Memory Bus Encoding for Low Power: A Tutorial*

Wei-Chung Cheng and Massoud Pedram
Department of EE-Systems
University of Southern California
Los Angeles, CA 90089

{wccheng, massoud} @sahand.usc.edu

Abstract
This paper contains a tutorial on bus-encoding techniques that
target low power dissipation. Three general classes of codes,
i.e, algebraic, permutation-based, and probability-based, are
reviewed. A new mathematical framework for unifying the
power-aware algebraic coding techniques based on the notion
of leader setsis also presented.

1. Introduction

Modern electronic systems contain a dichotomy of
simultaneously needing to be low power and high performance.
This arises largely from their use in battery-operated portable
(wearable) platforms. Even in fixed, power-rich platforms, the
packaging and reliability costs associated with high power and
high performance systems are forcing designers to look for ways
to reduce power consumption. Power-efficient design requires
reducing power dissipation in al parts of the design and during
all stages of the design process subject to constraints on the
system performance and quality of service (Qo0S). Sophisticated
power-aware, high-level language compilers, dynamic power
management policies, memory management, bus-encoding
techniques, and hardware design tools are demanded to meet
these often-conflicting design requirements. This paper focuses
on the low power bus-encoding problem.

The mgjor building blocks of a computer system include the
CPU, the memory controller, the memory chips, and the
communication channels dedicated to providing the means for
data transfer between the CPU and the memory. These channels
tend to support heavy traffic and often congtitute the
performance bottleneck in many systems. At the same time, the
energy dissipation per memory bus access is quite high, which
in turn limits the power efficiency of the overall system.

In a computer system, the bus can be an on-chip bus [20], a
local bus between the CPU and the memory controller [5], or a
memory bus between the memory controller (which may be on-
chip or off-chip) and the memory devices. The emphasis of this
paper is on low power encoding techniques for the memory bus.
A widely used class of codes is the block code where the
encoded message consists of code words w of fixed length
(number of letters) forming a subset of al words of the same

length. Each code word has a message part m, which can be
chosen arbitrarily and a check part c, which is used to complete
the message part to a proper code word. If an error of
transmission has occurred, resulting in a word u which is not a
code word, it is then possible to see that there has been an error,
and it may be possible to locate the original code word as the
closest code word to u. For bit codes, i.e, codes where the
letters are 0 and 1, the distance d(w,w') between two words w
and w' is defined as the number of digit positions where the two
words differ.

For any encoding scheme, the encoder and decoder functions are
the inverse of one another; therefore, the encoding and decoding
functions are usually discussed together in the literature. There
is, however, a fundamental difference between the two
functions. The encoder must consider the target objective (e.g.,
low transition count on the bus) and as a result exploits an
optimization agorithm to generate the code words from the
source words, whereas the decoder does a straightforward
decoding of the code words without attention to why the
encoding took place in one way or the other. From a
mathematical point of view, it is therefore easier to explain and
analyze the behavior of the decoder, rather than the encoder.
This is the approach we adopted in this paper. Although we
sometimes provide hints about the encoding agorithms, the
emphasisis on the decoding process.

2. Low Power Coding Techniques

Generaly speaking, a code C is a bijection T from a set A of
letters to another set B of letters. A message M written with the
letters of A is encoded by T to a coded message TM written in
the letters of B, and the originad message is recovered by
applying T* to TM, M=T*TM. In a classical example, A and B
consist of the same letters, and T is a permutation of them.

Low power bus codes can be classified as algebraic,
permutation, or probabilistic. Algebraic codes refer to those
codes that are produced by encoders that take two or more
operands (e.g. the current source word, the previous source
word, the previous code word, etc.) to produce the current code
word using arithmetic or bit-level logic operations. Permutation
codes refer to a permutation of a set of source words.
Probabilistic codes are generated by encoders that examine the

! Thiswork is sponsored in part by DARPA PAC/C program under contract number DAABO7-00-C-L516.

probability distribution of source words or pairs of source words
and use this distribution to assign codes to the source words
(Level signaling) or pairs of source words (Transition
Signding). In al cases, the objective is to minimize the number
of transitions when transmitting all of the source words on the
bus. The overhead of the encoder/decoder circuitry is often
ignored.

