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Abstract 

The first part of this paper describes two runtime mechanisms for reducing the leakage current of a CMOS 
circuit. In both cases, it is assumed that the system or environment produces a "sleep" signal that can be used to 
indicate that the circuit is in a standby mode. In the first method, the "sleep" signal is used to shift in a new set of 
external inputs and pre-selected internal signals into the circuit with the goal of setting the logic values of all of 
the internal signals so as to minimize the total leakage current in the circuit. This minimization is possible 
because the leakage current of a CMOS gate is strongly dependent on the input combination applied to its inputs. 
In the second method, NMOS and PMOS transistors are added to some of the gates in the circuit to increase the 
controllability of the internal signals of the circuit and decrease the leakage current of the gates using the "stack 
effect". This is, however, done carefully so that the minimum leakage is achieved subject to a delay constraint for 
all input-output paths in the circuit. In both cases, Boolean satisfiability is used to formulate the problems, which 
are subsequently solved by employing a highly efficient SAT solver. Experimental results on the combinational 
circuits in the MCNC91 benchmark suite demonstrate that it is possible to reduce the leakage current in 
combinational circuits by an average of 25% with only 5% delay penalty. The second part of this paper presents a 
design technique for applying the minimum leakage input to a sequential circuit. The proposed method uses the 
built-in scan-chains in a VLSI circuit to drive it with the minimum leakage vector when it enters the sleep mode. 
The use of these scan registers eliminates the area and delay overhead of the additional circuitry that would 
otherwise be needed to apply the minimum leakage vector to the circuit. Experimental results on the sequential 
circuits in the MCNC91 benchmark suit show that, by using the proposed method, it is possible to reduce the 
leakage by an average of 25% with practically no delay penalty. 

1 Introduction 

The rapid increase in the number of transistors on chips has enabled a dramatic increase in the performance of 
computing systems. However, the performance improvement has been accompanied by an increase in power 
dissipation; thus, requiring more expensive packaging and cooling technology. Historically, the primary 
contributor to power dissipation in CMOS circuits has been the charging and discharging of load capacitances, 
often referred to as the dynamic power dissipation. This component of power dissipation is quadratically 
proportional to the supply voltage level. Therefore, in the past, chip designers have relied on scaling down the 
supply voltage to reduce the dynamic power dissipation. Maintaining the transistor switching speeds requires a 
proportionate downscaling of the transistor threshold voltages in lock step with the supply voltage reduction. 
However, threshold voltage scaling results in a significant amount of leakage power dissipation due to an 
exponential increase in the sub-threshold leakage current conduction. Borkar in [2] predicts a 7.5 fold increase in 
the leakage current and a five-fold increase in total energy dissipation for every new microprocessor chip 
generation.  

There are three main sources for leakage current: 

1. Source/drain junction leakage current  

2. Gate direct tunneling leakage  
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3. Sub-threshold leakage through the channel of an OFF transistor  

The junction leakage occurs from the source or drain to the substrate through the reverse-biased diodes when a 
transistor is OFF. The magnitude of the diode’s leakage current depends on the area of the drain diffusion and the 
leakage current density, which is in turn determined by the process technology.  

The gate direct tunneling leakage flows from the gate thru the “leaky” oxide insulation to the substrate. Its 
magnitude increases exponentially with the gate oxide thickness Tox and supply voltage VDD. According to the 
2001 International Technology Roadmap for Semiconductors, high-K gate dielectric reduced direct tunneling 
current is required to control this component of the leakage current for low standby power devices. 

The sub-threshold current is the drain-source current of an OFF transistor. This is due to the diffusion current of 
the minority carriers in the channel for a MOS device operating in the weak inversion mode (i.e., the sub-
threshold region.) For instance, in the case of an inverter with a low input voltage, the NMOS is turned OFF and 
the output voltage is high. Even when VGS is 0V, there is still a current flowing in the channel of the OFF NMOS 
transistor due to the VDD potential of the VDS. The magnitude of the sub-threshold current is a function of the 
temperature, supply voltage, device size, and the process parameters out of which the threshold voltage (Vth) plays 
a dominant role.  

In current CMOS technologies, the sub-threshold leakage current is much larger than the other leakage current 
components. This current can be calculated by using the following equation: 
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where K and n are functions of the technology, and η is the drain-induced barrier lowering coefficient. Clearly, 
decreasing the threshold voltage increases the leakage current exponentially. In fact decreasing the threshold 
voltage by 100 mv increases the leakage current by a factor of 10. Decreasing the length of transistors increases 
the leakage current as well. Therefore, in a chip, transistors that have smaller threshold voltage and/or length due 
to process variation contribute more to the overall leakage. Although previously the leakage current was 
important only in systems with long inactive periods (e.g., pagers and networks of sensors), it has become a 
critical design concern in any system in today’s designs. 

Unlike the dynamic power, which depends on the average number of switching transistors per clock cycle, the 
leakage power depends on the number of on-chip transistors, regardless of their average switching activity. The 
input pattern dependence of the leakage current makes the problem of determining the leakage power dissipated 
by a circuit a difficult one. This statement is true even when runtime statistics about the active versus idle times 
for a circuit are known. This is because by applying the minimum-leakage producing input combination to the 
circuit when it is in the idle mode, we can significantly reduce the leakage power dissipation of the circuit. 
Consequently, identification of a Minimum Leakage Vector (MLV) is an important problem in low power design 
of VLSI circuits. 

