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Abstract—Considering the growing number of Internet and cloud 

computing data centers in operation today and the high, yet flexible 

data center electric load, data centers can be good candidates to 

offer ancillary services and respond to regulation signals in a smart 

grid. This paper considers a problem whereby the smart grid 

employs both day-ahead dynamic energy prices and regulation 

signals to incentivize (cloud) data centers to simultaneously reduce 

their energy consumptions and participate in an ancillary service 

market. A data center controller schedules task dispatch and 

performs resource allocation in order to minimize the overall cost, 

which is the total electricity cost based on time-of-use energy prices 

minus any monetary compensations that data center may receive 

due to offering ancillary services. Moreover, the data center must 

satisfy average latency requirements in processing requests as 

specified in service-level agreements with clients. A two-tier 

hierarchical solution is presented for the data center controller, 

which achieves optimality in minimizing the overall cost with 

polynomial time complexity. Experimental results on Google trace 

demonstrate the effectiveness of the proposed solution in 

minimizing the overall cost in the data center. 

I. INTRODUCTION 

Information Technology (IT) plays an important part in 

people’s lives at both personal and communal levels. IT 

services are increasingly used in different areas, e.g., business, 

commerce, education, manufacturing, and communication 

services. This leads to the demand for more and more 

computing resources to satisfy the computational and storage 

needs of IT customers and clients. As a result, there is a 

growing demand for Internet and cloud computing services, 

which in turn brings about rapid increase in the electric power 

consumption associated with IT infrastructure. This growing 

power demand precipitates adverse environmental impacts and 

imposes a significant strain on the Power System 

Infrastructure [1]-[5].    

Large data centers—such as those owned by Google, 

Microsoft, Facebook, and Amazon—include tens of thousands 

of computing servers, tens of Petabyte of data storage, various 

cooling equipment, and power transformers [6], [7]. Although 

data centers try to make use of renewable energy to reduce 

their power drawn from the Power Grid, the intermittency of 

renewable energy sources prevents them from being a reliable 

source of energy [8]. As a matter of fact, we have witnessed a 

56% increase in electricity used by data centers worldwide 

from 2005 to 2010, and today, 3% of the total electrical power 

consumption in United States is due to data centers [8]. As a 

result, electrical energy consumption is a major concern, and 

plenty of research has been devoted to reducing power 

dissipation of data centers by employing a variety of 

techniques e.g., CPU consolidation [9], [10], dynamic voltage 

and frequency scaling (DVFS) [11], [12], mechanisms to 

eliminate idle power waste [13], energy aware virtual machine 

replication and migration in data centers [14], power-aware 

geographical load balancing [15], and use of electrical energy 

storage systems [14], [15]. 

Due to monetary costs and environmental impacts, the power 

market is moving toward integrating less costly and 

environmentally friendly renewable energy sources (green 

energy) into the power grid facilities. For example, according 

to the US Department of Energy [18], wind energy should 

provide 20% of whole US needs for electricity. Due to the fact 

that green energy is an uncertain and intermittent source of 

energy, power market Independent System Operators (ISO) 

are now offering regulation service contracts with their 

customers. This incentive policy helps the power market 

customers to reduce their electricity cost, and helps the ISO to 

make the best use of renewable energy. Basically ISO sends a 

regulation signal reserve contract to every participant in the 

regulation market at the beginning of a billing period, 

specifying the desired power consumption trend for the 

following billing period (from several minutes to one day). By 

accepting this contract, the participant is required to adjust its 

power consumption to the regulation signal received from the 

ISO. During a billing period, ISO regularly sends regulation 

signals to market participants, marginally updating the initial 

regulation trend. This regulation signal can be sent every hour, 

every 30 minutes, or even every few minutes [19]. If the 

participant is able to satisfy the regulation signal demands, she 

will be charged a relatively lower energy price, otherwise, she 

has to pay the regular price or even pay a higher price for that 

period, depending on the specific contract [20]. 

Data centers are considered to be favorable facilities in a 

power regulation market, because (1) they are large consumers 

of power in the local Grid, and (2) they have some ability to 

shape their power consumption profile. The only question is 

whether data centers will actually benefit from participating in 

the regulation market. The issue is that although data centers 

can reduce their energy cost by participating in the power 

market, they can also incur additional penalties by failing to 

meet their service level agreements (SLAs) with their own 



clients. Data center service providers must therefore be 

convinced that the former benefit outweighs the latter cost. 

In this paper, we consider the problem of maximizing the 

profit in a data center comprising a large number of potentially 

heterogeneous servers. The data center participates in a power 

regulation program in which it receives day-ahead energy 

prices and a regulation signal which dynamically sets 

regulation target and constraints for power consumption in the 

data center. The ISO sends this regulation signal at the 

beginning of each billing period (which is considered to be a 

single day) as the desired power dissipation profile during the 

current billing period. The data center attempts to meet the 

target power consumption profile (with some acceptable 

variance). Each billing period is divided into multiple time 

slots. For each time slot, the data center will be rewarded with 

a higher discount in energy price if it achieves a closer match 

with the desirable power dissipation value. 

