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Abstract 
In this paper, we introduce a new technique for modeling and 
solving the dynamic power management (DPM) problem for 
systems with complex behavioral characteristics such as 
concurrency, synchronization, mutual exclusion and conflict. We 
model a power-managed distributed computing system as a 
controllable Generalized Stochastic Petri Net (GSPN) with cost. 
The obtained GSPN model is automatically converted to an 
equivalent continuous-time Markov decision process. Given the 
delay constraints, the optimal power management policy for 
system components as well as the optimal dispatch policy for 
requests are calculated by solving a linear programming problem 
based on the Markov decision process. Experimental results show 
that the proposed technique can achieve more than 20% power 
saving compared to other existing DPM techniques. 

I. Introduction 
With the rapid progress in the semiconductor technology, the chip 
density and operation frequency have increased, making the power 
consumption in battery-operated portable devices a major concern. 
High power consumption reduces the battery service life. The goal 
of low-power design [1]-[4] for battery-powered devices is thus to 
extend the battery service life while meeting performance 
requirements. Dynamic power management (DPM) [5] – which 
refers to selective shut-off or slow-down of system components 
that are idle or underutilized – has proven to be a particularly 
effective technique for reducing power dissipation in such 
systems. Incorporating a dynamic power management scheme in 
the design of an already-complex system is a difficult process that 
may require many design iterations and careful debugging and 
validation. 
A simple and widely-used technique is the “time-out” policy [5], 
which turns on the component when it is to be used and turns off 
the component when it has not been used for some pre-specified 
length of time. Srivastava et al. [6] proposed a predictive power 
management strategy, which uses a regression equation based on 
the previous “on” and “off” times of the component to estimate the 
next “turn-on” time. In [7], Hwang and Wu have introduced a 
more complex predictive shut-down strategy that has a better 
performance. However, these heuristic techniques cannot handle 
components with more than two (“ON” and “OFF”) power modes; 
they cannot handle complex system behaviors; and they cannot 
guarantee optimality.  
As proposed in [8], a power-managed system can be modeled as a 
discrete-time Markov decision process by combining the 
stochastic models of each component. Once the model and its 
parameters are determined, an optimal power management policy 
for achieving the best power-delay trade-off in the system 
 
 
 
 
 
 

can be generated. In [9], the authors improved [8] by modeling the 
power managed system using a continuous-time Markov decision 
process (CTMDP). Further research results can be found in [10]-
[13]. The DPM approaches based on Markov decision processes 
offer significant improvements over heuristic power management 
policies in terms of the theoretical framework and ability to apply 
strong mathematical optimization techniques [14]-[20]. However, 
previous works based on Markov decision processes only describe 
modeling and policy optimization techniques for a simple power 
managed system. Such a system contains one Service Provider 
(SP) that provides services (e.g. computing, file access, etc.), one 
Service Queue (SQ) that buffers the service requests for the SP, 
and one Service Requestor (SR) that generates the requests for SP. 
It is relatively easy to construct the stochastic models of the 
individual components because their behavior is rather simple. 
However a significant effort is required to construct the joint 
model of SP and SQ mostly because of the required 
synchronization between state transitions of SP and SQ. In this 
paper, we target more complex power-managed systems as shown 
in Figure 1. The example depicts a typical multi-server 
(distributed computing) system. Note that we are only interested in 
the system behavior as related to the power management. The 
system contains multiple SPs with their own Local SQs (LSQ). 
There is a SR that generates the tasks (requests) that need to be 
serviced. The Request Dispatcher (RD) makes decisions about 
which SP should service which request. Different SPs may have 
different power/performance parameters. In real applications, the 
RD and LSQs can be part of the operating system, while SPs can 
be multiple processors in a multi-processor computing system or 
number of networked computers of a distributed computing 
system. 
 
 
 
 
 
 
 
 

Figure 1 A multi-server/distributed-computing system. 