In this paper, several runtime mechanisms for leakage current reduction of CMOS VLSI are introduced. Our 
methods find the MLV of a circuit and the optimum way of modifying the circuit to reduce its leakage current 
using a Boolean satisfiability formulation. Our proposed technique is applicable to both combinational and 
sequential circuits. For the latter type of circuits, our method requires only modification of the scan-chains that are 
already put into the circuit in order to allow efficient testing of the circuit functionality. No other change to the 
circuit in question is required. So from a designer’s perspective, the cost of reducing leakage in a standby circuit 
is minimal.  Parts of this archival paper have appeared in [19][20]. 

In Section 2, a review of a number of the leakage reduction techniques is presented. In Section 3, we describe a 
method for finding the MLV and its corresponding leakage current. Our method is based on constructing a 
Boolean network for computing the leakage current of a VLSI circuit and solving a series of Boolean satisfiability 
problems corresponding to that network. We use an incremental satisfiability solver technique to speedup the 
operation [14]. We minimize the leakage current by using an MLV to drive the circuit while in the standby mode. 
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In Section 4, two improved mechanisms for leakage current reduction are introduced. The basic idea is to increase 
the controllability of the internal signals of a circuit. Using multiplexers or modifying the internal gates of the 
circuit achieves this. Experimental results for combinational circuits are presented in Section 5. In Section 6, scan-
based testing is described. Our method for modifying the scan-chain of a sequential circuit to decrease its leakage 
current is presented in Section 7. Experimental results for sequential circuits are presented in Section 8. Finally 
we conclude the paper in Section 9. 

2 Previous work 

In this section, we briefly review a number of commonly used leakage reduction techniques. 

2.1 Leakage Reduction by Input Vector Control  

Many researchers have used models and algorithms to estimate the nominal leakage current of a circuit [3][4]. 
The minimum and maximum leakage currents of a circuit have been estimated using a greedy heuristic in [5]. 
Because of the transistor stacking effect, the leakage of a circuit depends on its input combination [5]. As the 
operational state of the transistors that constitute a CMOS gate are determined by their input signal values, the 
goal can be expressed as finding the input pattern that maximizes the number of disabled (“off”) transistors in all 
stacks across the circuit [6]. The authors in [7] provided an estimation of the maximum leakage current by 
greedily assigning input combinations of logic blocks that result in high leakage currents. All the above methods 
can be used to determine the minimum-leakage vector and to further exploit the stacking effect by inserting 
transistors in the leaky sections of a circuit [8]. Another possibility is to perform an exhaustive circuit-level 
simulation for all input patterns to find the pattern with the minimum leakage current. However, this approach is 
not practical for large circuits. In [9], the authors used probabilistic methods to reduce the number of simulations 
necessary to find a solution with a desired accuracy. Having found the minimum leakage pattern, one can use this 
vector to drive the circuit while in standby mode. This requires the addition of a number of multiplexers at the 
primary inputs of the circuit. The multiplexers are controlled using a sleep signal. Because the power reduction 
using this technique can be achieved only for long sleep periods, a threshold is used to activate the sleep signal 
only if the sleep period is long enough. 

2.2 Leakage Reduction by Increasing the Threshold Voltages  

One way of decreasing the leakage current is increasing the threshold voltages of transistors. There are several 
ways to do this, but in all of them some process technology modification is necessary. However, this may not be 
always possible. Another approach is to use high-threshold voltage devices on non-critical paths so as to reduce 
the leakage power while using low-threshold devices on critical paths so that the circuit performance is 
maintained. This technique requires an algorithm that searches for the gates where the high-threshold voltage 
devices can be used [11]. This technique has been called the Dual Vth CMOS. In Dynamic Threshold MOS 
(DTMOS), the body and the gate of each transistor are tied together such that when the device is off, the leakage 
is low. If the device is on, then the current will be high [13]. Among the techniques that dynamically modify the 
threshold voltage during runtime, the classic example is Standby Power Reduction (SPR) or Variable Threshold 
CMOS (VTCMOS). In this method Vth is raised during the standby mode by making the substrate voltage either 
higher than Vdd (for P transistors) or lower than ground (for N transistors). However, this technique requires an 
additional power supply, which may not be attractive in some commercial designs. A technique presented in [12] 
successfully solves this problem and applies the technique to a commercial digital signal processor. The 
architectural support needed to use VTCMOS can be done in hardware or software. There is a large performance 
penalty due to the time required removing the substrate voltage to return to the normal operation mode. Noise 
immunity problems have been reported when the substrate voltage is changed, but since in this case the technique 
is applied when the system is idle, there is no negative effect on the normal operation of the circuit.  

2.3 Leakage Reduction by Gating the Supply Voltage  

The last approach considered is power supply gating. There are many ways in which this technique can be 
implemented, but the basic idea is to shut down the power supply so the idle units do not consume any power. 
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This can be done using some high threshold transistors called sleep transistors [1]. If the threshold voltages of 
sleep transistors are changed at runtime, the triple-well technology is required. Another possibility is to use 
Multiple-Threshold Voltage CMOS (MTCMOS) [10]. In MTCMOS, a high threshold device is inserted in series 
with low threshold transistors creating a sleep transistor. This creates virtual supply and ground rails whose 
voltage levels are very close to the real supply and ground lines because of the very small on-resistance of the 
inserted high-Vth transistors. In practice, only one virtual rail (usually the virtual ground) is used. Normally, one 
sleep transistor per gate is used, but larger granularities are possible, which require fewer transistors. The 
problems with this technique are reduced performance and noise immunity. 