We adopt the Generalized Process Sharing (GPS) modeling, 

which is a generic stochastic model based on queuing theory 

[21], to describe the data center behavior. To be realistic, we 

use the Google data center trace [22] as workload for the data 

center. Also, we use the average response time for requests 

from each client as a measure of the quality of service (QoS). 

In other words, the SLA is interpreted as keeping the average 

response time for client requests below a pre-specified value. 

This figure of merit is usually used in web service data 

centers.  

Based on the data center modeling and SLA constraints, we 

present a two-tier hierarchical solution for the data center 

controller, which performs optimal request dispatch and 

resource allocation in the data center. The proposed solution 

achieves optimality in minimizing the overall cost with 

polynomial time complexity. Experimental results 

demonstrate that data centers can significantly reduce their 

overall cost by exploiting the proposed approach. 

The rest of this paper is organized as follows. In section II we 

introduce some related works done in this area. In section III, 

we formulate the problem and introduce the parameters. In 

section IV, we introduce our models and methodologies for 

solving the problem. In section V, our experimental results are 

presented. Finally in section VI, we conclude and introduce 

some future works in this area. 

II. RELATED WORK 

Power regulation market has received much interest in the 

recent past. A number of studies have focused on investigating 

the impact of regulation market on data centers, and answering 

the question of whether or not it is profitable for data centers 

to participate in the regulation market. In [8], Chen et al. 

investigated the ability of server clusters to meet the 

regulation market demands while meeting acceptable quality 

of service (QoS) for users. They proposed a dynamic server 

power regulation policy using dynamically arriving regulation 

signal requests from ISO, randomly arriving workload and 

probabilistic QoS constraints. Ghamkhari et al. proposed an 

optimization-based strategy to maximize the total profit in 

data centers [7]. Aksanli and Rosing developed a battery-

based framework that helps with providing ancillary services 

as well as limiting peak power costs in data centers [23]. In 

[25], Chen et al. used server power capping techniques as well 

as various power states for servers in order to propose a 

dynamic power control policy for modulating power 

consumption in data centers in response to regulation signal 

requests from ISO. 

III. SYSTEM MODEL 

We consider a data center comprising 𝑁 servers. Each server 

processes service requests based on a first come first serviced 

(FCFS) policy. This data center is equipped with a cooling 

system whose coefficient of performance (COP) is denoted by 

𝐶𝑂𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔. Also we assume that the required electrical energy 

of the data center is supplied by the power grid, i.e., there are 

no on-site electrical energy production facilities. Fig. 1 

provides an overview of various components in the system. In 

the following, we explain our system model in terms of power 

consumption, electrical energy pricing, workload 

management, and quality of service measurement.  

As illustrated by (1), the total power dissipation in a data 

center consists of two components: the processing power 

(𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔) and the cooling power (𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔). The processing 

power refers to the power consumed by servers which are the 

processing units in the data center. The servers produce a great 

amount of heat, which necessitates a robust cooling system in 

the data center. The power consumed by the cooling system is 

referred to as cooling power. The cooling power is assumed to 

be proportional to the processing power as shown in (2) [26]. 

Moreover, there is a coefficient 
1

𝑒𝑓𝑓
 in (1) which accounts for 

the effectiveness of the power distribution network in the data 

center. The 𝐶𝑂𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔 and 
1

𝑒𝑓𝑓
 coefficients are extracted from 

electrical and physical characteristics of the data center. 

𝑃𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟 =
1

𝑒𝑓𝑓
(𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 + 𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔) 

(1) 

𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔 =
1

𝐶𝑂𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔
∙ 𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 

(2) 

The power consumption of a Blade server (employed in the 

data center) consists of two parts: the static and dynamic 

power. The static power in a server (𝑃𝑠𝑒𝑟𝑣𝑒𝑟
𝑠 ) refers to the 

power consumption of the server in idle state, when the server 

is not processing any user requests. 𝑃𝑠𝑒𝑟𝑣𝑒𝑟
𝑠  is given by 

𝑃𝑠𝑒𝑟𝑣𝑒𝑟
𝑠,𝑚𝑎𝑥 × 𝜙𝑠𝑒𝑟𝑣𝑒𝑟  in which 𝑃𝑠𝑒𝑟𝑣𝑒𝑟

𝑠,𝑚𝑎𝑥
 is the maximum static 

power consumption of the server depending on server 

characteristics, and 𝜙𝑠𝑒𝑟𝑣𝑒𝑟  denotes the portion of resources in 

the server that have been allocated for request processing 

(please note that the resources that are not allocated for 

request processing are assumed to be power gated.) The 

dynamic power consumption refers to the amount of power 

consumed by a server for processing requests. Dynamic power 

of a data center server can be modeled as 𝑃𝑠𝑒𝑟𝑣𝑒𝑟
𝑑,𝑚𝑎𝑥 × 𝑈𝑠𝑒𝑟𝑣𝑒𝑟  in 

which 𝑃𝑠𝑒𝑟𝑣𝑒𝑟
𝑑,𝑚𝑎𝑥

 is the maximum dynamic power in the server 

depending on server characteristics, and 𝑈𝑠𝑒𝑟𝑣𝑒𝑟  is the 



utilization level of the server (will be derived later). The total 

power consumption in a server is given by: 

