees of z, namely, the subtree rooted at z
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gates ¢ and y are in the transitive fanout of gate ¢, it may not be possible to make correct decisions
for power and area optimality at gates z and y. Specifically, since the sub-circuit rooted at gate
¢ is shared by the sub-circuits rooted at z and y, it is likely that a sub-optimal solution in terms
of individual power costs of z and y may be optimal when the combined power cost of z and y is
considered. This implies that, to guarantee optimality, all clustering solutions at a gate (not only
the non-inferior solutions) must be maintained, which grows exponentially with the circuit size.
However, the delay optimality of POWER_CLUSTER under a load independent delay model remains
valid.

Theorem 3.1 POWER_CLUSTER generates a delay oplimal clustering under a generalized load
independent delay model.

Proof The proof of the theorem follows from the observation that the only impact of general-
ization to DAGs from trees on the delay calculation is due to the effect of multiple fanout nodes.
However, under a generalized load independent delay model, the delay is independent of fanout
characteristics of gates. Hence, the claim for delay optimality of POWER_CLUSTER remains valid
for general DAGs. =

4 Post-Clustering Area Recovery

The gate replication introduced by POWER_CLUSTER can be recovered by employing area recovery
mechanism that reduce gate replication at no loss in power dissipation. However, even greater
reduction in gate replication can be obtained by allowing some loss in power dissipation. In this
section, three techniques for area recovery are described.

4.1 Area Recovery by Forcing a Single Clustering Solution

As shown in Figure 7(a), due to multiple outputs with different criticality or due to reconvergent
fanouts, it is likely that in the final solution more than one clustering solution is required at a
gate. In such a situation, both area and power can be recovered without any loss in delay by
always selecting the fastest clustering solution required at that gate as shown in Figure 7(b). In
PowEgR_CLUSTER, the concept of membership set automatically ensures this type of area recovery
by selecting only the best clustering solution at each gate.

4.2 Area Recovery by Relabeling Based on Unique Label Assignment

An important characteristic of clustering algorithms based on Lawler’s clustering algorithm is that
each gate in the circuit has exactly one label. With POwER_CLUSTER, however, a gate can have
multiple labels as shown in Figure 8(a). By forcing each gate to have only one label, the area
of the clustered circuit can never get worse. However, the exact impact on the power dissipation
needs to be analyzed. For each case where a gate has more than one label, by forcing the fastest
label on that gate, a new cluster is introduced as shown in Figure 8(b). Since a new visible gate is
introduced, the power dissipation of the circuit is likely to increase. However, by giving a unique
label some power may also be saved in the following two cases:
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o Since different clustering solutions corresponding to other labels for the root of new cluster
are not required, the overall power dissipation may decrease.

e When C%***¢ can not be ignored compared to C*¥%, such unique labeling may reduce the
power dissipation due to reduced replication of internal gates.

Thus, for each gate that has multiple labels and has at least one fanout with each label, the impact
on power dissipation and gate replication due to unique label assignment should be analyzed. Once
this impact on power dissipation and gate replication is available, an informed decision can be made
based on the power-area trade-offs desired. Based on the values of power gain or loss and area gain,
the following three scenarios may exist.

1. There is no area gain. In this case, it can be shown that no power gain is possible and hence
the labels of the gates should not be changed.

2. An area gain is accompanied either by a power gain or by no change in power. In this case,
changing the gate label is desirable and hence should be performed. It should be noted that
when there is no additional power dissipated on an external net (i.e., C®*" = (), an area
gain will always be accompanied by a power gain.

3. An area gain is accompanied by a loss in power. In this case, the decision must be made
based on the relative importance of area and power costs.

Unfortunately, experimental results indicate that most of the area recovery achievable by this
technique is accompanied by a loss in power when C?*% is negligible compared to C***"?. In this
case, if power dissipation is of prime concern, this technique for area recovery should not be used.

