
Dynamic Power Management of Complex Systems
Using Generalized Stochastic Petri Nets *

Qinru Qiu, Qing Wu and Massoud Pedram
Department of Electrical Engineering – Systems

University of Southern California
Los Angeles, CA 90089

EMAIL: {qinru, qingwu, massoud}@zugros.usc.edu

Abstract
In this paper, we introduce a new technique for modeling and
solving the dynamic power management (DPM) problem for
systems with complex behavioral characteristics such as
concurrency, synchronization, mutual exclusion and conflict. We
model a power-managed distributed computing system as a
controllable Generalized Stochastic Petri Net (GSPN) with cost.
The obtained GSPN model is automatically converted to an
equivalent continuous-time Markov decision process. Given the
delay constraints, the optimal power management policy for
system components as well as the optimal dispatch policy for
requests are calculated by solving a linear programming problem
based on the Markov decision process. Experimental results show
that the proposed technique can achieve more than 20% power
saving compared to other existing DPM techniques.

I. Introduction
With the rapid progress in the semiconductor technology, the chip
density and operation frequency have increased, making the power
consumption in battery-operated portable devices a major concern.
High power consumption reduces the battery service life. The goal
of low-power design [1]-[4] for battery-powered devices is thus to
extend the battery service life while meeting performance
requirements. Dynamic power management (DPM) [5] – which
refers to selective shut-off or slow-down of system components
that are idle or underutilized – has proven to be a particularly
effective technique for reducing power dissipation in such
systems. Incorporating a dynamic power management scheme in
the design of an already-complex system is a difficult process that
may require many design iterations and careful debugging and
validation.
A simple and widely-used technique is the “time-out” policy [5],
which turns on the component when it is to be used and turns off
the component when it has not been used for some pre-specified
length of time. Srivastava et al. [6] proposed a predictive power
management strategy, which uses a regression equation based on
the previous “on” and “off” times of the component to estimate the
next “turn-on” time. In [7], Hwang and Wu have introduced a
more complex predictive shut-down strategy that has a better
performance. However, these heuristic techniques cannot handle
components with more than two (“ON” and “OFF”) power modes;
they cannot handle complex system behaviors; and they cannot
guarantee optimality.
As proposed in [8], a power-managed system can be modeled as a
discrete-time Markov decision process by combining the
stochastic models of each component. Once the model and its
parameters are determined, an optimal power management policy
for achieving the best power-delay trade-off in the system

can be generated. In [9], the authors improved [8] by modeling the
power managed system using a continuous-time Markov decision
process (CTMDP). Further research results can be found in [10]-
[13]. The DPM approaches based on Markov decision processes
offer significant improvements over heuristic power management
policies in terms of the theoretical framework and ability to apply
strong mathematical optimization techniques [14]-[20]. However,
previous works based on Markov decision processes only describe
modeling and policy optimization techniques for a simple power
managed system. Such a system contains one Service Provider
(SP) that provides services (e.g. computing, file access, etc.), one
Service Queue (SQ) that buffers the service requests for the SP,
and one Service Requestor (SR) that generates the requests for SP.
It is relatively easy to construct the stochastic models of the
individual components because their behavior is rather simple.
However a significant effort is required to construct the joint
model of SP and SQ mostly because of the required
synchronization between state transitions of SP and SQ. In this
paper, we target more complex power-managed systems as shown
in Figure 1. The example depicts a typical multi-server
(distributed computing) system. Note that we are only interested in
the system behavior as related to the power management. The
system contains multiple SPs with their own Local SQs (LSQ).
There is a SR that generates the tasks (requests) that need to be
serviced. The Request Dispatcher (RD) makes decisions about
which SP should service which request. Different SPs may have
different power/performance parameters. In real applications, the
RD and LSQs can be part of the operating system, while SPs can
be multiple processors in a multi-processor computing system or
number of networked computers of a distributed computing
system.

Figure 1 A multi-server/distributed-computing system.

