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ABSTRACT - In deep sub-micron technology, accurate modeling 
of output waveforms of library cells under different input slew and 
load capacitance values is crucial for precise timing and noise 
analysis of VLSI circuits. Construction of a compact and efficient 
model of such waveforms becomes even more challenging when 
manufacturing process and environmental variations are 
considered. This paper introduces a rigorous and robust foundation 
to mathematically model output waveforms under sources of 
variability and to compress the library data. The proposed 
approach is suitable for today’s current source model (CSM) based 
ASIC libraries. It employs an orthonormal transformation to 
represent the output waveforms as a linear combination of some 
appropriately-derived basis waveforms. More significantly Robust 
Principle Component Analysis (RPCA) is used to stratify the 
library waveforms into a small number of groups for which 
different sets of principle components are calculated. This 
stratification results in a very high compression ratio for the 
variational CSM library while meeting a maximum error tolerance. 
Interpolation and further compression is obtained by representing 
the coefficients as signomial functions of various parameters, e.g., 
input slew, load capacitance, supply voltage, and temperature. We 
propose a procedure to calculate the coefficients and power of the 
signomial functions. Experimental results demonstrate the 
effectiveness of the proposed variational CSM modeling framework 
and the stratification-based compression approach. 

Keywords- Current Source Model; Robust Principle Component 
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I.INTRODUCTION 
As we move towards the 32nm and lower device feature sizes, process 
variations are becoming an ever increasing concern for the design of 
high performance integrated circuits  [1]. The process variations can 
cause excessive uncertainty in timing calculation, which in turn calls 
for sophisticated analysis techniques to reduce the uncertainty. As the 
number of variation sources increases, corner-based static timing 
analysis (STA) techniques become computationally very expensive. 
Moreover, with the decreasing size of transistors and interconnect 
width, the variation of electrical characteristics of logic cells and on-
chip wires is getting proportionally higher.  
Delay and slew based library cell modeling methodology is not 
adequate for the new nanometer-era CMOS technologies any more 
 [1] [2]. This is due in part to the highly nonlinear response behavior of 
devices and interconnections in deep submicron regimes. Current 
Source Modeling (CSM) has been introduced as an alternative analysis 
approach for accurate delay modeling in such regimes  [3]- [5]. To 
maintain some compatibility with standard flows and tools, ECSM  [6] 
(proposed by Cadence Design Systems), and CCS  [7] (developed by 
Synopsys) are extensions of the Liberty library format.  
CSM modeling needs the storage of tables of current or voltage 
waveforms. Moreover, timing analysis requires a library 
characterization with more points in the process, voltage, and 
temperature (PVT) space so as to handle static and dynamic variations 
in device and interconnect behavior. A complete set of waveform-based 
library characterization data for different PVT variables and for timing, 
noise and power analyses would result in an explosion of the library 
modeling data.  

To address this data explosion problem, a compact variational model 
waveform was presented in  [8], which stores only the nominal 
waveforms, yet it allows the analysis tools to produce any perturbed 
waveform by using appropriate time/voltage shift or scale operations. 
This is a step in the right direction; but unfortunately it does not solve 
the problem i.e., the proposed method still requires large memory 
footprint to store the nominal waveforms. The Singular Value 
Decomposition (SVD) algorithm proposed in  [9] solves the latter 
problem by modeling the voltage waveforms of the logic cells as a 
linear combination of a fixed set of basis waveforms. Reference  [10] 
addresses adaptive compaction of current-source model libraries by 
representing each waveform using a variable number of basis 
waveforms, i.e. using 2-3 basis waveforms to represent a large subset of 
waveforms and using up to 14 basis waveforms for a small subset of 
waveforms. The method results in one to two orders of magnitude 
reduction in the size of the stored characterization data. 
The present paper extends  [10] to handle variational waveforms for 
statistical static timing analysis (SSTA). Additionally it presents a 
mathematical foundation to relate the accuracy of compressed data in 
the reduced space to that in the uncompressed space. In particular it 
utilizes robust principle component analysis (RPCA) to do 
stratification, robust compression, and outlying data detection. Our 
other key ideas are: (1) pre-align and then represent the variational 
output waveforms in a CSM library in terms of the alignment values 
and the coefficients of the first few principle directions, and (2) use 
input variable transformation and a combination of signomial 
hypersurface modeling to construct analytical models of the individual 
coefficients in terms of input elements which are random variables, 
input slews and load capacitances. The signomial modeling provides 
the necessary interpolated CSM waveforms at points not stored in the 
model tables as needed by timing algorithms. As another contribution, 
(3), this paper proposes a library waveform stratification algorithm 
which yields high compression ratios. The proposed algorithm is based 
on a robust (projection pursuit based) PCA. Finally, (4), we use RPCA 
to detect outlying and intricate waveforms. 

