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BackgroundBackground

! DVFS is a method through which variable amount of 
energy is allocated to perform a task 

! Power consumption of a digital CMOS circuit is:

! Energy required to run a task during T is:

! Lowering V (while simultaneously and proportionately 
cutting f) causes a quadratic reduction in E

α= ⋅ ⋅ ⋅2
effP C V f

α : switching factor
Ceff : effective capacitance
V    : operating voltage
f      : operating frequency

(assuming f ∝ V,  T ∝ f –1)= ⋅ ∝ 2E P T V

Overview of Prior Work

! DVFS techniques may be classified based on three 
factors:
" Constraint type : real-time (critical) vs. non real-time (non 

critical)
" Scaling granularity : inter-task (coarse) vs. intra-task (fine)
" Policy determination : static (offline) vs. dynamic (online)

! The target CPU frequency is calculated as follows:
" Given a task with workload, W, and latency constraint, D
" Suppose:

# W is specified as the number of CPU clock cycles needed to 
complete the task

# An inverse-linear relationship between the execution time and the 
CPU frequency exists, i.e., Ttask= W/fcpu

" ftarget is hence calculated as W/D (Note that Ttask = D)
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Summary of the Proposed DVFS Method

! Our proposed DVFS method for MPEG decoding is

" Dynamic, Intra-task and real-time

! The proposed method results in significantly higher 
energy saving compared to the previous 
approaches. This is due to:

" Accurate estimation of the task execution time variation as 
the CPU frequency is varied 

" This is in turn achieved by decomposing the workload into
on-chip and off-chip components

" Dynamic profiling data provided by embedded 
performance monitor unit on the CPU is used to guide the 
estimation
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Motivation for Workload DecompositionMotivation for Workload Decomposition

! CPU-bound vs. memory-bound applications

" Shows different execution time variation according to the CPU 
frequency, ranging from 733MHz to 333MHz

“djpeg” & “crc” : CPU-bound      “qsort” & “fgrep” : memory-bound

= task
task

cpu

W
T

f

For CPU-bound 
applications, we have:

= task
cpu

W
f

D

“qsort”

“crc”

For memory-bound 
applications, these relations 
do not seem to hold
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Workload Decomposition

! A program execution sequence consists of on-chip and 
off-chip workloads
" On-chip workload, Won : work performed inside the CPU 

(e.g., register-register instruction, ALU operation)
" Off-chip workload, Woff : work performed outside the CPU 

(e.g., cache miss and subsequent access to main  memory)

! An external memory access is asynchronous to the CPU
" The change in the task execution time due to CPU frequency 

scaling is strongly dependent on the workload composition in a 
task

= +task on offW W W

∂ = −
∂ 2

task on

cpu cpu

T W
f f

= +on off
task

cpu mem

W W
T

f f

Fixed 

(100MHz for SDRAM access)

Variable

(333MHz to 733MHz)
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fcpu = fmax / 2
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Tb=10

Ta=10

Tc=10

T’b=15 (50%)

T’a=18 (80%)

T’c=12 (20%)

On-chip work
Off-chip work

Energy Saving as a Function of Application TypeEnergy Saving as a Function of Application Type

! CPU energy can be saved with lower performance loss 
for memory-bound application programs

fcpu = fmax

a’.

b’.

c’.

CPU-bound

memory-bound

Deadline

Lower fcpu can be set for “b” & “c”, 
resulting in more energy saving
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Performance Monitoring Unit (PMU)Performance Monitoring Unit (PMU)
! PMU on the XScale can provide values of some 20 

dynamic events during execution of a program
" cache hit/miss
" TLB hit/miss
" no. of external memory access
" no. of instructions being executed
" branch mis-prediction
" data stall

! Any two events can be monitored and reported at 
the same time

! For DVFS policy setting in addition to 
" no. of clock counts (CCNT)

we make use of the following event statistics:
" no. of instructions being executed (INSTR)
" no. of external memory access (MEM)

DVFS for MPEG Decoding
! “Low-energy consumption” and “high quality of service 

(QoS)” are key requirements for an MPEG decoder 
used in battery-powered electronic systems

! Decoding time per frame varies greatly depending on 
the frame type

" Three frame types exist:
# I-frame, which is an independent frame
# P-frame, which has only one reference frame
# B-frame, which has two reference frames

" The workload generated by each frame type must be 
accurately estimated for DVFS to be effective

! Frame rate may be used to set the timing constraint
" To decode a frame @10 fps, we must set the timing 

constraint to 100ms.