The complexity of the modeling problem for the above system is
high not only because of the increased number of components, but
also because of the complex system behaviors that are present. For
example, we need to consider the synchronization of LSQs and
SPs, the synchronization of the SR and LSQs, the dispatch
behavior of the RD, and so on. In this situation when complex
system behaviors is a major part of the system model, the
modeling techniques in [8]-[10] become powerless because they
only offer stochastic models for individual components and
require that global system behaviors be captured manually.
Obviously, we need new DPM modeling techniques for large
systems with complex behaviors.
In this work, we first present a methodology based on
Generalized Stochastic Petri Nets (GSPN) [22] to model
complex systems such as the one shown in Figure 1 and then

SR RD

LSQ1

LSQ2

LSQK

SP1

SP2

SPK

*This work was supported in part by SRC under contract No. 98-DJ-606
and NSF under contract No. MIP-9628999.

calculate the optimal power management policy (which includes
the optimal dispatch policy for the RD and the optimal mode-
switching policies for the SPs) under given performance (delay)
constraints.
The paper is organized as follows. Sections II introduces the
system modeling based on GSPN. Sections III and IV present
experimental results and conclusions. Please refer to [22][23] for
background on the GSPN and [17] for background on the
continuous-time Markov decision process.

II. System modeling using GSPN
First, we give the definition of a GSPN with cost and a
controllable GSPN with cost.
Definition: A GSPN with cost is a GSPN model with the addition
of two types of cost: impulse cost associate with marking
transitions and rate cost associated with places. Impulse cost
occurs when the GSPN makes a transition from one marking to
another. Rate cost is the cost per unit time when the GSPN stays in
a certain marking.
Definition: A controllable GSPN with cost is a GSPN where all or
part of the case probabilities of activities can be controlled by
outside commands.
The objective of presenting a controllable GSPN with cost is to
model the systems that can be controlled by outside commands to
achieve different costs. In this work, our power-managed system is
modeled using a controllable GSPN with cost. In this section, we
will focus on how to construct such a controllable GSPN model
with cost for a unit server system (USS), a requestor generating
system (RGS) and the multiple server system (MSS). After
constructing the GSPN model for the MSS, we reduce it into SPN
and generate the corresponding CTMDP.
2.1 Unit Server System
First, we give the definition of tangible place and vanishing place.
Definition 3.1 A place is called a vanishing place if it is the only
input place of an instantaneous activity; otherwise the place is
called a tangible place.
A USS contains a SP and a SQ. The information needed for SP is
its power consumption in each power state, its service speed in
each power state, and the time and the energy needed to switch
from one state to another state. The information needed for the SQ
is its capacity. We use two cost metrics to describe the system, one
is c_pow which denotes the power consumption of the system, the
other is c_delay which denotes the performance of the system.
The GSPN model of a USS contains the following elements:
1. A set of vanishing places {Pdecision(s)}. Each Pdecision is

associated with a SP power state s and represents a short time
period during which the SP is receiving commands from the
power manager.

2. A set of tangible places {PSP_status}, which can be divided into
three subsets: {Ps2s′}, {Pwork(s)} and {Pidle(s)}. The places in
{Ps2s′} represent the status of SP while it is switching from
state s to s′. The places in {Pwork(s)} represent the status of SP
while it is in power state s and servicing certain request. The
places in {Pidle(s)} represent the status of SP while it is in
power state s and not doing any operation. For example, the
SP can be idle when it is in active state while the SQ is empty;
it can also be idle when it is in sleeping state while no new
command is issued by PM. Whether or not a token is in place
Px∈ {PSP_status} indicates whether or not the SP is in status x. At
any time, the SP should be in exactly one of these statuses.
Therefore, the sum of the number of the tokens in the set of
tangible places {PSP_status} is 1. The rate cost of c_pow for
place Px∈ {PSP_states} is the power consumption of SP. The rate
cost of c_delay for Px is 0.

3. A tangible place PSQ. The number of tokens in this place
represents the number of waiting requests in the SQ. The rate
cost of c_power of this place is 0, the rate cost of c_delay of
this place equals the number of tokens in the place.

4. A vanishing place Pchanging. It indicate the very short time
interval when the state of the system is changed, therefore, it is

the time instance at which PM issues a new command. If SP is
idle at that instance, it will take the command, otherwise, it
will ignore it. The procedure is modeled by using GSPN as
follows: if the token of SP is in PSP_idle(s), it will transfer to
Pdecision(s), otherwise, no action is taken. In both cases, the
token in Pchanging is vanished.