II.BACKGROUND  
This section gives an overview on the CSM based libraries and then 
reviews classical PCA.  

A. CSM Libraries 
Library cell pre-characterization is typically performed as follows. 
Circuit-level simulations are performed on the CMOS logic cells loaded 
by a range of capacitance values and excited by voltage ramps with a 
range of input slew values. ECSM-based characterization uses tables of 
cell voltage response tables while CCS-based libraries store the 
characterized data as tables of current as a function of time. In this 
paper, we focus on the ECSM type data which is more familiar and 
easier to explain. The concepts presented for variational ECSM 
waveform modeling can be generalized to handle variational CCS 
waveforms.  The storage of entire waveforms in the CSM methodology 
as opposed to only the propagation delay and output slew in non-CSM 
methodologies represents an order of magnitude or more increase in the 
characterization data volume, and thus, calls for data compression 
which comes at the expense of some accuracy.  

B. Principal Component Analysis (PCA) 
The key idea of PCA is to use a linear representation of the given data 
in a new coordinate system in which the subspace of high-information-



content data is easily distinguished from the subspace of low-
information-content or redundant data. PCA can be used for 
dimensionality reduction in a data set by retaining those characteristics 
of the data that contribute most to its variance. Compression is achieved 
by keeping lower-order principal components and ignoring higher-order 
ones. PCA is theoretically the optimum transform for fitting a given 
data set in the least squares sense.  
The input data set for a typical CSM (e.g., ECSM) includes the set of 
crossing time vectors representing the monotonic CSM time-versus-
voltage waveforms W(t) for various cells in the library: 
T = [t1,...,td] (1) 
Here tr, r = 1,…,d, represents the time instance at which an output 
waveform crosses the voltage threshold Vr = W(tr) = (r –1) × VDD / (d – 
1). The crossing time vector T is represented by d orthonormal bases Pr 
and associated coefficients αr as follows: 
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We denote the vector of coefficients as A = [α1,…,αd]. The 
dimensionality reduction is accomplished by keeping only the first m 
coefficients out of d coefficients. Therefore, in the reduced space  ℜm, 
any original crossing time vector T is approximated with a smaller 
vector Ta. The approximation error e is calculated as follows: 
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The upper bound on the approximation error, em, is given by: 
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Note that although all the presented theorems and algorithms assume 
monotonic voltage waveforms as the uncompressed input data, the 
proposed algorithm can be extended to handle the non-monotonic input 
waveforms. For example reference  [10] showed how to develop a PCA-
based compression technique for current waveforms which are not 
monotonic. We do not however discuss non-monotonic waveform 
handling in the rest of this paper. 

III.VARIATIONAL WAVEFORM MODELING IN AN ORTHONORMAL 
SPACE  

An accurate and memory-efficient statistical model of the CSM 
waveforms is desirable for statistical timing analysis. It is shown below 
that any PVT induced variation of CSM waveform can be fully 
accounted for by a combination of pre-alignment operations and 
orthonormal transformation. The pre-align operations and orthonormal 
transformation capture variations of CSM waveform in vertical (along 
the voltage axis) and horizontal (along the time axis) directions.  
We refer to sources of variations (mathematically modeled as random 
variables) as input parameters, B = [b1, …,bN], which perturb a CSM 
waveform from its nominal (typical case) form. For example supply 
voltage, temperature, Leff and Vth are four input parameters. Assume the 
nominal waveform W is changed to waveform WP due to a variation of 
random variable bi from its nominal value bi