The complexity of the modeling problem for the above system is 
high not only because of the increased number of components, but 
also because of the complex system behaviors that are present. For 
example, we need to consider the synchronization of LSQs and 
SPs,  the synchronization of the SR and LSQs, the dispatch 
behavior of the RD, and so on. In this situation when complex 
system behaviors is a major part of the system model, the 
modeling techniques in [8]-[10] become powerless because they 
only offer stochastic models for individual components and 
require that global system behaviors be captured manually. 
Obviously, we need new DPM modeling techniques for large 
systems with complex behaviors. 
In this work, we first present a methodology based on 
Generalized Stochastic Petri Nets (GSPN) [22] to model 
complex systems such as the one shown in Figure 1 and then 
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calculate the optimal power management policy (which includes 
the optimal dispatch policy for the RD and the optimal mode-
switching policies for the SPs) under given performance (delay) 
constraints.  
The paper is organized as follows. Sections II introduces the 
system modeling based on GSPN. Sections III and IV present 
experimental results and conclusions. Please refer to [22][23] for 
background on the GSPN and [17] for background on the 
continuous-time Markov decision process. 

II.  System modeling using GSPN 
First, we give the definition of a GSPN with cost and a 
controllable GSPN with cost. 
Definition: A GSPN with cost is a GSPN model with the addition 
of two types of cost: impulse cost associate with marking 
transitions and rate cost associated with places. Impulse cost 
occurs when the GSPN makes a transition from one marking to 
another. Rate cost is the cost per unit time when the GSPN stays in 
a certain marking.  
Definition: A controllable GSPN with cost is a GSPN where all or 
part of the case probabilities of activities can be controlled by 
outside commands. 
The objective of presenting a controllable GSPN with cost is to 
model the systems that can be controlled by outside commands to 
achieve different costs. In this work, our power-managed system is 
modeled using a controllable GSPN with cost. In this section, we 
will focus on how to construct such a controllable GSPN model 
with cost for a unit server system (USS), a requestor generating 
system (RGS) and the multiple server system (MSS). After 
constructing the GSPN model for the MSS, we reduce it into SPN 
and generate the corresponding CTMDP. 
2.1 Unit Server System 
First, we give the definition of tangible place and vanishing place. 
Definition 3.1 A place is called a vanishing place if it is the only 
input place of an instantaneous activity; otherwise the place is 
called a tangible place. 
A USS contains a SP and a SQ. The information needed for SP is 
its power consumption in each power state, its service speed in 
each power state, and the time and the energy needed to switch 
from one state to another state. The information needed for the SQ 
is its capacity. We use two cost metrics to describe the system, one 
is c_pow which denotes the power consumption of the system, the 
other is c_delay which denotes the performance of the system.  
The GSPN model of a USS contains the following elements: 
1. A set of vanishing places {Pdecision(s)}. Each Pdecision is 

associated with a SP power state s and represents a short time 
period during which the SP is receiving commands from the 
power manager.  

2. A set of tangible places {PSP_status}, which can be divided into 
three subsets: {Ps2s′}, {Pwork(s)} and {Pidle(s)}. The places in 
{Ps2s′} represent the status of SP while it is switching from 
state s to s′. The places in {Pwork(s)} represent the status of SP 
while it is in power state s and servicing certain request. The 
places in {Pidle(s)} represent the status of SP while it is in 
power state s and not doing any operation. For example, the 
SP can be idle when it is in active state while the SQ is empty; 
it can also be idle when it is in sleeping state while no new 
command is issued by PM. Whether or not a token is in place 
Px∈ {PSP_status} indicates whether or not the SP is in status x. At 
any time, the SP should be in exactly one of these statuses. 
Therefore, the sum of the number of the tokens in the set of 
tangible places {PSP_status} is 1. The rate cost of c_pow for 
place Px∈ {PSP_states} is the power consumption of SP. The rate 
cost of c_delay for Px is 0. 

3. A tangible place PSQ. The number of tokens in this place 
represents the number of waiting requests in the SQ. The rate 
cost of c_power of this place is 0, the rate cost of c_delay of 
this place equals the number of tokens in the place. 

4. A vanishing place Pchanging. It indicate the very short time 
interval when the state of the system is changed, therefore, it is 

the time instance at which PM issues a new command. If SP is 
idle at that instance, it will take the command, otherwise, it 
will ignore it. The procedure is modeled by using GSPN as 
follows: if the token of SP is in PSP_idle(s), it will transfer to 
Pdecision(s), otherwise, no action is taken. In both cases, the 
token in Pchanging is vanished. 