5. A set of instantaneous activities {Tdecision(s)}. Each Tdecision(s)
is associated with a SP power state s. The input place of
Tdecision(s) is Pdecision(s). A Tdecision(s) has several cases, which
are mutually exclusive. The case probability is policy- and
marking-dependent. Given the policy and system marking, the
probability for the case i of Tdecision(s) is the probability that
action i is chosen when SP is in state s. The output place of
case i of Tdecision(s) is Ps2s′, where s′ is the destination state of
action i. In order to make the resulting Markov decision
process solvable, we set the constraint that when SQ is full, the
probability for case i in Tdecision(s) is zero if the destination
state of action i provides slower service or wakes up more
slowly than state s.

6. A set of timed activities {Ts2s′}. The input place of Ts2s′ is Ps2s′.
The output place of Ts2s′ is Pdecision(s′). The time of the activity
is the time that SP needs to switch from state s to state s′. The
impulse cost of c_pow for Ts2s′ is the energy needed to switch
from state s to state s′.

7. A set of timed activities {Tprocess(s)}. The input places of
Tprocess(s) are Pwork(s). The output place of Tprocess(s) is
Pdecision(s). The rate of the activity is the service rate of SP
when it is in state s.

8. A set of instantanouse activities {Tre-decision(s)}. The input
places of Tre-decision(s) are Pchanging and Pidle(s). Its output place
is Pdecision(s).

An example GSPN model of a simple USS is given in Example
2.1.
Example 2.1 Assume that the SP in the processor has two power
states: {active, sleeping}. In the active state, the SP provides
services with an average service time of 5ms. The average time to
switch from the active state to sleeping state is 0.66ms, the
average time to switch from the sleeping state to active state is
6ms. The power consumption of SP is 2.3w when it is in the active
state and 0.1w when it is in the sleeping state. The energy needed
to switch from the active state to sleeping state is 2mJ, the energy
needed to switch from the sleeping state to active state is 30mJ.
Assume that the maximum length of SQ is 3. Figure 2 shows the
GSPN model of the single processor system. The input gate
Gcapacity sets the SQ capacity constraint.
The place Pa2s denotes the SP status when it is switching from the
active state to sleeping state, the place Ps2a denotes the SP status
when it is switching from the sleeping state to active state.
Therefore, {Psi2sj}={Pa2s, Ps2a}. The place Pidle(a)/Pidle(s) denotes
the SP status when it is idle and the power state is active/sleeping.
The place Pwork(a) denotes the SP status when it is working and the
power state is active. The SP will be in exactly one such status at
any time. From the topology of the GSPN we know that the sum
of tokens in places Pa2s, Pidle(a), Pwork, Pidle(s), Ps2a is 1 at any time.
The c_pow rate cost for Pa2s, Pidle(a) and Pwork(a) are 2.3w. The
c_pow rate cost for Ps2a, Pidle(s) are 0.1w.
The number of tokens in PSQ denotes the number of waiting
requests in the SQ. The initial marking of Pidle(a) is 1 while the
initial marking of the other places is 0, which indicates that the
initial state of the SP is idle and the initial state of SQ is empty.
The places Pdecision(a), Pdecision(s) are vanishing places. They
indicate the very short period of time when the SP is taking
command from PM and is in active or sleeping state. The place
Pchanging is also a vanishing place. It is an auxiliary place that
indicates that the state the system is changing so that it is time for
the SP to receive the power management command if it is
currently idle.
Ta2s, Ts2a are timed activities. They indicate the time needed to
switch from the active state to sleeping state and the time needed
to switch from the sleeping state to active state. Tprocessing is also a
timed activity, which indicates the time needed to process one

request. Tinput denotes the time needed to generate the next request.
It actually belongs to the GSPN model of the request generation
system. Tdecision(a) and Tdecision(s) are instantaneous activities. They
represent the process of randomized action issued by the power
manager (PM). The two cases in Tdecision(a) or Tdecision(s) are
mutually exclusive. The case probability equals the action
probability, which is marking and policy dependent. If the policy
is unknown, the GSPN is a controllable GSPN.
When the SP is idle and active (a token is in place Pidle(a)) and SQ
is not empty, the instantaneous activity Tstart is completed which
indicates that the SP enters the busy state. When the SP is sleeping
(a token is in place Pidle(s)) and the state of SQ is changing (a
token is in place Pchanging), the instantaneous activity Tre-decision is
completed which indicates that the SP returns to the action taking
stage. If the SP is not sleeping and the state of SQ is changing, the
instantaneous activity Tvanish is completed which indicates that the
change is ignored.

Figure 2 Example GSPN model of a USS.