3 Leakage Minimization by Input Vector Control 

By applying a minimum leakage vector (MLV) to a circuit, it is possible to decrease the leakage current of the 
circuit when it is in the standby mode. We assume that the environment in which the circuit is placed e.g., with 
the aid of a power management unit, generates a SLEEP signal for the circuit.  This signal is then used to initiate 
the application of the MLV to the circuit inputs. To use this method for leakage reduction, it is necessary to find 
an input vector that causes the minimum leakage current in a VLSI circuit. A trivial lower (upper) bound on the 
leakage current is the sum of the minimum (maximum) leakage currents of all logic gates in the circuit. However, 
this may not correspond to any feasible solution because the input combination that produces the minimum 
(maximum) leakage in some gate, gatei, may conflict with the one that produces the minimum leakage for another 
gate, gatej. In the remainder of this section, we describe an algorithm for finding an MLV for a given 
combinational logic circuit. More precisely, given a combinational logic circuit description, we first construct a 
Boolean network, which computes the total leakage of that circuit.  We call the resulting circuit a Leakage Computing 

Network (LCN). Next from the LCN description, we write a set of Boolean clauses that capture the leakage current 
of the original circuit. We employ a SAT solver to find an input vector that results in a leakage less than a given 
number C. Next, we perform a linear search on the value of C to find the MLV. Finally, we modify the original 
circuit by adding a number of multiplexers to shift in the MLV when the circuit enters the idle mode. Notice that 
the LCN is only used as a computational tool and the only actual hardware are the original circuit and the final 
circuit (which is augmented by the multiplexers and MLV vector). Leakage current of a logic gate depends on its 
input values. Let leakage(Xj) be the leakage current of the jth gate of a circuit under the immediate input vector 
combination Xj. Notice that leakage(Xj) can be written as a sum of up to 2n terms, where n is the number of inputs of 
the gate. For example, the following equation gives the leakage current for all input values of a two-input NAND 
gate:  

1101100101010001)( LXXLXXLXXLXXXLeakage jjjjjjjjj +++=  

where Lpq is the leakage current of the gate when Xj1=p and Xj0=q. Without loss of generality, we multiply all gate 
leakage values with a large constant number to make them integer values. The leakage current minimization 
problem can then be stated as follows: 

Given circuit-induced logic dependencies among Xj’s, find a primary input vector that minimizes Σj leakage(Xj) 
for all gates in the circuit. 

The above cost function can be directly implemented in the LCN by using adders and multiplexers. However, to 
decrease the number of adders, we use the following approach. First we compute the sum of all cost function 
terms that correspond to some leakage value Lkl. Next we compute sum of the results. As an example, consider a 
circuit with two NAND gates, denoted by gatei and gatej. In a straightforward LCN realization, the following sum is 
computed: 

1 0 111 01 0 0 01 1 1000

1 0 1 00 01 1 1 000 10 11

)( ) ( ) (

( )

i ii ij i i i ii

j j j jj j j j
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++ = + + +
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where Xi is a Boolean variable and Lij is a fixed-length vector of Boolean variables corresponding to the binary 
representation of the actual leakage value. The LCN size can be reduced if we rearrange the terms as follows: 
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1 0 1 0 00

1 01 0 000 01 1 1 10 1 0 1 11
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The reason is that in the latter case, for each leakage value, instead of computing the sum of n terms each with m 
bits, we compute the sum of n single-bit numbers and then multiply the result with an m-bit number. The first 
approach needs m(n-1) single-bit adders, while the second one requires n-1+m log n single-bit adders. Thus, the 
second approach is more efficient. To compute the total leakage in our approach, we use a decoder for each gate. 
As an example consider a 2-input gate with 4 different leakage values corresponding to 4 different combinations 
of its inputs. Figure 1 shows a 2-to-4 decoder associated with this gate in the LCN. In this figure, Dk

ij values 
represent the input combination ij of gatek.     

 

 

 

 

 

 

 

 

Figure 1. A 2-to-4 decoder indicating input combinations of a 2-input logic gate. 

Figure 2 shows the LCN structure for computing the total leakage current of all gates in the original circuit that 
perform the same Boolean operation (e.g., two-input NAND).  The one’s counters in this figure count the number 
of Dk

ij variables that are assigned a value of ONE. For example, if there are 50 two-input NAND gates and 20 of them 
receive input combination 00, while 15, 10 and 5 gates receive 01, 11, and 10 input combinations, respectively, 
then the total leakage of all two-input NAND gates in the circuit will be 20L00+15L01+10L11+5L10 . 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Contribution of all gates of type k to the total leakage. 

Notice that when the leakage current of a gate type for a specific input combination is equal to that of another gate 
for some other input combination, it is possible to share the logic structures between them to improve the size 
efficiency of the LCN. The total leakage current of the circuit is computed by summing up all LTk values 
corresponding to all gate types in the original circuit. Suppose we are interested in finding a vector whose leakage 
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current is less than a given number C. To do this, we compare the total circuit leakage with C. Figure 3 shows the 
circuit realization for comparing the total circuit leakage with C. 

 

 

 

 

 

 

 

Figure 3. Comparing circuit leakage with C. 

We model the circuit in Figure 3 using Boolean clauses as described in [15]. 

For example if n=2, LT1=[a1 a0] and LT2=[b1 b0], then the summation of these two vectors is Ltotal=[s2 s1 s0]. The 
Boolean description of the relation between a0, b0, and s0 is s0=XOR(a0,b0) and this Boolean relation can be 
described by four clauses: 0001 sbaClause ++= , 0002 sbaClause ++= , 

0003 sbaClause ++= , and 
0004 sbaClause ++= .  