4.3 Area Recovery by Relabeling Based on Required Times

Once all the gates in the circuit have been assigned unique labels, the relabeling technique proposed
by Touati [13] can be applied to recover the area even further. This technique traverses the circuit
in a preorder fashion from primary outputs to primary input (processing all the outputs of a gate
before processing the gate itself) setting the required time at the gates based on the delay criticality
of the gates. When two or more fanouts of a replicated gate have greater required time then the
arrival time at the gate, the sub-cluster rooted at that gate can be implemented as separate cluster
to reduce the replication. This is shown in Figure 9.

Once again, for each case of relabeling, the power cost/gain needs to be analyzed before relabel-
ing the gates. Fortunately, in this case the power impact can be captured easily as it will depend
only on the new cluster under consideration (and not on the transitive fanin cone of the cluster as
is the case in relabeling by unique label assignment). Depending on the relative values of C'¢*'"®
and C®*%¢ such relabeling may improve the power dissipation or degrade the power dissipation.
However, if C*5% is negligible compared to C'®**"?, this technique will also always lead to increased
power dissipation and hence should not be used. It should also be noted that this technique always
increases the number of clusters.

5 Experimental Results and Extensions

We implemented POWER_CLUSTER in the Sis environment and compared our results with the Sis
reduce_depth command that implements the original Lawler’s algorithm [13]. Since reduce_depth
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clustering at the next level of hierarchy. When minimizing equation (3), this guarantees that
power dissipation will monotonically decrease at each level of hierarchy, resulting in an effective
performance-driven partitioning strategy for low power. Based on this analysis, for rest of the
experiments a cluster size of 8 was selected.

5.2 Results without Area Recovery

First, we report results of POWER_CLUSTER while minimizing power dissipation under the simplified
power model of equation (3). In Table 1, the results of applying Lawler’s clustering algorithm on
some two-level and multi-level benchmark circuits are presented. Rest of the results presented
in this section are normalized with respect to the values in Table 1. For this experiment, the
maximum cluster size was set to be 8, i.e., m = 8. However, it was observed that the results show
improvements for other values of m as well. Gate replication ratio reported is the ratio of gate
count after clustering to the gate count before clustering. The main reason for choosing cluster size
of 8 was to control the run time of power clustering algorithm. As mentioned above, if clusters of
larger size are required, then the clustering algorithm can be applied in a hierarchical fashion.

As can be seen from Table 2, on average, for two-level benchmark circuits (first set of circuits
in Table 2), an improvement of about 41% improvement in power dissipation and about 24% in
cluster count was obtained. However, the gate replication ratio increased by an average of 11%.
This degradation was expected as for this set of results, POWER_CLUSTER does not apply any post-
clustering area recovery heuristics while reduce_depth does use these heuristics. The reduction in
the cluster count is a byproduct of power minimization during clustering, i.e., minimizing power not
only amounts to selecting low switching activity external nets, but also to minimizing the number of
external nets, thereby reducing the cluster count. For the multi-level benchmark circuits, however,
the power dissipation is reduced by 29% but the gate replication has increased by 23%. The higher
rate of gate replication can be attributed to high degree of reconvergent fanouts in these circuits.
Since reconvergent fanouts are the cause of the area and power non-optimality of POWER_CLUSTER,
and since for these results, POWER_CLUSTER is targeting only on minimizing the power, it is quite
natural that the area cost is higher on circuits with high reconvergent fanouts. For all circuits, on
average, the power dissipation was improved by 35% and the number of clusters was improved by
about 19%. The gate replication ratio increased by an average of 18%.