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝑠𝑒𝑟𝑣𝑒𝑟
𝑑,𝑚𝑎𝑥 ∙ 𝑈𝑠𝑒𝑟𝑣𝑒𝑟 + 𝑃𝑠𝑒𝑟𝑣𝑒𝑟

𝑠,𝑚𝑎𝑥 ∙ 𝜙𝑠𝑒𝑟𝑣𝑒𝑟 
(3) 

where 𝑈𝑠𝑒𝑟𝑣𝑒𝑟  and 𝜙𝑠𝑒𝑟𝑣𝑒𝑟  range from 0 to 1. The total 

processing-related power consumption in the data center is 

then derived as the summation of the power consumption of 

each server. As a result, the processing power of the data 

center is derived as (4). 

𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = ∑ 𝑃𝑠𝑒𝑟𝑣𝑒𝑟
𝑖

𝑁

𝑖=1

 (4) 

In this paper we use a time-of-use (TOU) energy pricing 

model in which the data center receives the energy price 

function at the beginning of each billing period, which is one 

day. The energy price may be different at different times 

during the billing period. This energy price function will be 

valid until the end of current billing period. We also assume 

that the data center is participating in an ancillary service 

market, and receives the regulation requirements from the ISO 

in the beginning of each billing period. These regulation 

requirements will be valid during the current billing period.  

An important part of our model is the regulation requirements. 

By participating in the ancillary service market, the data center 

controller should try to adjust the data center power 

consumption with the power regulation target. For each billing 

period, the data center should establish a power management 

policy to keep its power consumption close to the desired 

target levels (and trend) as determined by the regulation 

signal. As the power consumption in the data center is a 

function of utilization level of its servers, this power 

management policy can be interpreted as power-aware service 

request assignment and processing in the data center. The 

service request assignment and processing also depend on the 

arrival rate of service requests, and quality service guarantees. 

We divide the billing period into time slots. In each time slot, 

we assign service requests to servers based on energy price, 

regulation requirements, and quality of service requirements. 

As stated earlier we adopt a GPS model for the data center 

service request management. In the GPS model, each server is 

assumed to maintain a service request queue for the service 

requests assigned to it, and process service requests in a FCFS 

basis. We model the service request queues using M/M/1 

queueing model [27]. The processing rate of service requests 

in each server depends on the amount of allocated resources. 

Let 𝜇𝑖 denote the request processing rate of server 𝑖 when all 

of its resources have been allocated. With a properly chosen 

time slot length, we can assume that server characteristics do 

not change during a time slot, and thus, we use 𝜙𝑖𝑗  to 

represent the portion of allocated resources in server 𝑖 during 

time slot 𝑗 , which is defined as in (5) (𝜙𝑖𝑗  corresponds to 

𝜙𝑠𝑒𝑟𝑣𝑒𝑟  as defined earlier). In this equation, 𝜓𝑖
𝑡𝑜𝑡𝑎𝑙  denotes the 

total processing resources in server 𝑖 , and 𝜓𝑖
𝑗

 denotes the 

amount of allocated resources in server 𝑖 during time slot 𝑗. 

𝜙𝑖𝑗 ≜
𝜓𝑖

𝑗

𝜓𝑖
𝑡𝑜𝑡𝑎𝑙

 (5) 

We assume that user requests arrive at the data center with 

rate 𝜆𝑗  during time slot 𝑗 , with an exponentially distributed 

inter-arrival time (i.e., Poisson arrival model). Each server 𝑖 in 

the data center receives a portion of the user requests arriving 

at the data center in every time slot 𝑗 , denoted by 𝜆𝑖𝑗 , as 

calculated in (6). In this equation, 𝑝𝑖𝑗  is the probability of 

assigning service requests to server 𝑖 in time slot 𝑗. 

𝜆𝑖𝑗 = 𝑝𝑖𝑗 ∙ 𝜆𝑗 (6) 

According to queuing theory principles [27], we can derive the 

busy time of a data center server during any time slot. The 

ratio of the busy time of server 𝑖 during time slot 𝑗 to the time 

slot length is 
𝜆𝑖𝑗

𝜙𝑖𝑗𝜇𝑖
. The utilization level of the server during 

the time slot is proportional to this ratio as well as the portion 

of allocated resources 𝜙𝑖𝑗
1 . Hence, the utilization level of 

server 𝑖 during time slot 𝑗 is given by 

𝑈𝑖𝑗 =
𝑝𝑖𝑗 ∙ 𝜆𝑗

𝜇𝑖
 (7) 

                                                           
1 This is because the dynamic power consumption depends on both the 

amount of allocated resources and the portion of time that those available 
resources that are busy. 