Algorithm LIN_SEARCH_FOR_MLV:  

1.Find the trivial bounds on leakage current, LB and UB described in the beginning 
of section 3  

2.C = UB, mlv = {}  
3.Write Boolean clauses to model the circuit leakage and the condition that 

total_leakage <= C 
4.Solve the resulting SAT problem  
5.If there is no solution, stop; C + 1 is the  minimum leakage and mlv is the 

solution  
6.mlv = the vector found by the SAT solver  
7.C = C -1 
8.If C < LB, stop; C + 1 is the minimum leakage and mlv is the solution   
9.Go to step 3  
 

The above algorithm performs a linear search on the values between LB and UB to find the minimum leakage 
current. The search starts from UB and proceeds toward LB. During the search all problems are feasible except the 
last one. Note that the constraints corresponding to total_leakage <= C - 1 are tighter than the ones corresponding 
to total_leakage <= C. Thus, every solution of iteration i+1 is a solution of iteration i.  In every iteration, the 
SAT solver produces many conflict clauses during the search for the answer.2 We use this fact to speedup the 
search by using the conflict clauses that are generated during the ith iteration and adding new clauses to them to 
model the (i+1)th iteration. This is instrumental in substantially decreasing the computation time. 

It is possible to start the search from LB towards UB. In this case all problems except the last one are infeasible. 
Because this formulation does not permit the reuse of the conflict clauses, it is slower than the one described 
previously. A binary search, rather than a linear search may also be used. Again we note that a binary search does 
not permit the reuse of the conflict clauses. Furthermore, the decrease in the number of iterations (sub-problems) 
tends to be very small compared to the linear search. Therefore, using a linear search algorithm provides the best 
runtime. After finding the MLV, we use it to drive the circuit every time the SLEEP signal is activated. This can 
be accomplished by using some multiplexers controlled by the SLEEP signal to drive the inputs of the circuit. 

                                                                        
2 Conflict arises when during the search one or more clauses become unsatisfiable in the current search sub space. The SAT 
algorithm backtracks from this point and also learns form the conflict by adding one or more conflict clauses to its database. 
Adding such conflict clauses prevents the algorithm from encountering the same conflict. In other words, clauses prune the 
search space efficiently [16]. 
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Simplifying the multiplexers based on the fact that one input of each multiplexer is a constant 0 or 1 reduces the 
hardware cost. Figure 4 shows the input driver for two bits {a1, a0} assuming the min leakage vector is {1, 0}. 

 

 

 

 

 

Figure 4. Input driver for min leakage vector {1,0}. 

4 Leakage Reduction by Adding Control Points 

In the previous section, we reduced the leakage current by using an input vector control mechanism. However, in 
circuits with large logic depth, an externally applied input vector may effectively control only the gates that are 
close to primary inputs. If we find a way to directly control at least some of the internal nodes of a circuit, we can 
further reduce the leakage of the circuit. In this section we introduce two methods to add control points to a circuit 
to decrease its leakage.  

4.1 Using Multiplexers 

An easy way to control the value of an internal signal (line) of a circuit is to cut the internal line and insert a 2-to-
1 multiplexer that is controlled by the SLEEP signal. The two inputs of the multiplexer are the incoming signal and 
a ZERO or ONE value decided by the leakage current minimization algorithm. The output is the outgoing signal. 
Since one input of the multiplexer is a fixed value, instead of the multiplexer, an AND gate or an OR gate may be 
used. Figure 5 shows a part of a circuit before and after replacing its internal line by an AND gate. 

 

 

 

 

 

Figure 5. Replacing a line by an AND gate. 

In Figure 5 (b), in the sleep mode, the output of the AND gate is ZERO; if, based on the result of leakage current 
minimization algorithm, we need to have a ONE on that line in the idled circuit, the AND gate has to be replaced 
by an OR gate. The additional AND or OR gate and the gates in its fanout consume dynamic power when a new 
value is shifted into the circuit at the beginning and the end of the circuit idle time. This dynamic power 
consumption is considered to be negligible if the idle time is long enough. We assume that the power management 
unit for the whole design knows about this overhead and will only activate the SLEEP signal if the idle time is 
expected to be very long. In this paper, we do not concern ourselves with how such a global power management 
policy for a complete design can be developed and put in place. 

When a new control gate is added to the circuit, there will also be additional leakage current associated with that 
gate. The algorithm that determines the number, type, and insertion location of the control gates inside a 
combinational logic block must account for the leakage currents of these gates. In the remainder of this subsection 
we present a method to optimally select a subset of the internal lines in a circuit to be replaced with AND or OR 
gates. The method is based on modifying the LCN by adding additional input variables corresponding to the 
internal lines of the circuit. In other words, for each internal line in the circuit, two new variables X and Y are 
introduced. The value of X determines whether or not the connection will be replaced by a multiplexer. If X=1, 

a0 

SLEEP 

a1 

b) The modified circuit a) A line in a circuit 

 SLEEP 
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then a multiplexer whose inputs are the original line and a variable Y, is inserted on that line. The LCN is 
modified to account for the leakage of the added gate (cf. Figure 6.) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Adding the leakage current of the multiplexer to the total leakage. 