5. A set of instantaneous activities {Tdecision(s)}. Each Tdecision(s) 
is associated with a SP power state s. The input place of 
Tdecision(s) is Pdecision(s). A Tdecision(s) has several cases, which 
are mutually exclusive. The case probability is policy- and 
marking-dependent. Given the policy and system marking, the 
probability for the case i of  Tdecision(s) is the probability that 
action i is chosen when SP is in state s. The output place of 
case i of Tdecision(s) is Ps2s′, where s′ is the destination state of 
action i. In order to make the resulting Markov decision 
process solvable, we set the constraint that when SQ is full, the 
probability for case i in Tdecision(s) is zero if the destination 
state of action i provides slower service or wakes up more 
slowly than state s. 

6. A set of timed activities {Ts2s′}. The input place of Ts2s′ is Ps2s′. 
The output place of Ts2s′ is Pdecision(s′). The time of the activity 
is the time that SP needs to switch from state s to state s′. The 
impulse cost of c_pow for Ts2s′ is the energy needed to switch 
from state s to state s′. 

7. A set of timed activities {Tprocess(s)}. The input places of 
Tprocess(s) are Pwork(s). The output place of Tprocess(s) is 
Pdecision(s). The rate of the activity is the service rate of SP 
when it is in state s. 

8. A set of instantanouse activities {Tre-decision(s)}. The input 
places of Tre-decision(s) are Pchanging and Pidle(s). Its output place 
is Pdecision(s). 

An example GSPN model of a simple USS is given in Example 
2.1. 
Example 2.1 Assume that the SP in the processor has two power 
states: {active, sleeping}. In the active state, the SP provides 
services with an average service time of 5ms. The average time to 
switch from the active state to sleeping state is 0.66ms, the 
average time to switch from the sleeping state to active state is 
6ms. The power consumption of SP is 2.3w when it is in the active 
state and 0.1w when it is in the sleeping state. The energy needed 
to switch from the active state to sleeping state is 2mJ, the energy 
needed to switch from the sleeping state to active state is 30mJ. 
Assume that the maximum length of SQ is 3. Figure 2 shows the 
GSPN model of the single processor system. The input gate 
Gcapacity sets the SQ capacity constraint. 
The place Pa2s denotes the SP status when it is switching from the 
active state to sleeping state, the place Ps2a denotes the SP status 
when it is switching from the sleeping state to active state. 
Therefore, {Psi2sj}={Pa2s, Ps2a}. The place Pidle(a)/Pidle(s) denotes 
the SP status when it is idle and the power state is active/sleeping. 
The place Pwork(a) denotes the SP status when it is working and the 
power state is active. The SP will be in exactly one such status at 
any time. From the topology of the GSPN we know that the sum 
of tokens in places Pa2s, Pidle(a), Pwork, Pidle(s), Ps2a is 1 at any time. 
The c_pow rate cost for Pa2s, Pidle(a) and Pwork(a) are 2.3w. The 
c_pow rate cost for Ps2a, Pidle(s) are 0.1w.  
The number of tokens in PSQ denotes the number of waiting 
requests in the SQ. The initial marking of Pidle(a) is 1 while the 
initial marking of the other places is 0, which indicates that the 
initial state of the SP is idle and the initial state of SQ is empty. 
The places Pdecision(a), Pdecision(s) are vanishing places. They 
indicate the very short period of time when the SP is taking 
command from PM and is in active or sleeping state. The place 
Pchanging is also a vanishing place. It is an auxiliary place that 
indicates that the state the system is changing so that it is time for 
the SP to receive the power management command if it is 
currently idle.  
Ta2s, Ts2a are timed activities. They indicate the time needed to 
switch from the active state to sleeping state and the time needed 
to switch from the sleeping state to active state. Tprocessing is also a 
timed activity, which indicates the time needed to process one 



request. Tinput denotes the time needed to generate the next request. 
It actually belongs to the GSPN model of the request generation 
system. Tdecision(a) and Tdecision(s) are instantaneous activities. They 
represent the process of randomized action issued by the power 
manager (PM). The two cases in Tdecision(a) or Tdecision(s) are 
mutually exclusive. The case probability equals the action 
probability, which is marking and policy dependent. If the policy 
is unknown, the GSPN is a controllable GSPN. 
When the SP is idle and active (a token is in place Pidle(a)) and SQ 
is not empty, the instantaneous activity Tstart is completed which 
indicates that the SP enters the busy state. When the SP is sleeping 
(a token is in place Pidle(s)) and the state of SQ is changing (a 
token is in place Pchanging), the instantaneous activity Tre-decision is 
completed which indicates that the SP returns to the action taking 
stage. If the SP is not sleeping and the state of SQ is changing, the 
instantaneous activity Tvanish is completed which indicates that the 
change is ignored. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Example GSPN model of a USS. 