In the remainder of this paper, we will use the following
terminology. The origina data to be encoded will be referred to
as source words and denoted by s. The encoded data will be
referred to as the code words and denoted by ¢. The index i
refers to the time stamp of the words. Let S denote the set of all
source words and C the set of al code words. We use wg and w,
to denote the bit widths of the source and code words,
respectively. In general, ws is different from w, .The encoder
takes the source words as input and produces the code words
based on some agorithm or policy. The decoder takes the code
words as input and produces the source words.

2.1. Algebraic Codes

Although algebraic coding is well developed, it has seldom been
mentioned in the low power bus encoding literature for the
following reasons. Conventionally, algebraic coding is used for
error correction in a noisy communication channel. Not only is
power consideration absent in the coding theory, but there is
also a need for excessive redundancy in order to perform error
detection or correction. For reduced-transition bus encoding, the
temporal sequence of code words needs to be considered, and
coding theory helpslittle in this respect.

Error-correct code and information entropy, two branches of
applied mathematics, have been applied to computer systems.
For the conventiona setup of coding theory, there are source
encoding and channel encoding. Source encoding reduces the
data (i.e., compresses it toward the lower bound, which is the
entropy), and channel encoding inserts redundancy to correct
common errors generated in the noisy channel. Because the goal
of coding theory is to perform error correction and its
redundancy is high, it has not been used in power-aware bus
encoding.

2.1.1. Example Codes

In the following, we provide a brief explanation of a number of
power-awvare bus-encoding techniques. Because of space
limitations, in each case we only explain how the decoder
works. The encoder, of course, works in a dual manner with the
decoder, but its operation is based on some optimization
algorithms that would require additional explanation. For details
about the encoding algorithms, please refer to the appropriate
references.

Bus-Invert Code [18]: The Bus-Invert encoding technique uses
an extra signal (INV) to indicate the “ polarity” of the data. Let
the Bus-Invert code word be denoted as INV@x where @ is the
concatenation operator, and x denotes either the source word or
its one's complement. The Bus-Invert decoder takes the code
word and produces the corresponding source word as follows.
If the INV signal is set, the result is one's complement of x;
otherwiseitisx.

Bus-Invert encoding is a simple, yet efficient technique for
reducing transitions on a bus. In [11], it is proved that the Bus-
Invert code minimizes the bus switching activity if the data is
random and only one extra bit is available to the encoder. We
refer to this type of added redundancy to a bus as a Bus-Invert
Code in Space.

Partial Bus-Invert Code [17]: The Partial Bus-Invert encoding
technique breaks the source word into two parts u@v. Let the
partial Bus-Invert code word be denoted as INV@x@y where x
is the same as u and y denotes v or its one's complement. The
Bus-Invert decoder takes the code word and produces the
corresponding source word as follows. If the INV signal is set,
the result is x concatenated with the one's complement of v;
otherwiseit is x@y.

Partial Bus-Invert encoding is effective when certain bits of the
source words in the data stream exhibit strong spatio-temporal
correlations. The key idea is to identify such bits, group them
together, and then apply the Bus-Invert coding technique only to
these bits. Given the input data stream, the problem of
determining this bit grouping to minimize the expected
switching activity on the bus using the Partial Bus-Invert
encoding is proven to be NP-complete [17].

Interleaving Partial Bus-Invert Code [21]: It is similar to the
Partial Bus-Invert Code, with the difference that the bit-width
and the position of the x and y bits are dynamically changed.

In [21], Field Programmable Gate Array (FPGA) devices are
used to dynamically change the x and y bit groupings. A
heuristic off-line algorithm was proposed to divide a given input
stream into several sub-sequences while considering the runtime
and power cost overhead of reconfiguring the encoder circuit.
Note that FPGA devices are not necessary to realize this scheme.
By adding extra redundant bits, we can achieve the same effect
of changing the x and y bit partitions at runtime even when using
afixed encoding function.

M-bit BusInvert Code: The M-bit Bus-Invert encoding
technique breaks the source word into M parts u;@us...@uy.
Let the M-bit Buslnvert code word be denoted as
INV;@INV;.. . @INVy,@x; @%@...@%, where x is u, or its
one's complement. The M-bit Bus-Invert decoder takes the code
word and produces the corresponding source word as follows.
If the INV; signal is set, the result is the one’s complement of x;;
otherwiseit is ;.

