
1

Off-chip Latency-Driven Dynamic
Voltage and Frequency Scaling for

an MPEG Decoding

Kihwan Choi
Ramakrishna Soma
Massoud Pedram

Dept. of Electrical Engineering
University of Southern California

Outline

! Dynamic Voltage and Frequency Scaling (DVFS)

! Workload Decomposition

! Proposed Off-chip Latency-Driven DVFS Policy

! Experimental Results

! Conclusion

2

BackgroundBackground

! DVFS is a method through which variable amount of
energy is allocated to perform a task

! Power consumption of a digital CMOS circuit is:

! Energy required to run a task during T is:

! Lowering V (while simultaneously and proportionately
cutting f) causes a quadratic reduction in E

α= ⋅ ⋅ ⋅2
effP C V f

α : switching factor
Ceff : effective capacitance
V : operating voltage
f : operating frequency

(assuming f ∝ V, T ∝ f –1)= ⋅ ∝ 2E P T V

Overview of Prior Work

! DVFS techniques may be classified based on three
factors:
" Constraint type : real-time (critical) vs. non real-time (non

critical)
" Scaling granularity : inter-task (coarse) vs. intra-task (fine)
" Policy determination : static (offline) vs. dynamic (online)

! The target CPU frequency is calculated as follows:
" Given a task with workload, W, and latency constraint, D
" Suppose:

W is specified as the number of CPU clock cycles needed to
complete the task

An inverse-linear relationship between the execution time and the
CPU frequency exists, i.e., Ttask= W/fcpu

" ftarget is hence calculated as W/D (Note that Ttask = D)

3

Summary of the Proposed DVFS Method

! Our proposed DVFS method for MPEG decoding is

" Dynamic, Intra-task and real-time

! The proposed method results in significantly higher
energy saving compared to the previous
approaches. This is due to:

" Accurate estimation of the task execution time variation as
the CPU frequency is varied

" This is in turn achieved by decomposing the workload into
on-chip and off-chip components

" Dynamic profiling data provided by embedded
performance monitor unit on the CPU is used to guide the
estimation

0

20

40

60

80

100

120

733 666 600 533 466 400 333

Frequency [MHz]

P
er

fo
rm

an
ce

 L
o

ss
 [

%
]

fgrep
qsort
gzip
djpeg
crc

Motivation for Workload DecompositionMotivation for Workload Decomposition

! CPU-bound vs. memory-bound applications

" Shows different execution time variation according to the CPU
frequency, ranging from 733MHz to 333MHz

“djpeg” & “crc” : CPU-bound “qsort” & “fgrep” : memory-bound

= task
task

cpu

W
T

f

For CPU-bound
applications, we have:

= task
cpu

W
f

D

“qsort”

“crc”

For memory-bound
applications, these relations
do not seem to hold

4

Workload Decomposition

! A program execution sequence consists of on-chip and
off-chip workloads
" On-chip workload, Won : work performed inside the CPU

(e.g., register-register instruction, ALU operation)
" Off-chip workload, Woff : work performed outside the CPU

(e.g., cache miss and subsequent access to main memory)

! An external memory access is asynchronous to the CPU
" The change in the task execution time due to CPU frequency

scaling is strongly dependent on the workload composition in a
task

= +task on offW W W

∂ = −
∂ 2

task on

cpu cpu

T W
f f

= +on off
task

cpu mem

W W
T

f f

Fixed

(100MHz for SDRAM access)

Variable

(333MHz to 733MHz)

5 5

2 8

8 2

T

fcpu = fmax / 2

10 5

4 8

16 2

T

a.

b.

c.

Tb=10

Ta=10

Tc=10

T’b=15 (50%)

T’a=18 (80%)

T’c=12 (20%)

On-chip work
Off-chip work

Energy Saving as a Function of Application TypeEnergy Saving as a Function of Application Type

! CPU energy can be saved with lower performance loss
for memory-bound application programs

fcpu = fmax

a’.

b’.

c’.

CPU-bound

memory-bound

Deadline

Lower fcpu can be set for “b” & “c”,
resulting in more energy saving

5

Performance Monitoring Unit (PMU)Performance Monitoring Unit (PMU)
! PMU on the XScale can provide values of some 20

dynamic events during execution of a program
" cache hit/miss
" TLB hit/miss
" no. of external memory access
" no. of instructions being executed
" branch mis-prediction
" data stall

! Any two events can be monitored and reported at
the same time

! For DVFS policy setting in addition to
" no. of clock counts (CCNT)

we make use of the following event statistics:
" no. of instructions being executed (INSTR)
" no. of external memory access (MEM)

DVFS for MPEG Decoding
! “Low-energy consumption” and “high quality of service

(QoS)” are key requirements for an MPEG decoder
used in battery-powered electronic systems

! Decoding time per frame varies greatly depending on
the frame type

" Three frame types exist:
I-frame, which is an independent frame
P-frame, which has only one reference frame
B-frame, which has two reference frames

" The workload generated by each frame type must be
accurately estimated for DVFS to be effective

! Frame rate may be used to set the timing constraint
" To decode a frame @10 fps, we must set the timing

constraint to 100ms.