5.3 Results with Area Recovery

In the cases where area cost is also of concern, area can be recovered as mentioned in Sec-
tion 4. Since, the area recovery by forcing single solution at each gate is an integral part of
PowER_CLUSTER, to achieve further area recovery, we need to apply the relabeling techniques de-
scribed in Section 4. As mentioned in Section 4, these techniques are accompanied by an increase
in power dissipation and cluster count in most cases. The results obtained by integrating the area
recovery mechanisms in POWER_CLUSTER are shown in Table 3. As can be seen, by applying
relabeling techniques, the replication ratio was in fact improved by 6% while improving the power
dissipation by 11%.
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Circuit Cluster Count | Repl. Ratio | Power

Two-level Benchmarks

b12 26 1.14 9.71

cordic 31 1.45 10.58
cps 631 1.21 140.45
duke2 201 1.28 44.44
ex1010 845 1.77 163.92
ex4 126 1.12 46.25
misex2 40 1.30 5.27

misex3c 211 1.22 60.42
pdc 624 1.37 161.26
rd84 58 1.84 18.40
spla 464 1.40 114.59

Multi-level Benchmarks

C1355 116 1.18 53.68
C2670 312 1.50 119.76
C432 104 1.53 36.57
C499 136 1.76 55.50
C880 153 1.71 48.72
apex6 250 1.52 75.00
apex7 105 1.64 35.18
b9 38 1.25 11.35
dalu 547 1.71 123.92
des 1396 1.93 366.04
k2 632 1.58 33.71
rot 278 1.48 100.61
1481 572 2.20 18.86

Table 1: Results using Lawler’s clustering algorithm.
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Circuit Cluster Count | Repl. Ratio | Power
b12 0.77 1.09 0.61
cordic 0.90 1.01 0.82
cps 0.72 1.30 0.45
duke2 0.68 1.08 0.44
ex1010 0.89 1.02 0.75
ex4 0.77 1.00 0.72
misex2 0.68 1.03 0.43
misex3c 0.62 1.09 0.46
pdc 0.75 1.32 0.54
rd84 0.83 1.10 0.79
spla 0.75 1.21 0.52
Average 0.76 1.11 0.59
C1355 0.86 1.15 0.82
C2670 0.93 1.34 0.81
C432 0.59 1.24 0.51
C499 0.75 0.99 0.79
C880 0.84 1.36 0.73
apexb 0.74 1.08 0.70
apex7 0.77 1.15 0.62
b9 0.82 1.14 0.71
dalu 0.98 1.28 0.73
des 0.95 1.26 0.85
k2 1.00 1.55 0.72
rot 0.74 1.34 0.69
1481 1.15 1.12 0.53
Average 0.86 1.23 0.71
ALL Average 0.81 1.18 0.65

Table 2: POWER_CLUSTER without area recovery.

24




Circuit Cluster Count | Repl. Ratio | Power
b12 0.92 0.96 0.77
cordic 1.06 0.98 1.10
cps 0.96 1.01 0.81
duke2 0.92 0.98 0.82
ex1010 1.06 0.93 1.09
ex4 0.92 0.98 0.89
misex2 0.82 0.98 0.76
misex3c 0.93 0.99 0.85
pdc 0.99 0.98 0.88
rd84 0.97 1.02 0.95
spla 0.98 0.98 0.86
Average 0.96 0.98 0.89
C1355 0.86 1.08 0.82
C2670 0.84 0.87 0.83
C432 0.74 0.98 0.74
C499 0.71 0.82 0.77
C880 0.83 0.94 0.81
apexb 0.82 0.95 0.79
apex7 0.82 0.94 0.72
b9 0.97 1.03 0.90
dalu 0.87 0.76 0.79
des 0.91 0.98 0.87
k2 1.12 0.96 1.18
rot 0.81 0.90 0.82
1481 1.30 0.96 1.61
Average 0.89 0.94 0.90
ALL Average 0.92 0.96 0.89

Table 3: POWER_CLUSTER with area recovery.
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5.4 Results Considering Internal Power Dissipation