This is an obvious generaization of the Partial Bus-Invert code
where there is more than one group of correlated bits, and we
use different Bus-Invert signas for each one to adlow
independent control of the encode values for each group of bits.
Note that the M-bit Bus-Invert reduces the number of transitions
on the data bits. However, there is an extra cost associated with
the transitions on the redundant INV bits, which may offset the
reduction in the switching activity of the original set of bits.

Bus-Invert Code in Time: Thisis a coding scheme in which the
decoder decodes the last N code words based on an INVERT
word received as the N+1st code word, that is, the i-th source
word is the Bus-Invert of the i-th code word based on the i-th bit
of the INVERT word.

This technique assumes that the input data is transmitted in
packets and will be decoded as a fixed-length block of source
words in one shot. The redundant Bus-Invert bits for the words
in aword block are added at one time as an additional word that
follows the block. Thus, redundancy is added in time.

Two-dimensional Code [19]: Thisis a hybrid of the Bus-Invert
codesin space and time.

Two-dimensional code uses both the spatia and temporal
redundancy to enlarge the encoding space (i.e., the set E). The
degree of spatiad redundancy should be limited or else the
increased bus width increases the implementation cost and the
switching activity. Similarly, temporal redundancy imposes an
extra bus cycle for every N bus cycles and, therefore, reduces the
system performance. In [19], a signa modulation scheme is
proposed to hide the extra cycle. However, the signa
modulation scheme requires a dramatic change in the
implementation of the physical layer.

Transition Signaling Code: The Transition Sgnaling decoder
produces the source word by doing an exclusive-OR operation
on the current code word and the previous source word, i.e.,
S=¢;/[J/5., where /7 denotes the XOR operation.

This code does not introduce any redundancy to the bus (either
in time or in space). However it requires the encoder to
remember the previous source word. This implies the need for a
memory element in the decoder circuit.

Offset Code [9]: The Offset code is similar to the Transition
Sgnaling code except that the Offset decoder uses the
arithmetic addition (in two's complement) of the previous
source word and the current codeword, i.e., S=¢+S.1.

The Offset code tends to reduce the dynamic range of the values
transmitted on the bus, and hence it can reduce the number of
bits that switch from one bus value to the next. In the extreme
case of sequential data access with a fixed stride value, only the
stride value is transmitted on the bus, i.e., we arrive a the TO
code.

TO Code [2]: The TO encoding technique uses an extra signal
(INC) to indicate the sequentiality of the data. Let the TO code
word be denoted as INC@x where x denotes either the current
source word or is a “don’'t-care’ word. The TO decoder takes
the code word and produces the corresponding source word as
follows. If the INC signal is set, the result is the previous source
word plusa stridevalue S(s=s.1+ 9); otherwiseit isx (§=X).

Notice that for the increment function, the stride vaue is
positive whereas for the decrement function, it is negative. The
stride value may be fixed and known by the encoder/decoder a
priori, or it may be sent on the bus as explained next. When INC
is set to 1, the value on the bus is a don’t-care. Normally this
value is set to the previous word on the bus to minimize the bus
activity. However, it may be replaced with the stride value itself.
In this way, we can have variable stride values, which will
reduce the number of times that the INC signal will be set to
zero. However, changing the stride value on the fly will cause
switching activity on the bus. One can use one-hot coding or
some other technique to minimize the activity when the stride
value is changed.

TO-XOR Code [9]: The TO-XOR decoder produces the source
word asfollows: §= ¢.1 /¢ (5.1+9).

This code is a hybrid of Transition Signaling and TO code. In
contrast to the TO code, which requires a redundant INC line,
the TO-XOR code uses the XOR function to avoid the
introduction of the redundant line to the bus.

Offset-XOR Code [9]: The Offset-XOR decoder produces the
source word as follows: §=(¢;.1£¢)+S.1-

Again, there is no need to add a redundant bit because of the
decorrelating effect of the Transition Signaling. In [9], other
variations of TO, Offset, and Transition Signaling codes are
described.

Dual Mode Code [1]: The Dual Mode encoding technique
classifies the source word into either address or data. For the
data source words, it uses the Bus-Invert code or any of its
variants whereas for address source words it uses the TO code
or any of its variants.

This encoding technique is an example of agorithms that
examine the nature of the transmitted words on the bus (in this
case, whether the word is address or data).