2.2 Request Generation System
The RGS can generate various types of requests. The generation
time of different types of request may be different. Some types of
requests can be serviced by several different USS; whereas some
other types of requests can be serviced by only a certain USS.
There may exist correlations among the generation of different
types of requests. If the SQ is full, the RGS will stop generating
request. It will resume request generation when there is vacancy in
the SQ.

The GSPN model of a USS contains the following elements:
1. A set of tangible places {Pgen(i)}. A place Pgen(i) denotes the

status of RGS when it is generating a request of type i.
2. A set of vanishing places {Pswitch(i)}. A place Pswitch(i) denotes

the very short period of time that one request has been issued
but the next request generation has not started.

3. A set of timed activities {Tgen(i)}. An activity Tgen(i)
represents the time needed by RGS to generate request i. Its
input place is Pgen(i) whereas its output place is Pswitch(i).

4. A set of instantaneous activities {Tswitch(i)}. An activity
Tswitch(i) has several cases. The probability of case j denotes
the probability that the next request will be of type j given the
condition that current request is type i. Its input place is
Pswitch(i), the output place of case j is Pgen(j).

An example GSPN model of a simple RGS is given in Example
2.2.
Example 2.2 Assume that there are three types of requests, one is
type A which can only be serviced by USS A, one is type B which
can only be service by USS B, the other is type AB which can be
serviced by both USS A and USS B. The correlations among these
requests are given by matrix Ρ, For example, from the matrix we
know that the probability that a type AB request was issued after a
type A request is 0.6. Figure 3 shows the GSPN model of this
RSG. In this figure, the case probability of activities Tswitch(A),

Tswitch(B) and Tswitch(AB) takes value from matrix Ρ. The input
gate Gcap_A represents the condition that the SQ in USS A is not
full. The input gate Gcap_B represents the condition that the SQ in
USS B is not full. The input gate Gcap_AB represents the condition
that the SQ in USS A or the SQ in USS B is not full. Notice that
the input places of these input gates belong to the GSPN model of
USS. These input gates enable or disable the request generation.
For example, if the condition given by Gcap_A is false, which
means that SQ of USSA is full, then the time activity Tgen(A) is
disabled, which means that request generation procedure of type A
request pauses. Tgen(A) will be enabled when the condition given
by Gcap_A becomes true, which means that the request generation
procedure resumes when there is a vacancy in the SQ.
















=

1.01.08.0

1.08.01.0

6.02.02.0

�

Figure 3 Example GSPN model for an RGS.

2.3 Multi-Server System
We next model a MSS, which is a complex system with several
USS’s, an RGS and interactions among the components. The
requests generated by the RGS are sent to the USSi with
probability pi through a dispatcher. If the request can only be
serviced by USSi, then pi is 1. If the request cannot be serviced by
USSi then pi is 0. In all other cases the probability pi is controlled
by the dispatcher. The optimal dispatch policy can be obtained by
solving a Markov decision process.
The GSPN model of the MSS contains the following components:
1. The GSPN models of RGS and USS’s.
2. A set of input gates {Gcap_i}. The input place of a Gcap_i is the

PSQ of all USS’s, which can provide service for request type i.
The activity of Gcap_i is Tgen(i). A gate Gcap_i indicates the
condition that there are free positions in SQ to buffer the
request.

3. Arcs from activity Tgen(i) in RGS to place PSQ in any USS that
can provide service for request i.

An example GSPN model of a MSS is given in Example 3.3.
Example 2.3 Assume that the MSS contains two USS’s as
specified in Example 3.1 and one RGB as described in Example
3.2. Figure 4 shows the GSPN model of this MSS.
After generating the controllable GSPN model, we can reduce it
into a SPN, which is the same as a GSPN except that SPN does
not have instantaneous activities [22]. From the SPN we can find
its reachability graph and hence generate the corresponding
continuous time Markov decision process. The state si of the
CTMDP corresponding to the marking Mi in the reachability set.
The rate cost of si is the sum of the rate costs of places in Mi. The
transition cost of the CTMDP from state si to sj is the impulse
costs of the completed activities when the GSPN is switching from
marking Mi to Mj. The reader may refer to [22] for the procedure
of reducing a GSPN to a SPN. The optimal policy is CTMDP is
obtained by solving a set of linear programming.