 

Fig. 1 The overview of the data center system. 
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The reward model for participating in the ancillary service 

market in time slot 𝑗  is given in (8) 2 . In this equation, 

𝑃𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟
𝑗

  and 𝑃𝑡𝑎𝑟𝑔𝑒𝑡
𝑗

, respectively, denote the power 

consumption of data center and target power consumption 

during this time slot. 𝜖𝑗 and 𝜁𝑗  are reward coefficients defined 

in the regulation signal. The reward will be maximized when 

𝑃𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟
𝑗

 is equal to 𝑃𝑡𝑎𝑟𝑔𝑒𝑡
𝑗

, i.e. when the data center exactly 

meets the target power consumption set by the regulation 

signal. 

𝑅𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑀𝑎𝑥 {0, (𝜖𝑗
2 − (𝑃𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟

𝑗
− 𝑃𝑡𝑎𝑟𝑔𝑒𝑡

𝑗
)

2
) ∙ 𝜁𝑗} (8) 

The data center is responsible for providing an acceptable 

quality of service for its users. In this work, we use the 

average response time during the whole billing period (a day) 

to represent the quality of service. The data center needs to 

satisfy an upper limit on the average response time. The 

average response time depends on the average service time of 

requests processed in each server, which depends on the 

arrival rate of requests and characteristics of the server. The 

average response time in the data center over the billing period 

is given by: 

𝑅𝑒𝑠𝑝𝑎𝑣𝑔 =
1

𝑀 ∙ 𝑁
∑ ∑

𝑝𝑖𝑗

𝜙𝑖𝑗 ∙ 𝜇𝑖 − 𝑝𝑖𝑗 ∙ 𝜆𝑗

𝑁

𝑖=1

𝑀

𝑗=1

 (9) 

in which 𝑀  denotes the number of time slots in the billing 

period and 𝑁 denotes the number of servers in the data center. 

IV. PROBLEM FORMULATION 

As shown in Fig. 2, we divide the billing period into 𝑀 time 

slots, with equal length. Power consumption of the data center 

during time slot 𝑗 can be written as in (10). In this equation, 

𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔
𝑗

 denotes the processing power in the data center 

during time slot 𝑗. 

𝑃𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟
𝑗

=
1

𝑒𝑓𝑓
(1 +

1

𝐶𝑂𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔
) ∙ 𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔

𝑗
 (10) 

Service request arrival rate changes over time and usually 

there are high-load periods as well as near-idle periods in the 

data center during the billing period. Hence, we consider 

workload consolidation strategy in our formulation, in which 

we may decide to turn off/on a number of servers in the data 

center depending on the service request arrival rate in the 

beginning of each time slot. Please note that power gated 

servers can be turned on/off very rapidly, so, the delay to this 

process is much lower than the time-slot length which is 10 

minutes. 

Based on (3), (4), and (7), we calculate 𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔
𝑗

 using (11). 

In this equation, 𝑌𝑖𝑗  denotes the on/off state of the server 𝑖 

during time slot 𝑗. The 𝑌𝑖𝑗  value is 1 when the server is on, and 

                                                           
2 Reward calculation is usually based on power reserve as in [24], [7]. In this 

paper we assume that the regulation signal is available for the whole day. So, 
the we can write the reward function as in (8) 

0 otherwise. We may change the state of the servers in the 

beginning of each time slot.  

𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔
𝑗

= ∑ 𝑌𝑖𝑗 × (𝑃𝑖
𝑑,𝑚𝑎𝑥 ∙ (

𝑝𝑖𝑗𝜆𝑗

𝜇𝑖
) + 𝑃𝑖

𝑠,𝑚𝑎𝑥 ∙ 𝜙𝑖𝑗)

𝑁

𝑖=1

 (11) 

We calculate the total energy cost of the data center in the 

billing period as: 

𝐸𝐶𝐷𝑆 = ∑(𝐸𝑃𝑗 ∙ 𝑃𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟
𝑗

− 𝑅𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑗

)

𝑀

𝑗=1

 (12) 

where 𝐸𝑃𝑗 is the energy price in time slot 𝑗, and 𝑅𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑗

 is 

derived in (8). We also have the equation for average response 

time 𝑅𝑒𝑠𝑝𝑎𝑣𝑔  in data center from (9). The objective is to 

minimize the energy cost in data center (𝐸𝐶𝐷𝑆) while keeping 

the average response time less than the acceptable threshold 

( 𝛿 ) 3 . The optimization problem is formally described as 

follows: 

min
𝑌𝑖𝑗,𝜙𝑖𝑗,𝑝𝑖𝑗

∑(𝐸𝑃𝑗 ∙ 𝑃𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟
𝑗

− 𝑅𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑗

)