1 to a perturbed value bi
* as 

shown in Fig. 1 (a). We refer the shift and scale operations in the 
direction of the voltage axis as V-operators.  
Theorem 1: Let WP denote a variational waveform of the nominal 
waveform W. If WP is monotone function, then WP can be constructed 
exactly by using the V-operators and orthonormal transform with d 
bases, where d is the number of sample points for each waveform W. 
All proofs in this paper are omitted due to space limitation. 
The shifting operator (the first V-operator) aligns the perturbed 
waveform WP to the origin. The scaling operator (the second V-
operator) confines the shifted waveform between 0 and VDD.  The 
shifted and scaled waveform WN can be modeled by orthonormal bases 
or principal components. Therefore the variational waveform WP can be 

modeled by using basis coefficients plus shift and scale values. Note 
that the basis coefficients for W and WN are not the same, i.e., any 
coefficient αr may undergo a variation because of variation of bi. 
Section 5 presents an approach to parameterize the variations of 
coefficients. Hence the impact of process variation can be captured by 
utilizing orthonormal transform and V-operators.  
The basis coefficients and V-operator values are collectively referred to 
as the output features and denoted by output vector, G, as follows: 
G = [g1, …, gd+2] = [k, h, α1, …, αd]  (5) 
where k and h are V-operator values. 

 
Fig. 1. (a) Impact of PVT variations on the nominal CSM waveform, (b) and (c) An 

illustration of the V‐operators (d) Nominal and normalized waveforms 
For example, Fig. 1 (b) shows that the first V-operator aligns WP to 
time axis by performing k units vertical shift toward the origin. The 
scaling operator (the second V-operator) confines the shifted waveform 
between 0 and VDD. Applying two V-operators to the perturbed 
waveform WP one after the other, results in the normalized waveform 
WN as shown Fig. 1(d). 
It is worth mentioning that the proposed statistical modeling is 
applicable even when the CSM waveform is characterized based on 
uniform time steps and constructing basis data set based on the voltage 
vector.  

IV.ROBUST PCA 
Classical principal components analysis (PCA) is very sensitive to 
outlying data, since it is computed from eigenvectors and eigenvalues 
of the non robust sample covariance or correlation matrix. A 
practitioner interpreting multivariate data solely on a classical PCA 
may therefore end up with wrong conclusions. This fact has been 
pointed out by many authors and has led to several robustifications of 
PCA  [11].  
Outlying data may arise when the library characterizer fails to properly 
characterize the output waveforms and thereby produces some 
erroneous data which is hard to detect them among tens of thousands 
waveforms. The characterization of complex cells such as multiplexers 
or simple cells under extreme input slew or output capacitance 
conditions may also give rise to strange waveforms which are another 
potential source of outlying data.  
A robust Projection-Pursuit (PP) based PCA method has been 
developed by Li and Chen  [12]. Like the classical PCA, this method 
searches for directions with maximal dispersion of the data projected on 
it. But instead of using the variance as a measure of dispersion, it uses a 
robust scale estimator S as the projection-pursuit index. In the following 
section, we introduce two robust scale estimators which are used in 
robust PP-based PCAs. Robust scale estimators are not unduly affected 
by small departures from model assumptions. In probability theory and 
statistics, a scale parameter is a special kind of numerical parameter of 
a parametric family of probability distributions. The larger the scale 
parameter, the more spread out the distribution. An estimator of a scale 
parameter is called a scale estimator. In order to quantify the robustness 



of a scale estimator, it is necessary to define some measures of 
robustness. Perhaps the most common of these are the breakdown point 
and the influence function, which are explained in the following 
paragraphs. 
Although many robust estimators of location exist, the sample median 
is still the most widely known. If Y = {y1,…, yb} is a batch of numbers, 
its sample median is given by:  
medi xi  (6) 
which is simply the middle order statistic when b is odd. The median 
has a breakdown point of 50% (which is the highest possible), because 
the estimate remains bounded when fewer than 50% of the data points 
are replaced by large numbers.  
Perhaps the most well-known robust dispersion measure is the Median 
Absolute Deviation (MAD). For the sample set Y, MAD is defined as 
follows: 