PSQ

Pwork(a)

Pidle(a) Pdecision(a)

Pa2s
Pdecision(s)

Pchanging

Ps2a

Pidle(s)

Ta2s Ta2s

Tprocess

Tdecision(s)

Tinput

Tstart

Tdecision(a)

Tre-decision Tvanish

Gcapacity

Gcapacity: MARK(PSQ)+MARK(Pbusy)<3 Gnot_sleeping: MARK(Psleeping)==0

Pgen(A)

Pgen(B)

Pgen(AB)

Tgen(A)

Tgen(B)

Tgen(AB)

Tswitch(AB)

Tswitch(B)

Tswitch(A)

Gcap_A

Gcap_B Gcap_AB

Pswitch(A)

Pswitch(B)

Pswitch(AB)

Figure 4 Example GSPN model of a MSS.

2.4 Non-exponential transition time
A GSPN can be converted to a CTMDP, hence it can be evaluated
efficiently. However, the exponential distribution is not always an
appropriate way to represent the transition time. If the transition
time has a general distribution, the Markovian property will be
destroyed. In this work, we use the stage method [20], which
approximates the general distributions using the series or parallel
combinations of exponential stages.
An example of a serial server is given in Figure 5 (a). The large
oval g represents the entire server; the internal structure represents
two series-connected stages of the service. A request is first
processed in the first stage. After it leaves the first stage it
immediately enters the second stage. The times it spends in the
first stage and the second stage are independent random variables.
We assume that they follow distribution f(t) and h(t), respectively.
Only after the previous request departs from the second stage, may
a new request enter the first stage. Assume that the entire service
time follows distribution g(t), and denote the Laplace transform of
f(t), h(t) and g(t) as F(s), H(s) and G(s), we have the relation:
G(s)=F(s)⋅H(s). If f(t) and h(t) are exponential distributions, g(t) is
called Erlangian distribution [20]. An example of parallel server
is given in Figure 5 (b). When a request enters the server it will
enter stage f with probability α1 or enter stage h with probability
α2. Let the distribution of each stage be f(t) and h(t) and the
distribution of overall service time be g(t), we have the relation:
G(s)=α1⋅F(s)+α2⋅H(s). If f(t) and h(t) are exponential distribution,
g(t) is called hyperexponential distribution [20].

Figure 5 Series and parallel connection of two servers.

We know that the Laplace transform of an exponential distribution

funciton, xexf µµ −=)(, is:
µ

µ
+

=
s

sF)(. Given a general

distribution function g(t), if its Laplace transform can be written
as:

∑
+

∏+=
= =

+
r

i j

ji

j
ii s

sG
1 1

1211)()(
µ

µ
αβββα "

Figure 6 An illustration of the stage expansion method.

It can be represented using the stage-type server given in Figure 6.
Other expansions of G(s) and the corresponding stage-type

representations are also available. To reduce the complexity, the
first two terms of the expansion are used in practice.

III. Experimental results
It has been demonstrated [8]-[10] that DPM techniques based on
Markov decision process outperform heuristic policies (e.g., time-
out, greedy, etc.) when SP has more than two working modes.
Therefore in this experimental setup, although we used a new
modeling technique based on GSPN, we will not focus on
substantiating previous conclusions. Instead, we demonstrate the
importance of accurate modeling of a complex system, and the
importance of having an optimal request dispatch policy as a part
of optimal DPM policy for power saving in a distributed
computing system.
Out target system is a simple distributed computing system.
System details are as follows:
The MSS contains two USS’s and an RGS.
The RGS generates a single type of requests, which can be
serviced by both USS’s.
The two USS have different power consumptions and different
service speeds. The SP in both USS’s has three power states:
{active, waiting, sleeping}. However, when in active state, the
USSA consumes less power and provide a slower service than the
USSB. The average service time of the SP in USSA is 5ms, the
power consumptions are: pactive=2.3w, pwaiting=0.8w, psleeping=0.1w.
The average service time of the SP in USSB is 3ms, the power
consumptions are: pactive=4.0w, pwaiting=0.8w, psleeping=0.1w. The
time and energy needed for the SP in both USS’s to switch from
one state to another are the same. Matrix χ gives the transition
rate, matrix ε gives the transition energy. The SQ capacity is 2.





