𝑀

𝑗=1

 

subject to: 
1

𝑀 ∙ 𝑁
∑ ∑

𝑝𝑖𝑗

𝜙𝑖𝑗 ∙ 𝜇𝑖 − 𝑝𝑖𝑗 ∙ 𝜆𝑗

𝑁

𝑖=1

𝑀

𝑗=1

≤ 𝛿 

where: 
𝑃𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟

𝑗
=

1

𝑒𝑓𝑓
× (1 +

1

𝐶𝑂𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔

)

× ∑ 𝑌𝑖𝑗 ∙ (𝑃𝑖
𝑑,𝑚𝑎𝑥 ∙ (

𝑝𝑖𝑗 ∙ 𝜆𝑗

𝜇𝑖

) + 𝑃𝑖
𝑠,𝑚𝑎𝑥 ∙ 𝜙𝑖𝑗)

𝑁

𝑖=1

 

 
𝑅𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑗
= 𝑀𝑎𝑥 {0, (𝜖𝑗

2 − (𝑃𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟
𝑗

− 𝑃𝑡𝑎𝑟𝑔𝑒𝑡
𝑗

)
2

) ∙ 𝜁𝑗} 

 
𝑌𝑖𝑗 ∈ {0, 1}  

 

𝜙𝑖𝑗  &  𝑝𝑖𝑗 ∈ [0, 1]  𝑎𝑛𝑑  ∑ 𝑝𝑖𝑗

𝑁

𝑖=1

= 1 

 𝜙𝑖𝑗𝜇𝑖 − 𝑝𝑖𝑗𝜆𝑗 > 0 

𝑝𝑖𝑗 ∙ 𝜆𝑗

𝜇𝑖

< 1 

According to aforementioned formulation, we aim at finding 

proper values for the variables 𝑌𝑖𝑗 , 𝑝𝑖𝑗 ,  and 𝜙𝑖𝑗 for every time 

slot 𝑗 and every server 𝑖 during the billing period. 

                                                           
3 Please note that our optimization framework is general in that the percentile 

of response time that exceeds a limit value can be considered as a metric in 
SLA, as shown in reference [7]. 

 

Fig. 2 Regulation signal over a billing period. 



V. PROBLEM SOLUTION 

Solving the overall optimization problem in one shot will have 

a high computation time because of the large number of 

optimization variables, and complexity of convex optimization 

algorithms. In order to reduce the computation complexity, we 

employ a hierarchical solution for the overall problem. More 

specifically, we first focus on a single time slot and minimize 

the energy cost during that time slot with different response 

time constraints, denoted by 𝛿′. In other words, we derive a 

relationship between the response time constraint 𝛿′ and the 

minimum energy cost in the data center during each time slot. 

Based on this relationship in each time slot, we apply a 

dynamic programming approach to solve the overall 

optimization problem during the billing period.  

We can write the optimization problem for time slot j as: 

min
𝜙𝑖𝑗,𝑝𝑖𝑗

𝐸𝑃𝑗 ∙ 𝑃𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟
𝑗

− 𝑅𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑗

 

Subject to: 1

𝑁
∑

𝑝𝑖𝑗

𝜙𝑖𝑗 ∙ 𝜇𝑖 − 𝑝𝑖𝑗 ∙ 𝜆𝑗

𝑁

𝑖=1

≤ 𝛿′ 

Where: 
𝑃𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟

𝑗
=

1

𝑒𝑓𝑓
∙ (1 +

1

𝐶𝑂𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔

)

× ∑ (𝑃𝑖
𝑑,𝑚𝑎𝑥 ∙ (

𝑝𝑖𝑗 ∙ 𝜆𝑗

𝜇𝑖

) + 𝑃𝑖
𝑠,𝑚𝑎𝑥 ∙ 𝜙𝑖𝑗)

𝑁

𝑖=1

 

𝑅𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑗

= 𝑀𝑎𝑥 {0, (𝜖𝑗
2 − (𝑃𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟

𝑗
− 𝑃𝑡𝑎𝑟𝑔𝑒𝑡

𝑗
)

2
) ∙ 𝜁𝑗} 

𝜙𝑖𝑗  &  𝑝𝑖𝑗 ∈ [0, 1]  𝑎𝑛𝑑  ∑ 𝑝𝑖𝑗

𝑁

𝑖=1

= 1 

𝑝𝑖𝑗 ∙ 𝜆𝑗

𝜇𝑖𝑗

≤ 1 

𝜙𝑖𝑗𝜇𝑖 − 𝑝𝑖𝑗𝜆𝑗 > 0 

𝛿𝑚𝑖𝑛 ≤ 𝛿′ ≤ 𝛿𝑚𝑎𝑥 

𝑝𝑖𝑗 ∙ 𝜆𝑗

𝜇𝑖

< 1 

In this formulation, we define maximum and minimum values 

for response time constraints (constraint on 𝛿′), denoted by 

𝛿𝑚𝑖𝑛  and 𝛿𝑚𝑎𝑥 , respectively. 𝛿𝑚𝑖𝑛  depends on the service 

request arrival rate at data center and the processing rate of the 

servers. On the other hand, 𝛿𝑚𝑎𝑥  is set by the data center 

manager and determines the maximum acceptable response 

time to service requests during the time slot. This value should 

be greater than 𝛿.  