2.2 Request Generation System 
The RGS can generate various types of requests. The generation 
time of different types of request may be different. Some types of 
requests can be serviced by several different USS; whereas some 
other types of requests can be serviced by only a certain USS. 
There may exist correlations among the generation of different 
types of requests. If the SQ is full, the RGS will stop generating 
request. It will resume request generation when there is vacancy in 
the SQ. 

The GSPN model of a USS contains the following elements: 
1. A set of tangible places {Pgen(i)}. A place Pgen(i) denotes the 

status of RGS when it is generating a request of type i. 
2. A set of vanishing places {Pswitch(i)}. A place Pswitch(i) denotes 

the very short period of time that one request has been issued 
but the next request generation has not started. 

3. A set of timed activities {Tgen(i)}. An activity Tgen(i) 
represents the time needed by RGS to generate request i. Its 
input place is Pgen(i) whereas its output place is Pswitch(i). 

4. A set of instantaneous activities {Tswitch(i)}. An activity 
Tswitch(i) has several cases. The probability of case j denotes 
the probability that the next request will be of type j given the 
condition that current request is type i. Its input place is 
Pswitch(i), the output place of case j is Pgen(j). 

An example GSPN model of a simple RGS is given in Example 
2.2. 
Example 2.2 Assume that there are three types of requests, one is 
type A which can only be serviced by USS A, one is type B which 
can only be service by USS B, the other is type AB which can be 
serviced by both USS A and USS B. The correlations among these 
requests are given by matrix Ρ, For example, from the matrix we 
know that the probability that a type AB request was issued after a 
type A request is 0.6. Figure 3 shows the GSPN model of this 
RSG. In this figure, the case probability of activities Tswitch(A), 

Tswitch(B) and Tswitch(AB) takes value from matrix Ρ. The input 
gate Gcap_A represents the condition that the SQ in USS A is not 
full. The input gate Gcap_B represents the condition that the SQ in 
USS B is not full. The input gate Gcap_AB represents the condition 
that the SQ in USS A or the SQ in USS B is not full. Notice that 
the input places of these input gates belong to the GSPN model of 
USS. These input gates enable or disable the request generation. 
For example, if the condition given by Gcap_A is false, which 
means that SQ of USSA is full, then the time activity Tgen(A) is 
disabled, which means that request generation procedure of type A 
request pauses. Tgen(A) will be enabled when the condition given 
by Gcap_A becomes true, which means that the request generation 
procedure resumes when there is a vacancy in the SQ. 
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Figure 3 Example GSPN model for an RGS. 

2.3 Multi-Server System 
We next model a MSS, which is a complex system with several 
USS’s, an RGS and interactions among the components. The 
requests generated by the RGS are sent to the USSi with 
probability pi through a dispatcher. If the request can only be 
serviced by USSi, then pi is 1. If the request cannot be serviced by 
USSi then pi is 0. In all other cases the probability pi is controlled 
by the dispatcher. The optimal dispatch policy can be obtained by 
solving a Markov decision process.  
The GSPN model of the MSS contains the following components: 
1. The GSPN models of RGS and USS’s. 
2. A set of input gates {Gcap_i}. The input place of a Gcap_i is the 

PSQ of all USS’s, which can provide service for request type i. 
The activity of Gcap_i is Tgen(i). A gate Gcap_i indicates the 
condition that there are free positions in SQ to buffer the 
request. 