Limited-weight Code [18]: A k-limited-weight code is a code
having at most k one's per word. This can be achieved by
adding appropriate redundant lines.

These codes are useful in conjunction with transition signaling.
Thus, a k-limited-weight code would guarantee a most k
transitions per bus cycle.

Working-Zone Code [14]: The Working-Zone encoding
technique generates a code word as
PRESENT@IDEN@OFFSET where PRESENT bit denotes a hit
or miss of the working-zone, IDEN denotes the identifier for the
current working-zone, and OFFSET denotes the one-hot coded
offset value within that zone. The Working-zone decoder takes
the code word and produces the corresponding source word as
follows. If PRESENT is set to one, then the decoder produces
zone(IDEN)+ offset where zone(IDEN) is obtained from a look-
up table relating the starting addresses of the working-zones to
their identifiers, and offset is the decoded value of the OFFSET.
Otherwise, the decoder outputs the current code word.

This encoding scheme attempts to exploit the locality of
reference that is usually present in the software programs. The
proposed encoding technique partitions the address space into
working-zones whose starting addresses are stored in a number
of registers. A bhit is used to denote a hit or a miss of the
working-zone. When there is a miss, the full address is
transmitted on the bus; otherwise, the bus is used to transmit the
offset which is one-hot coded. Additional lines are used to
transmit the identifiers of the working-zone. A miss of the
working-zone means that either the working-zone starting
address is not stored in the registers or that the offset istoo large
to be one-hot coded. For the case in which the number of zones
is larger than the number of registers, a replacement policy is
implemented. In [14], it is suggested to use Transition Signaling
on the offset to further reduce the number of transitions on that
portion of the bus.

Codebook-based Code [10]: The Codebook-based encoding
technique uses a code word with two parts ID@x where ID
denotes the index of a pattern stored in a codebook, and x
denotes either the source word or its XOR with the pattern in
the codebook. The decoder produces the source word as
follows: s=c;[jpattern(ID) where pattern(ID) refers to the
codebook pattern corresponding to ID.

The Codebook-based code can be thought of as a generalized
version of the Bus-Invert code. The codebook contains the set of
patterns and their corresponding ID’s. The patterns are chosen
so that the average Hamming distance between a source word
and the “best” pattern in the codebook is minimized. The
encoder compares each source word with all of the patterns in
the codebook to find the pattern that has the minimum Hamming
distance from the source word and then produces the code word
as the concatenation of the ID bits and the XOR function of that
pattern and the source word. Both the encoder and the decoder
know the codebook, which can be initidlized offline and/or
updated online.

2.1.2. A Unifying Framewor k
We will define a code based on algebraic principles.

Group: A group (S,0) is a set S together with a binary
operation [defined on S for which the following properties
hold:

(1) Closure: For all a, bOS, allbOs.

(2) Identity: Thereisan element e[S such that
ella=alle=aforal ads

() Associativity: For al a, b, cS, we have (a[b) Lc=a
L (b Lo).

(4) Inversion: For each allS, there exists a unique element
bOSsuch that allb=b[la=e.

Code: A code f is a mapping from a set of symbols S (alphabet)
to a set of binary numbers C. If every element in C has the same
length, then f is a block code. Otherwise, f is a variable-length
code (e.g., Huffman code).

Given the source word set S and the code word set C, one can
define any mapping from S to C as a code. The purpose of
encoding is to detect or correct error generated from a noisy
communication channél or, in our case, to reduce transition
count. The effectiveness of encoding depends on the choice of C
and f.

Nearest Neighbor Decoding Algorithm: We consider a class of
codes where the decoding function is based on a Nearest
Neighbor Decoding (NND) agorithm. For this class of codes,
the code words (including correctly and incorrectly received
code words) are partitioned into groups where each group
represents one source word (i.e., the correct intended word). A
leader represents each group. After the decoder receives a code
word, it calculates the distance between this word and each of
the leaders by an XOR operation. The leader with the minimum
distance is selected, and the represented source word is
recognized.

Let L O C denote aleader set containing some special elements
I. The decoding process may be expressed by the following

equation: c=5 where ¢,/O0C , sOS and [is a binary

operation over E. Note that if there exists more than one
element in the leader set, the decoder decides which leader
element is to be used during the decoding based on the NND
algorithm. However, in many cases, the decoder is told what
leader should be used by explicitly sending the information
about the leader with the data.