( )1MAD ,..., med medb b i i j jy y y y= −  (7) 

Example: Consider the data {1, 1, 2, 2, 4, 5, 9}. It has a median of 2. 
The absolute deviations about 2 are {1, 1, 0, 0, 2, 3, 7} which in turn 
have a median value of 1. So the MAD for this data is 1. 
The median absolute deviation is a measure of statistical dispersion. It 
is a more robust estimator of scale than the sample variance or standard 
deviation. MAD has a 50% breakdown point, but a non-smooth 
influence function with efficiency 37% at Gaussian distribution. The 
influence function measures sensitivity of scale estimator when we 
slightly change the distribution of the data (e.g., one data point in a data 
sample is changed).  
In spite of its high breakdown value, MAD also has some drawbacks. 
First, its efficiency is very low. Second, the MAD takes a symmetric 
view on dispersion, because one first estimates a central value (the 
median) and then attaches equal importance to positive and negative 
deviation from it. 
Another alternative to the MAD is the estimator Qb of Rousseeuw and 
Croux  [13], which is highly robust, fairly efficient and has an explicit 
definition since it is the first quartile of the pairwise differences 
between the data. Computational details about the Qb estimator may be 
found in the provided reference. 
The idea of RPCA  [12] is to search for the direction in which the 
projected observations have the largest robust scale. In subsequent 
steps, each new direction is constrained to be orthogonal to all previous 
directions. Reference  [14] presented a computationally attractive 
method for RPCA. 

A. Outlying Waveform Detection  
As mentioned before, RPCA is robust to the outlying data. Therefore 
RPCA can be exploited to extract the bizarre (potentially erroneous) 
and/or more complex waveforms. The bizarre waveforms may be 
generated because of an imprecise or buggy library characterizer. One 
of the applications of RPCA transformers is to check the output 
waveforms generated by library characterization tools for erroneous 
waveforms. 
The RPCA may also be used to identify the situations for which 
complex waveforms are produced by the library characterizers. For 
example complex cells such as multiplexers might have more 
complicated output waveform compared to common cells such as AND 
and OR cells. More complicated waveforms also can be generated when 
cells are characterized on extreme situations such as small load 
capacitances, large input slews or low/high power supply. By 
categorizing the more complicated waveforms during the compaction 
process, high rate compressions can be achieved.  

B. Library Waveform Stratification   
As stated above RPCA is a powerful transformer which can result in 
highly compressed libraries. It is obvious that PCA needs more bases, 
e.g. 4 to 14, in order to attain compressed libraries with bounded peak 
errors. In fact some output waveforms need more many bases in order 

to be accurately represented while others need fewer bases. If a single 
set of principle components (bases) is used, then we end up using a 
variable number of bases per output gate, or must simply use a large 
number of bases for all output waveforms in order to bound the worst-
case error of reconstructed waveforms.  
We propose a transformation based algorithm for stratification of the 
output waveforms in a CSM library. The algorithm has a tolerable error 
Et and a compression ratio Rd as inputs. The algorithm recursively 
stratifies the waveforms based on the approximation error. The input 
parameter Rd gives the maximum number of the bases, Nb, which can be 
used for the compression. In each epoch i of the stratification, the 
waveforms are categorized into two classes, the ones which have error 
less than Et, Li+1, and the ones which have error more than Et, Hi+1. In 
each epoch i, Hi is used to generate the bases vectors. For example, H1 
denotes the entire set of output waveforms in the cell library and is used 
to produce Nb bases vectors in the first epoch.  
The stratification algorithm is explained in the following: 

1. Get a maximum tolerable error, Et, for bounding from above 
the Euclidian relative error of each waveform. 

2. Get the desirable compression ratio Rd. 
3. Set the whole library as H1.  
4. At epoch i, extract Nb bases vectors from Hi. 
5. At each epoch i, stratify Hi into two classes, the ones which 

have error less than Et, Li+1, and the ones which have error 
more than Et, Hi+1. 

6. If Hi+1 is empty, stratification converged else go to step 4. 
It can be proved that the PCA stratifications diverge for some Et and Rd. 
In contrast, RPCA stratification is able to classify the entire library after 
a limited number of iterations (epochs).   