Now the problem of minimizing the leakage current can be descried as minimizing the value of L’total which is a 
function of input vector and also variables X’s and Y’s. By running LIN_SEARCH_FOR_MLV on the modified 
LCN with extra variables (X’s and Y’s), we can obtain the following: 

4. MLV 

5. Internal lines on which multiplexers are inserted. 

6. Y value for each multiplexer and customization of the multiplexer to an AND or OR gate based on the Y 
value. 

Our minimization algorithm finds the optimum subset of internal lines on which multiplexers are inserted. The 
minimization algorithm considers the advantage of controlling the internal lines in the circuit and weighs it 
against the disadvantage of additional leakage current due to the required multiplexers. Since the minimization 
algorithm searches for the minimum leakage solution, if adding any multiplexer helps decrease the leakage, it will 
be added to the circuit. 

4.2 Modifying Gates 

The leakage cost of multiplexers serves as a disincentive to employ a large number of these multiplexers in the 
circuit. In this subsection we propose an alternative method to control the outputs of internal gates in a circuit. 
Since the new method does not add any gate to the circuit, there is no extra leakage associated with adding a 
control point to the circuit. Even better, because of the transistor stack effect, every time we add a control point to 
the circuit, its total leakage decreases. 

We use two variables X and Y for each gate in the circuit. The value of X determines whether or not a gate in the 
circuit undergoes some change. The value of Y determines the way that the gate is changed. Consider a fully-
complementary CMOS gate, out = g(in). Based on the values of X and Y, which are in turn computed by our 
leakage minimization algorithm, this gate is changed as follows: 
If (X==1) out = g(in)  
else 
if (Y == 1) out = OR(NOT(SLEEP), g(in))  
else out = AND(SLEEP,g(in)) 
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Modifying this gate as described above enables controlling the output of the gate independent of its inputs in the 
standby mode. In other words, if we must have a ONE at the output of the gate when in the standby mode, we 
replace the gate with AND(SLEEP, g(in)). Similarly, if we ought to have a ZERO, we replace it with 
OR(NOT(SLEEP), g(in)). 

 

 

 

 

 

 

 

 

 

 

Figure 7.  A fully-complementary CMOS gate and its two modified circuits. 

Figure 7 shows a CMOS gate with its PMOS and NMOS sections and two ways to modify the gate. Note that in 
both cases a transistor is added in series with one of the N or P sections. This results in a decrease in the leakage 
of the gate due to the transistor stack effect. The percentage of the reduction depends on the original number of 
transistors in the gate [8]. Moreover, as mentioned before, this method enables us to control the values of the 
internal lines in the circuit; thus, reducing the leakage current of the gates in the fanout of the lines. Modifying a 
gate in this way results in a delay and an area penalty. For example, in case B the high-to-low transition becomes 
slower, whereas in case C the low-to-high propagation delay is increased. We take the pin-dependent propagation 
delay of a gate to be the average of input-output gate delays for the rising and falling transitions. Obviously, the 
delay and area penalties depend on the sizes of the added transistors in each case. We size these transistors so that 
the increase in the delay and the area of each gate is no more than some percentage (Sec. 5.) 

In the sequel, we present a method to extend the LCN so that the leakage minimization is performed subject to a 
delay constraint on all of the primary input to primary output paths in the circuit. The left circuit structure in 
Figure 8 selects the correct value of the leakage for each gate in the circuit whereas the right structure does the 
same for delay calculation. 

 

 

 

 

 

 

Figure 8. Leakage and delay values of a modified gate. 

Note that in this figure leakageA and delayA denote the leakage current and propagation delay of the gate without 
modification (i.e., out=g(in)). leakageB and delayB denote the leakage and propagation delay of the gate modified 
to out=AND(SLEEP, g(in)). leakageC and delayC indicate the same for the case where out=OR(NOT(SLEEP), 
g(in)). As in static timing analysis, the gate delay values are used to calculate the maximum delay of the circuit 
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for all input-output paths using the circuit shown in Figure 9. The arrival time of each gate is the maximum of the 
sum of the arrival time of each of its inputs and the pin-dependent delay from that input to the output of the gate. 

 

 

 

 

 

 

 

Figure 9. Calculating the output arrival time of a gate. 

The maximum delay of the circuit is the maximum of arrival times of its primary outputs. Figure 10 shows the 
circuit for comparing the maximum delay of the circuit with a given threshold. 

 

 

 

 

 

 

 

Figure 10. Comparing the maximum delay of the circuit with a delay threshold. 

The leakage minimization problem can be stated as that of minimizing the value of Ltotal which is a function of 
input vector and also variables X’s and Y’s. The leakage minimization has to be performed under the delay 
constraint illustrated in Figure 10. Therefore, the minimization algorithm should take into account the values of 
the output of both circuits in Figure 3 and Figure 10 as depicted in Figure 11.  

 

 

 

 

 

 

Figure 11. Considering the delay constraint in leakage minimization. 

By running LIN_SEARCH_FOR_MLV on the modified LCN with the aforementioned Delay Computing 
Network (DLN) and variables (X’s and Y’s), we can obtain the following: 

1. MLV 

2. Gates that are structurally modified 

3. Y value for each modified gate, which identifies the method for modifying the gate. 

Our minimization algorithm finds the optimum subset of gates, which are modified. The minimization algorithm 
considers the advantages of modifying the gates in the circuit (which are controlling internal signal as well as 

 arrival_time (fanin 1) 

delay(fanin1 , out) 

delay(faninm , out) 

 arrival_time (faninm) 

 arrival_time(out) 

 

SUM 

 

SUM 

 
 

MAX 

 
CMP delay_threshold 

 arrival_time (PO 1) 

 arrival_time (PO n) 

 max_delay 

 
 

MAX 

L total 

C 

 max_delay 

Delay_threshold 

 

CMP 

 

CMP 



11 

0

2

4

6

8

10

12

14

10% 15% 20% 25% 30% 35% 40% 45% 50% 55%

Percentage of Energy Saving

N
um

be
r 

of
 In

st
an

ce
s

 

reducing the gate leakage due to the stack effect) and weighs them against the disadvantage of additional delay 
overhead due to the added transistors. 