Example 1: Consider a 4-bit bus with Bus-Invert encoding. In
this case, C=2°, S=2*, L={000001111% ., LI is the bitwise
Exclusve-OR (XOR [O) operation, ¢ =00000, and
§ =c [11111- During the decoding process, we use 1=11111
when INV=1, otherwise we use [=00000.

Using this terminology and notation, the formal statement of the
Bus-Invert decoding is. g =c¢ 0Ol,,, where | =00..0,

l,=11..1.

The binary operation [J is used to encode and decode the code
words. There are two types of operationsin use:

a) XOR (): Examples include Bus-Invert and Transition
Signaling codes.

b) Binary Addition (+): Examples include Working-zone
and TO codes.

Note that XOR is equivalent to the Hamming distance between
the two operands and that binary addition requires an inverse
operation, i.e., the binary subtraction. The XOR and binary
addition/subtraction operations give rise to a group of codes that
are easy to implement in practice.

Two parameters are used to characterize the leader set: size and
scope.

Size

a) “_‘ =1: For example, the Transition Signaling code
implicitly uses the previous code word as the leader without
introducing any redundant bits to the bus.

b) “_‘ =2: It is necessary to add one extra bit to the bus. For

example, the Bus-Invert code uses leader set {0,0*1}. Notice
that the two leaders are complementary, which is, in general, not
required (e.g., Partial Bus-Invert code).

) “_‘23: For example, the M-bit Bus-Invert and Working-

zone codes use three or more leaders.

Scope

We define the scope of aleader as a window of size W where al
of the source words in that window are decoded using the
leader. Consider the following cases:

a W=00: Examples are the Bus-Invert and M-bit Bus-Invert
codes. Note that the leader set L isfixed.

b) W = t: Examples are the Working-zone and Dua Mode
codes. Note that L may be fixed or adaptively changed ast itself
may be changing. For example, with Codebook and Adaptive
coding, L ischanged on thefly.

¢) W = 1. Examples are the Transition Signaling and TO
codes. Note that L={previous-code-word} for Transition
Signaling code, and L={ previous-source-word} for TO code.

Comparing the sizes of E and A, we discuss the following
three cases:

a) \E\ = W The code word has no redundant bits, that isif N

bits are required to uniquely describe all elements of A, then all
elements of E use the same number of bits. If E=A, then the
coding is a permutation such as Gray or Pyramid code.

b) ‘E‘>W: The code words have redundant bits. Most

encoding schemes are redundant. Usually, the extra bits are used
to indicate the leader. For example, the INV bit of the Bus-Invert
code s used to select between the two leaders 0 and 0.

C) \E\ <W: Multiple source words are mapped to the same

code word. In this case, the different source words are assigned
to different leaders for the purpose of avoiding ambiguity in the
decoding. Examples include the Working-zone and Codebook-
based codes.

2.2. Permutation Codes

If redundancy is not feasible on the memory bus, the encoding
function becomes a permutation, i.e., a one-to-one and on-to
mapping from a set S to itself. Without any knowledge of the
access pattern, the only locality that can be made use of is
sequentiality. The address flow of instruction segments or large
arrays is a good example. For a simple bus and sequential
access, Gray code is optimal because the transition between
consequent datais exactly one, the minimum.

Gray Code [20]: Only one bit difference between two
consecutive words. Let the source word S:<bn71 bnfz""b1b0>

and the code word C:<gnflgn*2“"glgo>' The encoding

function from Binary to Gray code is g =h , g =h,, 0Oh-
The decoding function from Gray to Binary code is b =g, ,

b|:b|+1Dgi'

Dynamic RAM (DRAM) is omnipresent in computer systems
because of its high density and low cost. The long access time of
DRAM, which is its major shortcoming compared to the Static
RAM (SRAM), has been significantly improved during the past
few years by developing DRAM technologies such as Page
Mode, EDO, Synchronous DRAM, Rambus DRAM, and DDR
DRAM [8].

Because of the physical layout and the reduction in pin number,
a DRAM address bus is aways multiplexed. Typicaly, an
address is divided into Row address and Column address. These
two addresses are transmitted on the bus one after the other and
distinguished by two control signals Row Address Strobe (RAS)
and Column Address Strobe (CAS). The newer Rambus DRAM
channel uses a packetized bus, which can be considered m-way
multiplexed, and the address fields are interpreted according to
the packet format [15].