V.HYPERSURFACE MODELING  
To analytically model variational waveforms, we parameterize the 
entries of output vector, G, as functions of the input parameters. The 
parameterization is performed over the set of all variables including 
random PVT parameters, input slew, and output load capacitance. We 
refer to this complete collection of variables as input elements. 
Parameterization of each entry of G is a hypersurface modeling in a 
multidimensional space of input elements. We represent the 
hypersurfaces associated with G by using signomial models. A 
polynomial model is a special case of signomial models. 
Any signomial parameterization over a set of characterized or measured 
data is actually an interpolation over the available data to estimate the 
uncharacterized or previously unmeasured points. Therefore, before we 
present the hypersurface modeling of G in a subsequent section, we 
show that there is a close relationship between the interpolation (surface 
modeling) in the original space over the crossing time vectors (output 
waveforms) and interpolation in the new orthonormal space over the 
output features. In fact it is proved that given some conditions, the 
interpolation (modeling) in the transformed space is no less accurate 
than that in the original space. The proofs are given for polynomial 
models which are special cases of signomial models. 
As mentioned earlier, we refer to all random PVT variables, input slew, 
and output capacitance as the input elements, Q = [q1,…,qM]. We 
denote a variational waveform W for a given vector of input elements 
by the vector pair (Q, W). The vector pair (Q, T) refers to the 
correspondence between input elements and a crossing time vector T. 
When only one input element qi is subject to variation, the vector pair 
(Q, W) is simply shown with (qi, T), which means that input elements 
other than qi are fixed.  
Assume T can be linearly represented by the orthonormal bases 
P1,…,Pd and the corresponding coefficient vector is A = [α1,…,αd]. The 
vector pairs (Q, A) and (qi, A) relate A to Q and qi, respectively. If T is 
approximated only with the first m bases, then the coefficient vector 
will be Am=[α1,…,αm] and the pairs are written as (Q, Am) and (qi, Am). 



In the remainder of this paper, we shall use subscripts on vectors to 
denote elements of the vector and superscripts to denote the specific 
vector corresponding to a particular sample data in the library. For 
example, qi 

j shall denote the value of input element qi of vector Q for 
the jth data value in the sample set. 

A. Theoretical Results  
Consider a nonlinear function u(x) for which we are given n+1 sample 
data points (xj, yj) = (xj, u(xj)), j=1,…,n+1. Let S denote the set of 
sample pairs. A one-dimensional nth-order polynomial interpolation 
function y = In(x | S) over n+1 sample points may be defined as follows: 
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For simplicity of formulation, suppose the sample points are sorted i.e., 
xj < xj+1. Since we use (8) only for interpolation and not extrapolation, x 
is bounded, i.e., x1 ≤ x ≤ xn. The notation In(x* | S) refers to the 
estimated value of u(x*).  
The interpolation error E(x*) between In(x* | S) and the actual function 
y*=u(x*) is given by:  
E(x*) = | In(x* | S) – u(x*)| (9) 
In general, the actual value u(x*) is evaluated by doing circuit 
simulation of the gate under characterization.  
Definition 1: Consider a sample set Si comprised of pairs (qi

j,Tj) for 
j=1,…,n+1. The one dimensional nth-order polynomial vector 
interpolation function Jn(qi | Si) over n+1 sample pairs is defined: 
T = Jn(qi | Si) = [t1=In(qi | Si,1), ..., tr=In(qi | Si,r), ..., td=In(qi | Si,n)] (10) 
where Si,r denotes {(qi

j,tr
j)}.  