5 Experimental Results for Combinational Circuits

We applied the proposed mechanisms to reduce the leakage currents of the circuits in MCNC91 benchmark. Each 
of the circuits was optimized by the SIS script.rugged and mapped to a technology library using the SIS mapper. 
We used an industrial library built in 0.18um CMOS technology with a low threshold voltage of 0.2V and a 
supply voltage level of 1.5V. We used HSPICE simulation to report the leakage current of the gates in the ASIC 
library for all possible combinations of their inputs. We, therefore, started with a full circuit-level characterization 
of leakage current of all gates. For each benchmark, we obtained the minimum and the maximum leakage currents 
and their corresponding input vectors using the method described in Section 3. Figure 12 shows the distribution of 
the ratio of maximum to minimum for all circuits. 

 

 

 

 

 

 

 

 

 

Figure 12.  Distribution of maximum over minimum leakage current 

Figure 12 depicts our experimental results where we show the max/min leakage distribution for the MCNC91 
benchmark suite. The figure, for example, states that 9 of the benchmarks had a max/min leakage ratio between 
1.25 (inclusive) and 1.75 (exclusive) whereas 11 had a ratio between 1.75 and 2.25. As it can be seen, the 
max/min leakage ratio is as high as 6 for some circuits. Therefore, driving the circuit that is placed in the idle 
mode with a random input vector may result in a significant waste of energy compared to the case of driving the 
circuit with the MLV. Figure 13 shows the distribution of energy saving achieved by using the input vector 
control mechanism of Section 3. 

 

 

 

 

 

 

 

 

 

Figure 13. Energy saving of the input vector control mechanism. 
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Figure 14 shows the distribution of energy saving achieved by using the control point addition mechanism of 
Section 4.1. As one can see, adding control points to the circuits helps to further reduce the leakage currents.   

 

 

 

 

 

 

 

 

 

Figure 14. Energy saving for control point addition mechanism. 
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saved using our runtime leakage control mechanisms depends on the duration of the standby mode for the circuit. 
For short standby periods, it is not worthwhile to switch between the current input and the MLV. For long standby 
periods, the energy savings can become quite significant. To make this statement more precise, we calculated the 
minimum duration of the idle time above which power savings by “shifting” in the MLV becomes possible. 
Figure 15 shows the distribution of this minimum time (in terms of the number of clock cycles) for MCNC91 
benchmark circuits. 
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Figure 15. Minimum number of clock cycles that the circuit should stay in the standby mode for the dynamic leakage 
control to become effective. 

The runtime of the algorithm LIN_SEARCH_FOR_MLV depends on the number of quantization levels of leakage 
values. Obviously more quantization levels results in more accuracy and more runtime. Figure 16 shows the 
distribution of the runtime of the algorithm for 32 and 64 quantization levels. 
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Algorithm runtime for 32 quantization levels. 
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Figure 16.  Algorithm runtime for two different quantization levels. 

Figure 17 shows the distribution of energy savings for MCNC91 suite that is achieved by using the control point 
addition mechanism of Section 4.2 under different delay constraints. When we do not allow any speed 
degradation, only a small number of gates are changed. As a result, the amount of energy saving is on average less 
than 20% for all the benchmarks. Increasing the limit on the speed degradation helps improve the results as is 
evident from the figure. For example, with a 15% tolerance on delay, the average energy savings for all the 
benchmarks is 45-50%. The area overhead is proportional to the number of added transistors and is at most 15%. 
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Figure 17.  Distribution of energy savings that is achieved by using the control point addition mechanism of Section 4.2 
(modifying gates) under different delay constraints. 
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6 Scan-Based Testing 

In Figure 18, we consider a sequential circuit comprised of a combinational circuit and a set of flip-flops.  

 

 

 

 

 

 

 

 

 

 

 

Figure 18. A general model of a sequential circuit. 

In the scan-based designs [17][18], the flip-flops are connected in such a way that they enable two modes of 
operation: normal mode and test mode. In the normal mode, the flip-flops are connected as shown in Figure 18. 
At each clock cycle, the next state is stored in the flip-flops. In the test mode, the flip-flops are reconfigured and 
form one or more shift registers, called scan registers or scan chains. At each clock cycle the values of the flip-
flops are shifted. The values can be observed through the output of the last flip-flop of the scan chain. 
Furthermore, the values can be shifted into the scan-chain through the input of the first flip-flop in the chain. 

In this paper, we assume that all internal and external (input and output) flip-flops are included in the scan chain. 
This type of circuit is called full-scan. Full scan chains convert the problem of testing a sequential circuit to that 
of a combinational one. In other words, the input and internal flip-flops can be treated as primary inputs of the 
circuit, whereas the output and internal flip-flops are considered as the primary outputs. In order to test a circuit, 
the circuit is first switched to the test mode and the present state value is shifted into the flip- flops. After that the 
circuit is switched to the normal mode and operates for one or more cycles under the externally provided input 
values. In the next step, the circuit is switched back to the test mode and the next state value is shifted out. 