3. Arcs from activity Tgen(i) in RGS to place PSQ in any USS that 
can provide service for request i. 

An example GSPN model of a MSS is given in Example 3.3. 
Example 2.3 Assume that the MSS contains two USS’s as 
specified in Example 3.1 and one RGB as described in Example 
3.2. Figure 4 shows the GSPN model of this MSS. 
After generating the controllable GSPN model, we can reduce it 
into a SPN, which is the same as a GSPN except that SPN does 
not have instantaneous activities [22]. From the SPN we can find 
its reachability graph and hence generate the corresponding 
continuous time Markov decision process. The state si of the 
CTMDP corresponding to the marking Mi in the reachability set. 
The rate cost of si is the sum of the rate costs of places in Mi. The 
transition cost of the CTMDP from state si to sj is the impulse 
costs of the completed activities when the GSPN is switching from 
marking Mi to Mj. The reader may refer to [22] for the procedure 
of reducing a GSPN to a SPN. The optimal policy is CTMDP is 
obtained by solving a set of linear programming. 
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Figure 4 Example GSPN model of a MSS. 

2.4 Non-exponential transition time 
A GSPN can be converted to a CTMDP, hence it can be evaluated 
efficiently. However, the exponential distribution is not always an 
appropriate way to represent the transition time. If the transition 
time has a general distribution, the Markovian property will be 
destroyed. In this work, we use the stage method [20], which 
approximates the general distributions using the series or parallel 
combinations of exponential stages.  
An example of a serial server is given in Figure 5 (a). The large 
oval g represents the entire server; the internal structure represents 
two series-connected stages of the service. A request is first 
processed in the first stage. After it leaves the first stage it 
immediately enters the second stage. The times it spends in the 
first stage and the second stage are independent random variables. 
We assume that they follow distribution f(t) and h(t), respectively. 
Only after the previous request departs from the second stage, may 
a new request enter the first stage. Assume that the entire service 
time follows distribution g(t), and denote the Laplace transform of 
f(t), h(t) and g(t) as F(s), H(s) and G(s), we have the relation: 
G(s)=F(s)⋅H(s). If f(t) and h(t) are exponential distributions, g(t) is 
called Erlangian distribution [20]. An example of parallel server 
is given in Figure 5 (b). When a request enters the server it will 
enter stage f with probability α1 or enter stage h with probability 
α2. Let the distribution of each stage be f(t) and h(t) and the 
distribution of overall service time be g(t), we have the relation: 
G(s)=α1⋅F(s)+α2⋅H(s). If f(t) and h(t) are exponential distribution, 
g(t) is called hyperexponential distribution [20]. 
 
 
 
 
 
 

Figure 5 Series and parallel connection of two servers. 
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Figure 6 An illustration of the stage expansion method. 

It can be represented using the stage-type server given in Figure 6. 
Other expansions of G(s) and the corresponding stage-type 

representations are also available. To reduce the complexity, the 
first two terms of the expansion are used in practice. 
 

III. Experimental results 
It has been demonstrated [8]-[10] that DPM techniques based on 
Markov decision process outperform heuristic policies (e.g., time-
out, greedy, etc.) when SP has more than two working modes. 
Therefore in this experimental setup, although we used a new 
modeling technique based on GSPN, we will not focus on 
substantiating previous conclusions. Instead, we demonstrate the 
importance of accurate modeling of a complex system, and the 
importance of having an optimal request dispatch policy as a part 
of optimal DPM policy for power saving in a distributed 
computing system. 
Out target system is a simple distributed computing system. 
System details are as follows: 
The MSS contains two USS’s and an RGS. 
The RGS generates a single type of requests, which can be 
serviced by both USS’s. 
The two USS have different power consumptions and different 
service speeds. The SP in both USS’s has three power states: 
{active, waiting, sleeping}. However, when in active state, the 
USSA consumes less power and provide a slower service than the 
USSB. The average service time of the SP in USSA is 5ms, the 
power consumptions are: pactive=2.3w, pwaiting=0.8w, psleeping=0.1w. 
The average service time of the SP in USSB is 3ms, the power 
consumptions are: pactive=4.0w, pwaiting=0.8w, psleeping=0.1w. The 
time and energy needed for the SP in both USS’s to switch from 
one state to another are the same. Matrix χ gives the transition 
rate, matrix ε gives the transition energy. The SQ capacity is 2. 
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Experimental results are obtained from UltraSAN simulation of 
the system [23]. 
3.1 Experimental setup 1 
In this setup, we compare the following methods: 
1. Time-out + heuristic dispatch: Time-out policy is used for the 

power management of each USS. Optimal time-out settings are 
used to achieve the lowest possible power. As for the dispatch 
policy, the requests from the RGS are assigned (dispatched) to 
USSA or USSB according to given probabilities PA and PB. 
Different power and delay values are obtained by setting 
different PA and PB values. 