Let Jn(qi
* | Si) denote the estimated waveform T* for a given qi

*. The 
interpolation error between the estimated value Jn(qi

* | Si) and actual 
crossing time vector Tact is given by: 
E(T*) = || Jn(qi

*
 | Si) – Tact||=||T* –Tact|| (11) 

Definition 2: Consider a sample set Ri comprised of pairs (qi
j, Aj) for 

j=1,…, n+1 where Aj refers to the corresponding coefficient vector for 
the jth data sample. We use the vector interpolation function Jn(qi | Ri) 
over n+1 sample pairs (qi

j, Aj) in the orthonormal space to estimate 
coefficient vector A:  
A=Jn(qi | Ri) = [α1=In(qi | Ri,1), ..., αr=In(qi | Ri,r), ..., αd=In(qi | 
Ri,n)] 

(12) 

where Ri,r denotes {(qi
j,αr

j)}.  
Let Jn(qi

* | Ri) denote the estimated A* for a given qi
*. The 

corresponding crossing time vector Tons
* for a value qi

* can be 
reconstructed by using the estimated coefficient vector A* from (12) as 
follows (subscript ons stands for orthonormal space): 
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Let Tact
* denote the actual crossing time vector corresponding to qi

*. 
Interpolation error for orthonormal-space-based estimation is:  
E(Tons

*) = ||Tons
* – Tact

*|| (14) 
If only the first m bases are used to represent a crossing time vector T in 
the reduced space ℜm, the estimated crossing time vector Tros 

* with nth 
order interpolation is given by: 
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The corresponding interpolation error for reduced-order-space-based 
estimation in space ℜm is:  
E(Tros 

*) = ||Tros 
* – Tact

*|| (16) 
Theorem 2: Consider two sample sets Si and Ri comprised of pairs (qi

j, 
Tj) and their associated pair (qi

j, Aj), respectively, where j = 1, …, n+1 
and qi

j
 < qi

j+1. Let T* and Tons
* denote the estimated (interpolated) 

crossing time vectors for qi
*, obtained from (10) and (13) in that order. 

The interpolation accuracy for estimated crossing time vectors T* and 
Tons

* are the same, i.e., 
E(Tons

*) = E(T*) (17) 
This means that the interpolation in the time domain and the 
orthonormal space are equivalent.  
Theorem 3: Assume only the first m out of d coefficients are used to 
approximate any crossing time vector Tu with Tros. Assume the upper 
bound on the approximation error in the reduced-order space ℜm is em, 
which is given by (4). Consider two sample sets Si and Ri comprised of 
pairs (qi

j, Tj) and their associated pair (qi
j, Aj), respectively, where j = 1, 

…, n+1 and qi
j
 < qi

j+1. Let T* and Tros 
* denote the estimated 

(interpolated) crossing time vectors for input element qi
*, obtained from 

(10) and (15). An upper bound on the interpolation error E (Tros 
*) is: 
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B. Input Variable Transform and Signomial Model 
A signomial function hypersurface modeling technique is presented in 
this section. Finding an analytical hypersurface model is a challenging 
task especially when the output features are complex, nonlinear 
functions of the input elements. For example consider an output feature 
is inversely proportional to or is a logarithmic function of an input 
element. In this case, transforming the input element through an inverse 
or a logarithmic function enables us to model the output feature by a 
signomial function. We utilize variable transformation  [15] which is a 
useful method, to lessen the complexity of hypersurface modeling.  
We introduce our proposed variable transformation procedure with the 
aid of a simple example. Suppose the statistical output gi and input 
element q1. Assume a well fitted surface model for gi in terms of q1 is 
given by: 

0 1 1ig qβ β= +  (20) 

So we look for the power of q1, denoted by λ, which is ½, β0 and β1. A 
Taylor approximation of (20) around λ=λ0 is given by: 

0 0
0 1 1 0 1 1 0 1 1 1( ) ( ) ( ) ( ) ln( )ig q q q qλ λλβ β β β λ λ β= + + + −  (21) 

where  stands for Taylor approximation around λ=λ0. In order to 
estimate λ, β0 and β1, first suppose λ=λ0=1 and use the data points 
(gi,q1) to calculate β0 and β1. By using the estimated β0 and β1 and 
λ0=1, λ is estimated and subsequently used to calculate new β0 and β1 
values. This process is continued recursively until we converge on final 
values of λ, β0 and β1. 
Variable Transformation Procedure – fixed point iteration: 
The procedure is described for a second order signomial although it can 
be generalized for any other signomial order. 
Assume the statistical output gi is modeled by equation (22). 
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Then we construct approximated gi as: 
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In the first iteration, we calculate βj and βij by letting λj = 1 and using 
the characterized data which give gi for different sample values of input 



elements (we construct equations from (24) for different sample points 
in order to calculate all unknowns βj and βij). The calculated βj and βij 
are used in the equations constructed by (24), to give a new guess for 
λj’s. The calculated λj’s are used in the equations to give new 
estimation of βj and βij’s. The process is repeated until the all 
parameters converge to their final values.  