I B B P B B P

6

MPEG Decoding

! Memory-bound operations are
dominant during the “dithering”
and “display frame” steps (TCON)

! During the other steps, both on-
chip and off-chip works are
performed (TVAR =TON+TOFF)

! Divide the decoding time into:
" TVAR : CPU-frequency dependent

component
" TCON : CPU-frequency independent

component

MBs/frame

blocks/MB

Read streams

Read blocks

Reconstruct MB

IDCT

Merge MB

Make frame

Dither frame

Display frame

TVAR

TCON

Variation in the MPEG Decoding Time

! Data for a test video clip, “Siberian Tiger”

! TCON and TVAR for the three frame types for different
CPU frequencies

! Note that TCON is nearly constant for all frame types
" It is easily obtained after decoding a single frame

0

20

40

60

80

100

120

140

333 400 466 533 600 666 733

CPU frequency [MHz]

T
im

e
[m

se
c]

(2) Siberian Tiger

TVAR : I

TCON : I,P,B
TVAR : P

TVAR : B

0

20

40

60

80

100

120

140

333 400 466 533 600 666 733

CPU frequency [MHz]

T
im

e
[m

se
c]

(2) Siberian Tiger

TVAR : I

TCON : I,P,B
TVAR : P

TVAR : B

7

Extracting TOFF from TVAR

! TOFF is independent of the CPU clock frequency

! Contour plots of TVAR versus number of executed
instructions, INSTR, for different CPU frequencies

! Y-intercept of this 2-D plot gives TOFF

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10

Executed Instructions [106]

T
V

A
R
 [

m
se

c]

(2) Siberian Tiger (B-type)

333MHz

733MHz

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10

Executed Instructions [106]

T
V

A
R
 [

m
se

c]

(2) Siberian Tiger (B-type)

333MHz

733MHz

= +

 
= +  
 
 ⋅= +  
 

VAR ON OFF

ON
OFF

cpu

ON
OFFAVG

cpu

T T T

W
T

f

CPI INSTR
T

f

Regression equation

TOFF to TVAR Ratio
! This table reports ratio of TOFF to TVAR as a percentage

for different video clips

! There is frequent block data transfer for B and P type
frames, so they have higher TOFF

! TOFF to TVAR ratio varies greatly based on the decoded
video clip

-43.95 %10.12 %304 X 224(4) Wg_wt

50.76 %38.85 %20.64 %480 X 208(5) Badboy2

47.19 %58.01 %15.01 %352 X 288(3) Deploy

25.74 %11.87 %7.96 %320 X 240(2) Siberian Tiger

40.58 %11.60 %3.49 %352 X 240(1) Terminator 2

BPI

59.34 %36.80 %26.11 %160 X 120(6) Final3

Frame typeFrame
sizeTest video

8

Proposed DVFS Policy
! Decoding time of a frame

" TVAR+TCON = (TON+TOFF) + TCON

! To extract TOFF from TVAR for each frame
" We maintain a regression equation for each frame-type and

use a moving-average or weighted-average of INSTR
statistics to predict INSTR for the next time slot

! We set the CPU frequency during TVAR by equation
given below. Note that we set the lowest CPU
frequency, fmin, during TCON

TCONTVAR

t+1th frame

+ ⋅=
− −

1
EXP ON

t+1 t AVG
cpu CON OFF

EXP

INSTR CPI
f

D T T

=t+1
cpu minf f

t+2th frame

Inter-frame Error Compensation

! The QoS constraint e.g., the frame rate is also
important in the MPEG decoding

! Workload prediction is not always perfect

! Error diffusion
" If a (positive or negative) slack exists in the current frame,

we will diffuse it into the next frame
" This scheme can result in local QoS variation, but meets a

global QoS target

! Target CPU frequency during TVAR with error
compensation:

+ ⋅=
− − +

1
EXP ON

t+1 t AVG
cpu CON OFF SLACK

EXP t

INSTR CPI
f

D T T T

9

Implementation (I)

! Block diagram of variable voltage generator

! A public software, “mpeg_play”, from UC-Berkeley
was adopted and modified

12-bit D/A
converter

DC-DC
converter

XScale
processor

CPLD

Main board

0.99400

1.05466

1.12533

1.19600

1.26666

1.49733

0.91333

Voltage
[V]