∞
∞

∞∞
∞

=

5.1166.00

5.1454.00

5.01

002.0

$,





















∞
∞

∞∞

=

0930

66.004.4

2100

00

),(

mJmJ

mJmJ

mJmJ
ss ji0

Experimental results are obtained from UltraSAN simulation of
the system [23].
3.1 Experimental setup 1
In this setup, we compare the following methods:
1. Time-out + heuristic dispatch: Time-out policy is used for the

power management of each USS. Optimal time-out settings are
used to achieve the lowest possible power. As for the dispatch
policy, the requests from the RGS are assigned (dispatched) to
USSA or USSB according to given probabilities PA and PB.
Different power and delay values are obtained by setting
different PA and PB values.

2. Greedy + heuristic dispatch: Same as previous one, except that
a greedy policy is used for power management of each USS.
The greedy policy turns on the SP when it is to be used and
turns off the SP immediate when it is not used. Note that
Methods 1 and 2 accept only two power modes of the SP, i.e.
the “Active” and “Sleeping” modes.

3. GSPN-based method: In this setup, we only use two power
modes for the SP (“Active” and “Sleeping”) when building the
GSPN model of the system. The reason for not using all three
modes of SP is that we want to demonstrate the importance of
the dispatch policy in a distributed computing system. Optimal
power management policy is calculated based on the GSPN
model. Notice that here the power management policy refers to
not only the mode-switching policies for the USSA and USSB,
but also to the request dispatch policy. The linear
programming delay constraints are set such that the delays for
our method match the ones of the previous two methods.

The comparison between Methods 1 and 3 are show in the Table
1. The comparison between Methods 2 and 3 are shown in Table
2.

α2

(a) Two stage serial server

f h
g

(b) Two stage parallel server

α1

α2
g

f

h

f1 fr f2 …

α1

β1 β2

α3

β3 βr

αr

Tgen(A)

Tgen(AB)

Tgen(B)

RGS USSA

USSB

PSQ

PSQ

Gcap_A

Gcap_AB

Gcap_B

Table 1 Experimental results for comparison between method
1 and our method.

METHOD 1 OUR METHOD

PA, PB Power Delay Power Delay

0.2, 0.8 2.096 0.314 1.619 0.314

0.4, 0.6 2.095 0.321 1.594 0.322

0.5, 0.5 2.074 0.327 1.573 0.327

0.6, 0.4 2.008 0.335 1.546 0.335

0.8, 0.2 1.906 0.339 1.532 0.339

Table 2 Experimental results for comparison between method
2 and our method.

METHOD 2 OUR METHOD

PA, PB Power Delay Power Delay

0.2, 0.8 1.802 0.330 1.559 0.330

0.4, 0.6 1.794 0.340 1.525 0.340

0.5, 0.5 1.776 0.346 1.494 0.346

0.6, 0.4 1.733 0.355 1.474 0.355

0.8, 0.2 1.670 0.365 1.442 0.365

3.2 Experimental setup 2
In this setup, we compare the following methods:
1. Optimal USS power management + heuristic dispatch policy:

Optimal power management policies for USSA and USSB are
obtained using the continuous-time Markov decision process
model [10]. As for the dispatch policy, the requests from the
RGS are assigned (dispatched) to USSA or USSB according to
given probabilities PA and PB.

2. Our method: Same as the third method in Setup 1, except that
we use all the three power modes of the SP in this setup to
match the SP model used by the first method.

The comparison is shown in Table 3.

Table 3 Experimental results for comparison between
Methods 1 and 2.

METHOD 1 OUR METHOD

PA, PB Power Delay Power Delay

0.2, 0.8 1.162 0.336 0.856 0.336

0.4, 0.6 1.117 0.346 0.834 0.346

0.5, 0.5 1.104 0.353 0.810 0.353

0.6, 0.4 1.085 0.361 0.804 0.361

0.8, 0.2 1.771* 0.370 0.794 0.370

* This huge increase in power dissipation is caused by the
inappropriate delay constraint settings when we set delay
constraints for USSA and USSB without considering the dispatch
policy. It illustrates the intrinsic shortcoming of the first method.
From the experimental results, we can see that our method
(Method 2 in Setup 2) can save more than 20% power compared
to the CTMDP-based method plus heuristic dispatch policy for
same delay values. The improvement shows the importance of
building an accurate system model and obtaining an optimal
dispatch policy along with power management policy for the SP’s
for the target distributed computing system.