2. Greedy + heuristic dispatch: Same as previous one, except that 
a greedy policy is used for power management of each USS. 
The greedy policy turns on the SP when it is to be used and 
turns off the SP immediate when it is not used. Note that 
Methods 1 and 2 accept only two power modes of the SP, i.e.  
the “Active” and “Sleeping” modes. 

3. GSPN-based method: In this setup, we only use two power 
modes for the SP (“Active” and “Sleeping”) when building the 
GSPN model of the system. The reason for not using all three 
modes of SP is that we want to demonstrate the importance of 
the dispatch policy in a distributed computing system. Optimal 
power management policy is calculated based on the GSPN 
model. Notice that here the power management policy refers to 
not only the mode-switching policies for the USSA and USSB, 
but also to the request dispatch policy. The linear 
programming delay constraints are set such that the delays for 
our method match the ones of the previous two methods. 

The comparison between Methods 1 and 3 are show in the Table 
1. The comparison between Methods 2 and 3 are shown in Table 
2. 
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Table 1 Experimental results for comparison between method 
1 and our method. 

METHOD 1 OUR METHOD 

PA, PB Power Delay Power  Delay 

0.2, 0.8 2.096 0.314 1.619 0.314 

0.4, 0.6 2.095 0.321 1.594 0.322 

0.5, 0.5 2.074 0.327 1.573 0.327 

0.6, 0.4 2.008 0.335 1.546 0.335 

0.8, 0.2 1.906 0.339 1.532 0.339 

Table 2 Experimental results for comparison between method 
2 and our method. 

METHOD 2 OUR METHOD 

PA, PB Power Delay Power  Delay 

0.2, 0.8 1.802 0.330 1.559 0.330 

0.4, 0.6 1.794 0.340 1.525 0.340 

0.5, 0.5 1.776 0.346 1.494 0.346 

0.6, 0.4 1.733 0.355 1.474 0.355 

0.8, 0.2 1.670 0.365 1.442 0.365 

 
3.2 Experimental setup 2 
In this setup, we compare the following methods: 
1. Optimal USS power management + heuristic dispatch policy: 

Optimal power management policies for USSA and USSB are 
obtained using the continuous-time Markov decision process 
model [10]. As for the dispatch policy, the requests from the 
RGS are assigned (dispatched) to USSA or USSB according to 
given probabilities PA and PB.  

2. Our method: Same as the third method in Setup 1, except that 
we use all the three power modes of the SP in this setup to 
match the SP model used by the first method. 

The comparison is shown in Table 3. 

Table 3 Experimental results for comparison between 
Methods 1 and 2. 

METHOD 1 OUR METHOD 

PA, PB Power Delay Power  Delay 

0.2, 0.8 1.162 0.336 0.856 0.336 

0.4, 0.6 1.117 0.346 0.834 0.346 

0.5, 0.5 1.104 0.353 0.810 0.353 

0.6, 0.4 1.085 0.361 0.804 0.361 

0.8, 0.2 1.771* 0.370 0.794 0.370 

* This huge increase in power dissipation is caused by the 
inappropriate delay constraint settings when we set delay 
constraints for USSA and USSB without considering the dispatch 
policy. It illustrates the intrinsic shortcoming of the first method. 
From the experimental results, we can see that our method 
(Method 2 in Setup 2) can save more than 20% power compared 
to the CTMDP-based method plus heuristic dispatch policy for 
same delay values. The improvement shows the importance of 
building an accurate system model and obtaining an optimal 
dispatch policy along with power management policy for the SP’s 
for the target distributed computing system. 

IV. Conclusion 
We have introduced a new technique for modeling and solving the 
DPM problem for systems with complex behavioral characteristics 
such as concurrency, synchronization, mutual exclusion and 
conflict. We use controllable GSPN with cost to do the system 
modeling. The obtained GSPN model can be automatically 
converted to an isomorphic continuous-time Markov decision 
process. From the corresponding Markov decision process, we can 

calculate the optimal DPM policy, which achieves minimum 
power consumption for given delay constraints. We used the 
proposed technique to model and solve a power-managed 
distributed computing system. Experimental results show that, the 
proposed technique can achieve more than 20% power saving 
compared to other existing DPM techniques. 
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