Due to address multiplexing, the switching activity on the busis
generated in a completely different way. Hence, any one of the

above encoding schemes either needs modification to work or
does not work at all. We will present how this problem can be
formulated and solved.

Pyramid Code [6]: Let us partition a source word x into three
fieldsp, g, and sasfollows:

~ i a g —
N-1 N 1

The Pyramid code for X is given by:

s y :O
(p*0) . p=q xS:{Xs

s X,s=1
M(p,q,s)={(q+s,p)’, p>q

(RO

It has been shown in [6] that the Pyramid code produces the
minimum transition count for sequentia access on a multiplexed
bus. The code remains quite effective in reducing the power
dissipation of the multiplexed bus even when the sequentiality
of the addressesis interrupted every four addresses.

Data Ordering-based Code [12][13]: Thisisa coding schemein
which the encoder takes a block of N source words and
produces a block of N code words where the codewords ¢; are a
permutation 77 of source word §. Both the encoder and the
decoder know the permutation function 7z.

For cache write-back or built-in self-test systems, changing the
data flow does not affect the original semantics. Hence, a data-
ordering problem can be stated to minimize the bus transitions.
Given a set of data, the encoder looks for the optimal order that
generates the minimum switching activities on the bus. Since the
data-ordering problem is NP-complete, a bounded-error
approximation agorithm was proposed in [12] to solve the
offline version of this problem. To further reduce transitions, a
Bus-Invert signal can be added to the Data Ordering-based code
in[13].

2.3. Probabilistic Codes

Entropy-reducing Code [11]: This code refers to a group of
codes that attempt to reduce the entropy rate of the source given
a fixed level of redundancy in the bus. The key idea is to
compute the error between the current source word and its
predicted value followed by a coding algorithm that minimizes
the trangition activity. The result is then sent on the bus using
the Transition Sgnaling technique and is decoded accordingly.

The rationae for this class of codes is that the power savings
obtainable by encoding depend on the entropy rate of the
incoming source data and on the amount of redundancy in the
code. The higher the entropy rate, the lower the energy savings
that can be achieved by encoding the source words for a
specified level of redundant bits on the bus.

Beach Code [1]: The Beach encoder analyzes the word-level
correlations between source words to assign codes with small

Hamming distance to data words that are likely to be sent on
the busin two consecutive clock cycles.

The Beach code is a subset of the entropy-reducing codes. The
Beach encoder and decoder do not, however, use decorrelator
and correlator blocks.

Probability-based Codes [4]: These codes are generated based
on a general codec architecture that uses encoder/decoder
functions based on the current and previous values of the source
and code words and decorrelator/correlator functions that
implement a Transition Signaling scheme on the bus.

These codes start with the assumption that a detailed statistical
characterization of the data source is available, that is, the
stationary probability distribution of al pairs of consecutive
vaues in the input stream is known. The Exact Encoding
function uses an exponential table (in the bit width of the bus)
that stores al possible pairs of source words and their joint
occurrence probability to assign a minimum of transition activity
codes to each pair of source words (Transition Signaling).
Clustered Encoding uses a spatial partitioning of the bits into
groups (or clusters) of bits, which are then individualy coded
for minimum transition activity while considering the complete
set of transition probability satistics for each cluster.
Discretized Encoding accounts for tempora correlations
between the M most probable source word pairs and, hence,
completely accounts for the intrasword spatia correlations while
ignoring some of the inter-word tempora correlations. Both
encoding techniques assume a priori knowledge of the input
source. Adaptive Encoding does not require a priori knowledge
of the input source statistics. Instead, it operates on the basis of
approximate information collected by observation of the input
word stream over awidow of fixed size S,

3. Conclusions

This paper reviewed a number of bus-encoding techniques that
target low power dissipation. Three general classes of codes, i.e.,
algebraic, permutation-based, and probability-based, were
anayzed. A new mathematica framework for unifying the
power-aware algebraic coding techniques based on the notion of
leader setswas also presented.