IV. Conclusion
We have introduced a new technique for modeling and solving the
DPM problem for systems with complex behavioral characteristics
such as concurrency, synchronization, mutual exclusion and
conflict. We use controllable GSPN with cost to do the system
modeling. The obtained GSPN model can be automatically
converted to an isomorphic continuous-time Markov decision
process. From the corresponding Markov decision process, we can

calculate the optimal DPM policy, which achieves minimum
power consumption for given delay constraints. We used the
proposed technique to model and solve a power-managed
distributed computing system. Experimental results show that, the
proposed technique can achieve more than 20% power saving
compared to other existing DPM techniques.

REFERENCES

[1] A. Chandrakasan, R. Brodersen, Low Power Digital CMOS Design,
Kluwer Academic Publishers, July 1995.

[2] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-Power Digital
Design”, IEEE Symposium on Low Power Electronics, pp.8-11,
1994.

[3] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, “Data Driven
Signal Processing: An Approach for Energy Efficient Computing”,
1996 International Symposium on Low Power Electronics and
Design, pp. 347-352, Aug. 1996.

[4] J. Rabaey and M. Pedram, Low Power Design Methodologies,
Kluwer Academic Publishers, 1996

[5] L. Benini and G. De Micheli, Dynamic Power Management: Design
Techniques and CAD Tools, Kluwer Academic Publishers, 1997.

[6] M. Srivastava, A. Chandrakasan. R. Brodersen, “Predictive system
shutdown and other architectural techniques for energy efficient
programmable computation," IEEE Transactions on VLSI Systems,
Vol. 4, No. 1 (1996), pp. 42-55.

[7] C.-H. Hwang and A. Wu, “A Predictive System Shutdown Method
for Energy Saving of Event-Driven Computation,” Proc. of the Intl.
Conference on Computer Aided Design, pp. 28-32, November 1997.

[8] G. A. Paleologo, L. Benini, et.al, “Policy Optimization for Dynamic
Power Management”, Proceedings of Design Automation
Conference, pp.182-187, Jun. 1998.

[9] Q. Qiu, M. Pedram, “Dynamic Power Management Based on
Continuous-Time Markov Decision Processes”, Proceedings of the
Design Automation Conference, pp. 555-561, Jun. 1999.

[10] Q. Qiu, Q. Wu, M. Pedram, “Stochastic Modeling of a Power-
Managed System: Construction and Optimization”, Proceedings of
the International Symposium on Low Power Electronics and Design,
pp. 194-199, Aug. 1999.

[11] L. Benini, A. Bogliolo, S. Cavallucci, B. Ricco, “Monitoring System
Activity For OS-Directed Dynamic Power Management”,
Proceedings of International Symposium of Low Power Electronics
and Design Conference, pp. 185-190, Aug. 1998.

[12] E. Chung, L. Benini and G. De Micheli, “Dynamic Power
Management for Non-Stationary Service Requests”, Proceedings of
DATE, pp. 77-81, Mar. 1999.

[13] L. Benini, R. Hodgson, P. Siegel, “System-level Estimation And
Optimization”, Proceedings of International Symposium of Low
Power Electronics and Design Conference, pp. 173-178, Aug. 1998.

[14] U. Narayan Bhat, “Elements Of Applied Stochastic Processes”, John
Wiley & Sons, Inc. 1984

[15] B. Miller, “Finite State Continuous Time Markov Decision Processes
With an Finite Planning Horizon.” SIAM J. Control, Vol. 5, No. 2,
pp. 266-281, 1968.

[16] B. Miller, “Finite State Continuous Time Markov Decision Processes
With an Infinite Planning Horizon”. J. Of Mathematical Analysis
and Applications, No. 22, pp. 552-569, 1968.

[17] R.A.Howard, Dynamic Programming and Markov Processes, Wiley,
New York, 1960

[18] D. P. Heyman, M. J. Sobel, Stochastic Models in Operations
Research, McGraw-Hill Book Company, 1982

[19] G. Bolch, S. Greiner, H. D. Meer and K. S. Trivedi, Queueing
Networks and Markov Chains, John Wiley & Sons, Inc., 1998

[20] L. Kleinrock, Queueing Systems. Volume I: Theory, Wiley-
Interscience, New York, 1981.

[21] J. F. Shapiro, Mathematical Programming: Structures and
Algorithms, John Wiley & Sons, Inc, 1979.

[22] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli and G.
Franceschinis, Modeling With Generalized Stochastic Petri Nets,
John Wiley & Sons, New York, 1995.

[23] UltraSAN User’s Manual, Version 3.0, Center for Reliable and high-
Performance Computing, Coordinated Science Laboratory,
University of Illinois.