We can employ a convex optimization method to solve the 

aforesaid problem in each time slot j as explained next. In the 

optimization problem, whenever a server needs to be turned 

off (its power consumption is 0, and it is not involved in 

response time calculation), we can either assign an binary (0 

or 1) coefficient 𝑌𝑖𝑗  and set it to 0 (as shown in the formulation 

in the previous section), or set 𝑝𝑖𝑗 and 𝜙𝑖𝑗 to 0. The latter one 

is more desirable since we do not want to add more 

complexity to the optimization problem by adding integer 

variables. So, we do not need to consider 𝑌𝑖𝑗  in this 

optimization procedure. We observe that when either the 𝑝𝑖𝑗  

values or the 𝜙𝑖𝑗  values are fixed, the optimization problem 

becomes a convex optimization problem with convex 

objective function and convex inequality constraints. For the 

objective function, 𝑃𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟
𝑗

 is a linear function of 𝜙𝑖𝑗 's (or 

𝑝𝑖𝑗 's), and 𝑅𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑗

 is a concave function of 𝜙𝑖𝑗 's (or 𝑝𝑖𝑗 's) 

when |𝑃𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟
𝑗

− 𝑃𝑡𝑎𝑟𝑔𝑒𝑡
𝑗

| ≤ 𝜖𝑗. Thus the objective function 

is a convex function of 𝜙𝑖𝑗 's with given 𝑝𝑖𝑗  values and vice 

versa. On the other hand, the constraints are either linear 

equality constraints, or convex inequality constraints of 𝜙𝑖𝑗 's 

with given 𝑝𝑖𝑗  values and vice versa. Hence, we adopt an 

iterative solution to solve the optimization problem in each 

time slot j. In an iterative manner, we derive the optimal 𝜙𝑖𝑗 

values with given 𝑝𝑖𝑗 's, and derive the optimal 𝑝𝑖𝑗  values with 

given 𝜙𝑖𝑗 's, using standard convex optimization techniques in 

polynomial time complexity [28]. This is a near-optimal 

solution according to the theoretical analysis in [21].  

We use Matlab to solve the problem (fmincon function). We 

have to solve the problem by using different values for 𝛿′ 
during different time slots. In this paper, we use K=100 

different values for 𝛿′ uniformly distributed between 𝛿𝑚𝑖𝑛 and 

𝛿𝑚𝑎𝑥 for each time slot.  

Up to now, we have derived the minimum energy cost in each 

time-slot for each 𝛿′ value. We adopt a dynamic programming 

approach to find the minimum total energy cost during the 

billing period as explained next. We pick one of the 

(𝛿′, 𝐸𝐶𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟
𝑗,𝑚𝑖𝑛

) pairs from each time slot 𝑗. We pick these 

pairs so that the summation of the 𝛿′ values over all time-slots 

is less than 𝑀 ∙ 𝛿 . In order to make this problem solvable 

using a dynamic programming approach (i.e., solvable by 

filling tables), we map each 𝛿′ value (between 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥) 

to an index 𝑘 (note that we have 𝐾 different 𝛿′ values whose 

indices are from 1 to 𝐾). We build a matrix C in a way that 

every element C[k][j] stores both the minimum energy cost 

( 𝐶[𝑘][𝑗]. 𝑓𝑖𝑟𝑠𝑡 ) and the corresponding values for the 

optimization variables (𝐶[𝑘][𝑗]. 𝑠𝑒𝑐𝑜𝑛𝑑) in time slot 𝑗 under 

the kth value of response time constraint 𝛿′ (𝛿𝑘
′ ). As shown in 

Fig. 3 we create a matrix 𝐴 comprised of 𝑘𝛿 ∙ 𝑀 rows and 𝑀 

columns ( 𝑀  is the number of time slots and 𝑘𝛿 ∙ 𝑀 < 𝐾 ) 

which will be used to derive the minimum energy cost in data 

 
Fig. 3 Dynamic programming matrix (Matrix A) constructed to solve the 
problem over the billing period. 
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center during the billing period. We calculate the elements in 

matrix 𝐴 following the steps explained in Algorithm 1: 

In this algorithm, we assume that 𝑘𝛿
𝑡ℎ 𝛿′ value is equal to 𝛿. 

This assumption will be valid by proper choosing of 𝛿′ values. 

Each element 𝐴[𝑘][𝑗]  maintains (i) a minimal energy cost 

value and (ii) the corresponding optimization variable values 

picking which assures that the summation of response times 

for the first j time slots will be less than or equal to 𝛿𝑘
′ .  

Using matrix A we can derive the minimum energy cost value 

in the data center during the billing period by following the 

steps in Algorithm 2.  

Algorithm 2: Finding minimum energy cost value in data 

center during the billing period and proper values for 

optimization variables in each time slot which results in 

minimizing the energy cost during the billing period. 