As mentioned before, the scan-based test methodology requires the modification of the circuit and addition of a 
test mode in which the flip-flops are configured as one or more scan chains. For this reason, the flip-flop design 
must be modified. One way to add the new functionality into the flip-flops is through the addition of a multiplexer 
with inputs D and DS, as shown in Figure 19. 

 

 

 

 

 

Figure 19. A multiplexed-input scan flip-flop. 
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The control input of the multiplexer is controlled by the test signal. This design is referred to as a multiplexed-
input scan flip-flop. Each flip-flop in the circuit may be replaced by such a flip-flop where its D input is 
connected to the corresponding state output in the circuit and its DS input is connected to the output of another 
flip-flop, which is designated as the predecessor of the current flip-flop in the scan chain. Input DS of the first flip-
flop in a chain is the scan chain input and is denoted by ScanIn, while the output of the last flip-flop in the chain is 
the output of the scan chain and is denoted by ScanOut. The input and the output of a chain are connected to an 
input and an output pin of the chip, respectively. Figure 20 shows details of a scan chain design. In the Figure, the 
flip-flops are configured as a single chain. 

The use of scan allows the desired value to be shifted into each flip-flop, or scanned in, using the test mode and 
scan chains. Hence, present state of the sequential circuit can be directly controlled. This increases the 
controllability. After applying a test vector, the values at state outputs are captured into the flip-flops by 
configuring them in their normal mode. The captured values are shifted out or scanned out, using the test mode 
and observed at the corresponding scan output pin, ScanOut. This means the next state of the sequential circuit 
becomes observable. This increases the observability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. A generic scan chain structure. 

Assuming the flip-flops are configured as a single chain, the following steps are used to apply a test vector. 

1. The circuit is set into test mode by setting test=0. 

2. Shift the test vector into flip-flops via ScanIn pin by applying m+k clocks, where m and k are the number 
of input and internal flip-flops, respectively. This causes the test vector be applied to the primary inputs 
(including present state) of the circuit. 

3. The circuit is configured in its normal mode by setting test=1 and one clock is applied. This causes the 
response at the primary outputs (including next state) of the circuit be captured in the corresponding flip-
flops. 

4. The state response captured in the scan flip-flops is scanned out and observed at the ScanOut pin by 
setting test=0 and applying k+n clocks, where n is the number of output flip-flops. 
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7 Using the Scan Chain for Leakage   Reduction 

In this section we describe how scan chains can be modified to allow us to apply the MLV to a sequential circuit 
when it is in the sleep mode. Because scan-chains provide an easy way to control the values of flip flops, they can 
be used to drive the standby circuit with the MLV.  

A simple way is to shift in the MLV, from a memory (m+k bit shift register) into the first m+k flip-flops via the ScanIn pin by 
setting the circuit into the test mode and applying m+k clocks. For this reason the sleep signal, generated by the power 
management unit, is combined with the test signal to construct the new control input of the multiplexed flip-flops. After 
shifting in the MLV, the clock signal can be disabled to avoid power dissipation in the flip-flops as depicted in Figure 21.  

 

 

 

Figure 21. New test and clock signals. 

With such a method, the previous state of the circuit is over written by the MLV. If the next state or output of the 
circuit, while switching back to the active mode, is a function of the previous state, then this method will 
obviously change the functionality of the circuit.  

There are many cases in which it is not necessary to know the previous state of the machine upon backer-entering 
the active mode of operation. As an example, consider the floating-point unit of a microprocessor. After executing 
a floating-point instruction, the unit can be switched back to the idle mode if there are no more floating-point 
instructions. Upon encountering a floating-point instruction, the unit can be switched back to the active mode. In 
this case it is not necessary to know the previous state of the unit and the circuit will function properly. On the 
other hand, there are cases where it is necessary to save the state of the circuit and restore it upon switching back 
to the active mode. To address this requirement, we propose to add a circuit loop comprised of the input and 
internal flip-flops and an (m+k)-bit shift register as depicted in Figure 22. 

 

 

 

 

Figure 22. Configuration of the scan chain in the sleep mode. 
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memory. This memory can be the same (m+k)-bit shift register that is used for storing the MLV. Shifting in the 
state can be done at the same time that the MLV is shifted out.  Before switching back to the active mode, we need 
to shift in the previous state saved in the memory to the internal flip-flops via the ScanIn pin by applying m+k 
clocks. Simultaneously, the MLV captured in the flip-flops of the circuit is shifted into the memory to be used in 
the next sleep period. 

The performance penalty associated with this method is m+k clock cycles, if the length of the sleep period, t, is 
larger than m+k clock cycles (because it takes m+k clock cycles to load the saved state from the shift register into 
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does not require any changes in the gates of the circuit or any process technology modification makes it very easy 
to use. On the other hand, it takes several clock cycles to switch between the active and the sleep modes.  

Now we describe some modification to the scan chain in order to apply the MLV to the circuit in one cycle. For 
this reason m+k new multiplexers are inserted in the scan chain, in such a way that each output of a flip-flop in 
the scan chain is multiplexed with the corresponding minimum leakage value and the output of the multiplexer is 
connected to the DS input of the next multiplexed-input flip-flop as depicted in Figure 23. 