Frequency
[MHz]

Implementation (II)

! Apollo Testbed II – Main board (USC, SNU)

SDRAM Module
(128MB)

Xscale 80200 processor
Memory controller

(80312 IO Companion chip)
Variable voltage generator

PCI interface for peripheral board

10

Implementation (III)

DUT

V1

∆V = VDUT – V1
I = ∆V / R
P = I • V1

Sample
40kHz

I

R

∆V

VDUT

Operating
Voltage
of DUT

DUT

V1

∆V = VDUT – V1
I = ∆V / R
P = I • V1

Sample
40kHz

I

R

∆V

VDUT

Operating
Voltage
of DUT

DUT

ResistorPower split

DUT

ResistorPower split

! Power measurement with DAQ (Data Acquisition
board)

Experimental Results (I)

! Decoding time and power consumption at different
CPU frequencies and voltage levels

0

500

1000

1500

2000

2500

3000

0 40 80 120 160 200
Time [msec]

C
P

U
 P

o
w

er
co

n
su

m
p

ti
o

n
 [

m
W

]

I-frame

TVAR

(2) Siberian Tiger

TCON

TVAR @733MHz
TCON @666MHz

TCONTVAR

B-frame

Dithering

Display
0

500

1000

1500

2000

2500

3000

0 40 80 120 160 200
Time [msec]

C
P

U
 P

o
w

er
co

n
su

m
p

ti
o

n
 [

m
W

] (2) Siberian Tiger TVAR @733MHz
TCON @333MHz

I-frame

TVAR TCON TCONTVAR

B-frame

Dithering

Display

TVAR @733MHz, TCON @666MHz TVAR @733MHz, TCON @333MHz

avg. power consumption during TCON : 510mW to 186mW (64% reduction)

11

Experimental Results (II)

! CPU power consumption with the proposed DVFS
" “Terminator 2” @ 14fps

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12
Time [sec]

C
P

U
 P

o
w

er
co

n
su

m
p

ti
o

n
 [

m
W

]

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12
Time [sec]

C
P

U
 P

o
w

er
co

n
su

m
p

ti
o

n
 [

m
W

]

without-DVFS with-DVFS

start start

Avg. power = 883mW Avg. power = 244mW
(~74% reduction)

Experimental Results (III)

! CPU energy saving comparison
" OL-DVFS : Off-chip Latency-Driven DVFS
" CON-DVFS : Conventional DVFS (no workload partitioning)

64.33

78.08
72.38

79.97

40.45

71.60

79.68

22.17

0

20

40

60

80

100

12 13 14 15

Frame rate [fps]

C
P

U
 E

n
er

g
y

sa
vi

n
g

 [
%

] (1) Terminator 2CON-DVFSOL-DVFS

12

Experimental Results (IV)

! OL-DVFS vs. CON-DVFS
" Numbers in parenthesis of the first column are for (6)

-

61.64

75.16

79.48

79.45

-

-

OL

-

46.99

71.34

78.85

79.33

-

-

CON

(5)

Badboy2

57.84

66.99

73.18

77.74

-

-

-

OL

28.23

41.33

60.59

75.27

-

-

-

CON

(4)

Wg_wt

-

-

81.99

81.96

82.63

82.62

-

OLCONOLCONOLCONOLCON

-61.414.24----16

35.53

57.94

-

-

-

-

(3)

Deploy

64.44

75.69

-

-

-

-

82.0460.6643.3979.9779.6812 (28)

81.8549.5425.3678.0871.6013 (29)

80.8871.3955.4980.7580.4611(27)

81.65--72.3840.4514 (30)

-77.7873.15--10

---64.3322.1715

(6)

Final3

(2)

SiberianTiger

(1)

Terminatorfps

Experimental Results (V)

! Frame rate variation
" With the proposed “inter-frame compensation”, the

target frame rate is achieved with lower computational
workload

11

12

13

14

15

16

0 30 60 90 120 150

Frame number

F
ra

m
e

ra
te

 [
fp

s]

(1) Terminator 2 target : 13f ps

no compensation

with "inter-frame compensation"

frame rate diff.

13

Conclusion

! An off-chip latency driven DVFS technique for an
MPEG decoding was proposed and implemented in
an XScale-based platform
" On-chip and off-chip workloads are separated at run time

using dynamic profiling data from an embedded hardware
unit

" To guarantee a global QoS for MPEG decoding, a novel
inter-frame compensation technique based on inter-frame
error diffusion was proposed

! Based on actual current measurements in the
testbed
" Significant CPU energy saving ranging from 50% to 80%

was achieved