Input: Matrix C, containing the energy cost values of data 

center during each time slot for different response time 

constraints and the corresponding values for optimization 

variables. 

Output: 𝐸𝐶𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒
𝑚𝑖𝑛  and values for 𝑝𝑖𝑗  and 𝜙𝑖𝑗  for all the 

servers during all the time slots which results in minimizing 

the energy cost in data center (vector 𝐵). 
14. 𝑘′ ← Argmin

1≤𝑘≤ 𝑀∙𝑘𝛿

{𝐴[𝑘][𝑀]. 𝑓𝑖𝑟𝑠𝑡}  

15. 𝐸𝐶𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒
𝑚𝑖𝑛  ← 𝐴[𝑘′][𝑀]. 𝑓𝑖𝑟𝑠𝑡 

16. 𝐵[𝑀] ← 𝐶[𝐴[𝑘′][𝑀]. 𝑠𝑒𝑐𝑜𝑛𝑑][𝑀]. 𝑠𝑒𝑐𝑜𝑛𝑑 

17. 𝑡𝑒𝑚𝑝 ← 𝐴[𝑘′][𝑀]. 𝑠𝑒𝑐𝑜𝑛𝑑 

18. FOR 𝑗 = 𝑀: 2  

19.     𝑡𝑒𝑚𝑝 ← 𝐴[𝑘′ − 𝑡𝑒𝑚𝑝][𝑗 − 1]. 𝑠𝑒𝑐𝑜𝑛𝑑 

20.     𝑘′ ← 𝑘′ − 𝑡𝑒𝑚𝑝 

21.     𝐵[𝑗 − 1] ← 𝐶[𝑡𝑒𝑚𝑝][𝑗 − 1]. 𝑠𝑒𝑐𝑜𝑛𝑑  
22. ENDFOR 

23. RETUN 𝐸𝐶𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒
𝑚𝑖𝑛  and 𝐵 

In this algorithm we first find the minimum energy cost value 

in the data center during the billing period, satisfying the 

response time constraints. To do this we simply find the 

minimum energy cost value in the 𝑀𝑡ℎ column of matrix 𝐴, 

from row 1  to 𝑀 ∙ 𝑘𝛿 . Now, we have to find all the 

corresponding elements in matrix 𝐴  that were involved in 

calculating the element we picked from the last column. For 

this, we use the backtrack method [29]. After finding all these 

elements, we can use matrix 𝐶  to find the corresponding 

values for optimization variables. 

The dynamic programming method described above produces 

an optimal solution to the problem in 𝑂(𝑀 ∙ 𝐾^2)  time 

complexity and with 𝑂(𝑀 ∙ 𝐾 ∙ 𝑁) space complexity.  

VI. EXPERIMENTAL RESULTS 

In the experiments we set the billing period to be one day and 

the time slot to be 10 minutes. Hence, one billing period is 

comprised of 144 time slots. During this period, we adopt a 

time-of-use energy price function as shown in Fig. 4. The 

energy price function is normalized by the maximum price 

during the billing period, and changes every hour during the 

billing period. The service request arriving rate during the 

billing period is shown in Fig. 5. This information is extracted 

from the google trace. We also set the characteristics of our 

benchmarking data center as shown in Table 1.  

Table 1 Data center characteristics in the experiments. 

Number of servers (𝑁) 100 

𝐶𝑂𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔 5 

1

𝑒𝑓𝑓
 1.4 

We conduct experiments on a data center with 100 servers, the 

power consumptions of which are estimated based on their 

processing resources (CPU and memory). We assume that the 

static and dynamic power consumption of a server has a linear 

relation with its processing resources (~𝛼 ∙ 𝐶𝑃𝑈 + 𝛽 ∙ 𝑀𝐸𝑀). 

In the Google trace, resources of different servers are 

normalized with respect to the largest amount of resources 

among them. 

Table 2 Different server types in the data center. 
CPU memory count 

1 1 6 

0.5 0.75 8 

0.5 0.5 55 

0.5 0.25 29 

0.25 0.25 2 
 

Algorithm 1: Creating matrix A. 

Input: Matrix C, containing the energy cost values of data 

center during each time slot for different response time 

constraints and the corresponding values for optimization 

variables. 