The test signal needs to be set to one whenever the circuit enters the sleep mode, which can be done by using the 
circuit in Figure 21. The added multiplexers can be simplified since one of their inputs is always the minimum 
leakage value, which is a constant number. This method overwrites the previous state of the circuit with the MLV.  
To solve this problem we add m+k flip-flops and multiplexers controlled by the sleep signal to the circuit, which 
are used to save the MLV in the active mode and the previous state in the sleep mode. For this reason we construct 
a local loop corresponding to each input as shown in Figure 24.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Modified scan chain for applying MLV in one cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Adding extra flip-flops for state recovery. 
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Disabling the clock as shown in Figure 21 may not lead to correct results. For correct functionality, the clock 
needs to be disabled one cycle after entering the sleep mode and it needs to be enabled one cycle before entering 
the active mode. Figure 25 shows the appropriate timing of the circuit. In this timing diagram V1 shows the values 
captured in the multiplexed-input flip-flops in the scan chain and V2 shows the values captured in the additional 
flip-flops. It can be seen that when the sleep signal is high, the current state will be saved in the added flip-flops. 
At the same time the MLV is loaded into the multiplexed-input flip-flops driving the inputs of the combinational 
circuit. Furthermore, before switching to the active mode, the previous state is captured in the multiplexed-input 
flip-flops and the MLV is concurrently captured in the additional flip-flops. 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Timing diagram of control signals. 

In some sequential circuits single-latch design is used rather than flip-flop design in which a pair of latches in a 
master-slave configuration are used. Figure 26 illustrates the single-latch design in which two non-overlapping 
clocks C1 and C2 must be used. In such a design if there exits a combinational path from the output of a latch 
clocked with C1 to the input of another latch, then that latch must be clocked by C2. 

 

 

 

 

 

 

 

 

 

 

Figure 26. A single latch sequential circuit. 
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a master-slave latch configuration. For this reason each latch is replaced by a multiplexed input latch, similar to 
the previously described multiplexed input flip-flop. Furthermore, for each latch, an additional latch clocked by a 
different phase is added to construct the master-slave configuration in the scan chain as illustrated in Figure 27. In 
the active mode extra latches hold the MLV and the C3 clock is kept low. When entering the sleep mode by 
applying a pulse to C2, the state is saved in L’ latches. 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Scan chain structure for single-latch sequential circuits 

Similar to the previous case in order to apply the MLV in the sleep mode and recover the state when entering the 
active mode, for each latch, an extra latch clocked by a different clock C3 and a multiplexer controlled by the 
sleep signal are added. The extra multiplexers are controlled by the sleep signal as shown in Figure 28.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28.Adding extra latches and multiplexers for state recovery 
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Then, by applying a pulse to C1 and setting sleep=1, which results in test’=1 as shown in Figure 21, the MLV is 
loaded to L latches driving the combinational circuit. In the next step, applying a pulse to C3 captures the state 
values, saved in L’ latches, into the L” latches. This way the data in L and L” latches are swapped via L’ latches 
by applying appropriate pulses to C1, C2 and C3. Hence, during the sleep period L” latches keep the previous state 
of the circuit. While entering the active mode, the state can be recovered in L latches by swapping data in L” and 
L latches by taking a similar approach. Figure 29 shows the timing diagram of the circuit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Timing diagram of control and clock signals 

8 Experimental Results for sequential Circuits 

We applied our leakage reduction methods on ISCAS89 benchmark circuits. Each method is associated with 
some delay overhead. We have compared the delay overhead of our methods with the previous method, which 
does not modify the scan chain of circuits. Table 1 shows the leakage reduction percentage using input vector 
control. 

Table 1. Leakage reduction percentage using input vector control 
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associated with a performance penalty and the method in Figure 7 is not able to recover the state. The method in 
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extra flip-flops driven by multiplexed-input flip-flops. Table 2 shows the comparison of delay overhead of our 
method with standard input control method (using multiplexers in the primary inputs of the combinational circuit, 
which is on the critical path.) 

Table 2. Comparison of delay overhead of the proposed method with standard method 

Delay  Overhead 
 

Delay  Overhead 
 

Circuit 
Standard 
method 

Our 
method 

Circuit 
Standard 
method 

Our 
method 

S1196 10% 1% S35932 8% 0% 
S1238 9% 1% S382 14% 1.2% 
S1423 4% 0% S386 15% 1.2% 
S1488 12% 1% S400 13% 1.1% 
S1494 11% 1% S510 12% 1% 
S208 15% 1.4% S5378 11% 1% 
S27 17% 1.5% S641 10% 1% 
S298 13% 1.2% S713 9% 1% 
S344 12% 1% S820 12% 1% 
S349 13% 1.1% S838 13% 1.1% 

9 Conclusion 

In the first part of this paper, we introduced several methods to decrease the leakage current of a circuit. Our 
methods do not require any modifications in the process technology. Hence, they can be easily used. Furthermore, 
we presented some techniques for reducing the leakage current of a sequential circuit using its minimum leakage 
vector. Experimental results show that, when using our proposed technique, up to 70% savings in the leakage 
current of combinational circuits can be achieved at the expense of up to 15% delay penalty.   

In the second part of this paper, we showed how to modify the scan chain of the circuit and use it to drive the 
circuit with the minimum leakage vector while the circuit is in standby mode. This effectively eliminates the 
delay overhead associated with the vector-based methods. Our method results in the loss of the previous state of 
the sequential circuit. In order to save the state information and restore it upon switching back to the active mode, 
some extra latches can be added to the circuit. We presented several latch architectures to achieve this goal. 
Experimental results show that, when using our proposed technique, up to 39% savings in the leakage current of 
sequential circuits can be achieved at the expense of less than 2% delay penalty.   
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