I B B P B B P
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MPEG Decoding

! Memory-bound operations are 
dominant during the “dithering”
and “display frame” steps (TCON)

! During the other steps, both on-
chip and off-chip works are 
performed (TVAR =TON+TOFF)

! Divide the decoding time into:
" TVAR : CPU-frequency dependent 

component
" TCON : CPU-frequency independent 

component

MBs/frame

blocks/MB

Read streams

Read blocks

Reconstruct MB

IDCT

Merge MB

Make frame

Dither frame

Display frame

TVAR

TCON

Variation in the MPEG Decoding Time

! Data for a test video clip, “Siberian Tiger”

! TCON and TVAR for the three frame types for different 
CPU frequencies

! Note that TCON is nearly constant for all frame types
" It is easily obtained after decoding a single frame
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Extracting TOFF from TVAR

! TOFF is independent of the CPU clock frequency

! Contour plots of TVAR versus number of executed 
instructions, INSTR, for different CPU frequencies

! Y-intercept of this 2-D plot gives TOFF
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f
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f

Regression equation

TOFF to TVAR Ratio
! This table reports ratio of TOFF to TVAR as a percentage 

for different video clips

! There is frequent block data transfer for B and P type 
frames, so they have higher TOFF

! TOFF to TVAR ratio varies greatly based on the decoded 
video clip

-43.95 %10.12 %304 X 224(4) Wg_wt

50.76 %38.85 %20.64 %480 X 208(5) Badboy2

47.19 %58.01 %15.01 %352 X 288(3) Deploy

25.74 %11.87 %7.96 %320 X 240(2) Siberian Tiger

40.58 %11.60 %3.49 %352 X 240(1) Terminator 2

BPI

59.34 %36.80 %26.11 %160 X 120(6) Final3

Frame typeFrame 
sizeTest video
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Proposed DVFS Policy
! Decoding time of a frame

" TVAR+TCON = (TON+TOFF) + TCON

! To extract TOFF from TVAR for each frame
" We maintain a regression equation for each frame-type and 

use a moving-average or weighted-average of INSTR 
statistics to predict INSTR for the next time slot

! We set the CPU frequency during TVAR by equation 
given below. Note that we set the lowest CPU 
frequency, fmin, during TCON

TCONTVAR

t+1th frame

+ ⋅=
− −

1
EXP ON

t+1 t AVG
cpu CON OFF

EXP

INSTR CPI
f

D T T

=t+1
cpu minf f

t+2th frame

Inter-frame Error Compensation

! The QoS constraint e.g., the frame rate is also 
important in the MPEG decoding

! Workload prediction is not always perfect

! Error diffusion
" If a (positive or negative) slack exists in the current frame, 

we will diffuse it into the next frame
" This scheme can result in local QoS variation, but meets a 

global QoS target

! Target CPU frequency during TVAR with error 
compensation:

+ ⋅=
− − +

1
EXP ON

t+1 t AVG
cpu CON OFF SLACK

EXP t

INSTR CPI
f

D T T T
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Implementation (I)

! Block diagram of variable voltage generator

! A public software, “mpeg_play”, from UC-Berkeley 
was adopted and modified

12-bit D/A 
converter

DC-DC
converter

XScale
processor

CPLD

Main board

0.99400

1.05466

1.12533

1.19600

1.26666

1.49733

0.91333

Voltage    
[V]

Frequency 
[MHz]

Implementation (II)

! Apollo Testbed II – Main board (USC, SNU)

SDRAM Module 
(128MB)

Xscale 80200 processor
Memory controller

(80312 IO Companion chip)
Variable voltage generator

PCI interface for peripheral board
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Implementation (III)
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! Power measurement with DAQ (Data Acquisition 
board)

Experimental Results (I)

! Decoding time and power consumption at different 
CPU frequencies and voltage levels
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avg. power consumption during TCON : 510mW to 186mW (64% reduction)
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Experimental Results (II)

! CPU power consumption with the proposed DVFS
" “Terminator 2” @ 14fps
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Experimental Results (III)

! CPU energy saving comparison
" OL-DVFS    : Off-chip Latency-Driven DVFS
" CON-DVFS : Conventional DVFS (no workload partitioning)

64.33

78.08
72.38

79.97

40.45

71.60

79.68

22.17

0

20

40

60

80

100

12 13 14 15

Frame rate [fps]

C
P

U
 E

n
er

g
y 

sa
vi

n
g

 [
%

] (1) Terminator 2CON-DVFSOL-DVFS



12

Experimental Results (IV)

! OL-DVFS vs. CON-DVFS
" Numbers in parenthesis of the first column are for (6)
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Experimental Results (V)

! Frame rate variation
" With the proposed “inter-frame compensation”, the 

target frame rate is achieved with lower computational 
workload
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Conclusion

! An off-chip latency driven DVFS technique for an 
MPEG decoding was proposed and implemented in 
an XScale-based platform 
" On-chip and off-chip workloads are separated at run time 

using dynamic profiling data from an embedded hardware 
unit

" To guarantee a global QoS for MPEG decoding, a novel 
inter-frame compensation technique based on inter-frame 
error diffusion was proposed

! Based on actual current measurements in the 
testbed
" Significant CPU energy saving ranging from 50% to 80% 

was achieved