Output: Matrix 𝐴. 
1. FOR 𝑗 = 1: 𝑀 
2.   FOR 𝑘 = 1: 𝑘𝛿 ∙ 𝑀 
3.      IF 𝑗  𝑒𝑞𝑢𝑎𝑙𝑠 𝑡𝑜 1 THEN 

4.          𝐴[𝑘][𝑗]. 𝑓𝑖𝑟𝑠𝑡 ←  min
1≤𝑘𝑗≤𝑘

{𝐶[𝑘𝑗][𝑗]. 𝑓𝑖𝑟𝑠𝑡} 

5.          𝐴[𝑘][𝑗]. 𝑠𝑒𝑐𝑜𝑛𝑑 ←  Argmin
1≤𝑘𝑗≤𝑘

{𝐶[𝑘𝑗][𝑗]. 𝑓𝑖𝑟𝑠𝑡} 

6.     ELSE  

7.          𝑘𝑗
′ ← Argmin

1≤𝑘𝑗≤ 𝑘
{𝐶[𝑘𝑗][𝑗]. 𝑓𝑖𝑟𝑠𝑡 +  𝐴[𝑘 − 𝑘𝑗][𝑗 − 1]}  

8.          𝐴[𝑘][𝑗]. 𝑓𝑖𝑟𝑠𝑡 ←  𝐴[𝑘 − 𝑘𝑗
′][𝑗 − 1]  +  𝐶[𝑘𝑗

′][𝑗] 

9.          𝐴[𝑘][𝑗]. 𝑠𝑒𝑐𝑜𝑛𝑑 ← 𝑘j
′ 

10.     ENDIF 
11.   ENDFOR 

12. ENDFOR 

13. RETURN 𝐴 

 

Fig. 4 Normalized time of use energy pricing profile during a day. 
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Table 2 shows the normalized amounts of resources in data 

center servers and the number of servers with that amount of 

resources. 

We run our experiment for 144 time slots using the fmincon 

function in Matlab. We conduct the experiment with 100 

different 𝛿′  values, which are uniformly distributed between 

the minimum possible response time of the data center (when 

the service request rate is the minimum among the Google 

trace and all the servers have allocated all their resources) and 

the maximum possible response time of the data center (when 

the service request rate is the maximum among the Google 

trace and the minimum number of servers are powered on 

using the minimum amount of resources). The minimum 

number of servers and minimum resources in the latter case 

are achieved by solving the optimization problem without 

considering the response time constraint, and trying to 

minimize the power consumption. We derive the optimization 

variable values that result in the minimum energy cost for 

different 𝛿′ values in each time slot. After that, we employ our 

dynamic programming approach so that the total energy cost 

of the data center is minimized in the billing period and the 

response time constraint is satisfied. 

We also investigate two baseline approaches in which the data 

center is not participating in the regulation market and only 

tries to minimize its power consumption. In Baseline1 the data 

center uses the same request dispatch and resource allocation 

approach as the proposed system except that it does not 

participate in the regulation market, whereas in Baseline2 the 

incoming service requests are equally assigned to data center 

servers, i.e. all 𝑝𝑖𝑗  values are set to be 
1

𝑁
 and we find the 

proper 𝜙𝑖𝑗  values to minimize the energy cost in the data 

center. 

Fig. 6 shows the target regulation power profile during the 

billing period. The values in this figure are normalized to the 

highest value during the billing period. The regulation reward 

is set relative to the energy price value, and it ranges from 0 to 

50 percent of the energy cost in the data center in each time 

slot, depending on how close is the power consumption in data 

center to the target regulation power during the time slot.  In 

our simulations, we assume 𝜖𝑗 = 0.15 ∙ 𝑃𝑡𝑎𝑟𝑔𝑒𝑡
𝑗

. We also set 𝜁𝑗  

based on the value of 𝐸𝑃𝑗 . 

Table 3 illustrates the total energy cost values during the 

billing period for the two baseline approaches and our 

proposed approach. As one can see, the energy cost in 

Baseline2 is very high compared to Baseline1 and the 

proposed approach. Fig. 7 shows the energy cost values in the 

data center during each time slot. These values are normalized 

to the maximum energy cost value which happens in the 116th 

time slot using Baseline2.  

Table 3 energy cost in the data center for different approaches. 

Approach Energy Cost 

Baseline1 0.42 

Baseline2 1 

Regulation-based 0.36 

 

Fig. 5 Service request arrival rate at different time slots in a day. 

   

Fig. 6 The target regulation power profile during the billing period. 

             

Fig. 7 The energy cost profile during the billing period using different approaches. 
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As we can see, Baseline2 results in a huge energy cost in the 

data center. Also, there is a 13% reduction in the energy cost 

for the data center in the case of participating in the power 

regulation market as compared to the case in which we only 

optimize requests dispatch and resource allocation 

(Baseline1).  

VII. CONCLUSION 

This paper considers the scenario where the smart grid 

employs both day-ahead dynamic energy prices and regulation 

signals to incentivize data centers to simultaneously reduce 

energy cost and participate in an ancillary service market. The 

data center controller schedules task dispatch and resource 

allocation among servers in order to minimize its overall cost, 

which is the electricity cost based on time-of-use energy 

prices subtracted by the monetary compensation that the data 

center may receive due to offering ancillary services. 

Moreover, the cloud computing system needs to satisfy the 

average latency requirement in processing requests as 

specified in its service-level agreements (SLAs). A two-tier 

hierarchical solution is proposed for the data center controller, 

which achieves optimality in minimizing the overall cost with 

polynomial time complexity. Experimental results on Google 

traces demonstrate the effectiveness of the proposed solution 

on minimizing the overall cost of the cloud computing system. 
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