4. References

[1] L. Benini, G. DeMichdi, E. Macii, M. Poncino, and S.
Quer, “System-level power optimization of specia purpose
applications: The beach solution,” Proc. of Int'l Symp. on
Low Power Electronics and Design, Monterey, CA, pp. 24-
29, Aug. 1997,

[2] L. Benini, G. DeMichdi, E. Macii, D. Sciuto, and C.
Silvano, “Asymptotic zero-transition activity encoding for
address busses in low-power microprocessor-based
systems,” Proc. of The Seventh Great Lakes Symp. on
VLS, pp. 77-82, 1997.

[3] L. Benini, G. DeMicheli, E. Macii, D. Sciuto, and C.
Silvano, “Address bus encoding techniques for system-
level power optimization,” Proc. of Design, Automation
and Test in Europe, Paris, France, pp. 861-866, Feb. 1998.

[4 L. Benini, A. Macii, E. Macii, M. Poncino and R. Scarg,
“Synthesis of low-overhead interface for power-efficient

(5]

(6]

(7

(8]

(9

[19]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

communication over wide busses” Proc. of Design
Automation Conf., pp. 128-133, 1999.

N. Chang, K. Kim, and J. Cho, “Bus encoding for low-
power high-performance memory systems,” Proc. of
Design Automation Conf., pp. 800—805, 2000.

W. C. Cheng and M. Pedram, “Power-optimal encoding for
DRAM address bus,” Proc. of Int'l Symp. on Low Power
Electronics and Design, pp. 250-252, 2000.

W. C. Cheng and M. Pedram, “Low power techniques for
address encoding and memory dlocation,” Proc. of Asia
and South Pacific Design Automation Conference, Jan.
2001.

V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “A
performance comparison of contemporary DRAM
architectures,” Proc. of Int'l Symp. on Computer
Architecture, pp. 222-233, 1999.

W. Fornaciari, M. Polentarutti, D. Sciuto, and C. Silvano,
“Power optimization of system-level address buses based
on software profiling,” Proc. of the Eighth Int’| Workshop
on Hardware/Software Codesign, pp. 29-33, 2000.

S. Komatsu, M. lkeda and K. Asada, “Low power chip
interface based on bus data encoding with adaptive code-
book method,” Proc. of the Ninth Great Lakes Symp. on
VLS, pp. 368-371, 1999.

S. Ramprasad, N. R. Shanbhag, and I. N. Hajj, “A coding
framework for low-power address and data busses,” |EEE
Trans. on VLS, Vol. 7, No. 2, pp. 212-221, June 1999.

R. Murga, M. Fujitaq and A. Oliveria, “Using
complementation and resequencing to minimize
transitions,” Proc. of Design Automation Conf., pp. 694-
697, 1998.

R. Murgai and M. Fujita, “On reducing transition through
data modifications,” Proc. of Design, Automation and Test
in Europe Conf. and Exhibition, pp. 82-88, 1999.

E. Musoll, T. Lang, and J. Cortadella, “Exploiting the
locality of memory references to reduce the address bus
energy,” Proc. of Int'l Symp. on Low Power Electronics
and Design, Monterey, CA, pp. 202-207, Aug. 1997.
Rambus Inc, “Rambus Signaling Technologies: RSL,
QRSL and SerDes Technology Overview,” June 2000.

N. R. Shanbhag, “A mathematical basis for power-
reduction in digital VLS| systems,” IEEE Trans. on Circuit
and Systems Il: Analog and Digital Sgnal Processing,
Vol. 44, No. 11, pp. 935-951, Nov. 1997.

Y. Shin, S. Chae and K. Choi, “Partiad bus-invert coding
for power optimization of system level bus,” Proc. of Int’l
Symp. on Low Power Electronics and Design, pp. 127-
129, 1998.

M. R. Stan and W. P. Burleson, “Coding a terminated bus
for low power,” Proc. of Fifth Great Lakes Symp. on VLS,
pp. 70-73, 1995.

M. R. Stan and W. P. Burleson, “Two-dimensional codes
for low power,” Proc. of Int'l Symp. on Low Power
Electronics and Design, pp. 335-340, 1996.

C.L.Su, C.Y. Tsui, and A. M. Despain, “Saving power in
the control path of embedded processors,” IEEE Design
and Test of Computers, Vol. 11, No. 4, pp. 24-30, 1994.

S. Yoo and K. Chai, “Interleaving partial bus-invert coding
for low power reconfiguration of FPGAS,” Proc. of the
Sxth Int’l Conf. on VLS and CAD, pp. 549-552, 1999.