As mentioned earlier, algorithm POWER_CLUSTER has the capability of performing low power
clustering even in the cases when the internal power dissipation (i.e., value of C'*?%¢) is not negligible
as compared to the extra power dissipation between clusters (i.e., value of C***"*). To show the
effectiveness of POWER_CLUSTER in such a case, we report the results obtained for the other
extreme case, i.e., when C'®*'"* is negligible (C**'"* = (). It is interesting to note that just by
changing the relative importance of C**¥® with respect to C®***¢ we get quite a different problem.
Specifically, in this case, since power dissipation of a net does not differ whether it is an internal
net or an external net, the problem is to achieve delay optimality by replicating as many low power
consuming gates as possible and by avoiding replication of high power consuming gates. The results
obtained in this case is shown in Table 4. As can be seen on average, an improvement of about
11% in total power dissipation was obtained, at the same time improving the gate area by 9%.

6 Conclusion

In this paper, a delay optimal clustering algorithm for low power was proposed. The proposed
algorithm is delay and power optimal for tree structures whereas it is delay optimal for general
DAGs under a generalized load independent delay model. The optimality claims for this algorithm
stem from the underlying clustering mechanism that enumerates all feasible cluster patterns at
each gate in the circuit and maintains only the power optimal solutions at each gate for each
arrival time value. In the process, it has been shown that enumeration of cluster patterns relates to
enumeration of alphabetic trees and provided upper-bounds on the number of cluster pattern that
need to be identified at each gate. Indeed, it is shown that if the cluster size and the maximum
number of inputs to any gate are bounded by a constant number, the runtime of the proposed
algorithm is polynomial in the circuit size. Also, formal methods were proposed to enumerate all
cluster patterns efficiently, specifically with respect to non-binary tree structures.

Experimental results indicate that the proposed algorithm generates circuits with exactly the
same delay as traditional delay optimal clustering mechanisms but at a substantial saving in power
dissipation and number of clusters. Also, the results indicate that in the case where gate replication
needs to be controlled, this algorithm can in fact produce circuits with better gate replication while
improving the power dissipation.

The only disadvantage of this algorithm is the increased runtime which may be prohibitive in
some cases. Though the time complexity is polynomial in the size of the circuit, it is exponential
in the maximum size of the partition due to the pattern enumeration. To speed up the runtime,
some quick method of identifying “good” patterns should be used. Indeed, an algorithm that needs
to enumerate only O(m?) clusters at each gate based on the cluster size distribution at immediate
fanins of gates can be developed. However, since switching activities at gates do not follow a
predictable pattern in terms of circuit structure, any method that does not consider all cluster
patterns is likely to be sub-optimal for DAG circuits.

Apart from the power minimization during clustering, this algorithm contributes to the general
field of delay optimal clustering. Also, it has the capability of tracking the gate replication during
clustering, which can be used to optimize area during clustering. In fact, experimental results
indicate that when applied purely in an area driven mode, this algorithm can improve area by
about 10% for the same delay and about the same cluster count.
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Circuit Cluster Count | Repl. Ratio | Power
b12 1.08 0.95 0.95
cordic 1.19 0.86 0.85
cps 1.01 0.98 0.98
duke2 1.05 0.99 0.98
ex1010 1.05 0.90 0.89
ex4 1.07 0.99 0.99
misex2 1.07 1.00 1.00
misex3c 1.08 0.94 0.94
pdc 0.97 0.90 0.88
rd84 1.00 0.92 0.91
spla 1.00 0.90 0.88
Average 1.05 0.94 0.93
C1355 1.00 1.00 1.00
C2670 0.90 0.80 0.79
C432 0.92 1.06 1.07
C499 0.84 0.79 0.74
C880 0.92 0.77 0.79
apexb 0.99 0.95 0.95
apex7 1.01 0.94 0.94
b9 1.13 1.03 1.02
dalu 0.91 0.79 0.83
des 0.96 0.83 0.80
k2 1.28 1.04 0.89
rot 0.95 0.84 0.83
1481 0.94 0.64 0.38
Average 0.98 0.88 0.85
ALL Average 1.01 0.91 0.89

Table 4: POWER_CLUSTER minimizing total power.
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