VI.SIMULATION RESULTS 
This section presents different simulation results for ECSM 

libraries. Time, voltage and current units are nanosecond and volt, 
respectively. All reported errors are calculated with respect to actual 
waveforms generated by SPICE simulations. As for the impact of the 
proposed compression algorithm on the run time of a timing analysis 
tool that uses the compressed waveforms instead of the original 
waveform data, the answer depends on the way the tool utilizes the 
compressed waveforms. For example a timing analysis tool may 
directly propagate the output vector in the principle component space or 
it may reconstruct the original waveform and then propagate the 
reconstructed waveform forward in the circuit. Clearly the runtime 
savings will be significantly higher for a tool using the first approach.   
A. Modeling of Variational Waveforms   
To verify the accuracy and efficiency of the proposed techniques, 
experiments are carried out on a sample 65nm industrial-strength 
ECSM library, characterized at nominal process corner, 1.2 volt, and 
25oC plus 25 other corners (different voltage and temperature 
combinations). Each gate is characterized for 7x7x5x5 (input slew, 
output capacitive load, supply voltage and temperature) combinations 
and for each of these combinations, a voltage waveform with 21 
uniform voltage point increments ({0%, 0.05%, …, 0.95%, 100%} of 
VDD) is stored in the library. Fig. 2(a) depicts the superposition of the 
1225 waveforms for an inverter. The pre-alignment operation and 
orthonormalization steps have been performed on the ECSM library. 
Fig. 2(b) shows a nominal waveform and its variational waveform. 
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Fig. 2. (a)Superposition of variational waveforms for an inverter gate (b) Two 
waveforms: a variational and the nominal  
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Fig. 3. (a) First, second and third basis vectors (b) Histogram of relative error for 
43141 voltage waveforms approximated by using five bases 

In this experiment, we pre-align a 43141-waveform library and then 
extract the orthogonal bases. Each waveform is approximated by using 
five bases.  Fig. 3(a) shows the first three bases. The average relative 
error is 0.04% and the relative maximum error is 10%. Fig. 3(a) shows 
the relative error histogram. The compression ratio is 76%. 

B. Parameterization Using Signomial Model 
This subsection shows the parametric compression for slew, 
capacitance, supply voltage and temperature. The 65nm ECSM library 
with 2,157 voltage waveforms is utilized for simulations.  

We apply the Variable Transformation Procedure to the output features 
of 2,157 voltage waveforms and calculate the power of each term of the 
hypersurface model. An example signomial equation for the third 
output feature, which is first principle component, in terms of the load 
capacitance and input slew is: 

2

3 0
1

j ji
j j ij i j

j i j
g q q qλ λλβ β β

= ≥

= + +∑ ∑∑  
(25) 

where q1 and q2 stand for load capacitance and input slew. The 
calculated parameter values are reported in Table 1. 

Table 1: Coefficients given by Variable Transformation Procedure 

β0 β1 β2 β12 β21 β11 λ1 λ2 
-0.02 -2.5 -1.8 -0.01 0.001 0.08 0.97 1.2 

Fig. 4 shows the relative error of signomial for calculating the first 
components of waveforms for all cells, which is less than 4.5%.  
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Fig. 4. Relative error of signomial model for calculating the first component of 

waveforms. 

Storing the coefficients of signomial model instead of output features 
provides a 97% compression ratio with maximum relative error of 3% 
and average relative error of 1%. 

C. Robust PP-PCA  
1) Compression 

First the compression results of conventional (non robust) PCA and two 
different RPCA methods are compared. To compare the performance of 
three different transformations, a library of 43,141 waveforms is used. 
We produce 20 sub-libraries having 2,157 waveforms from the original 
library and apply three different transformations. The error measured 
for each transformation is averaged over the 20 sub-libraries and 
reported in Fig. 5. Fig. 5(a) compares the maximum relative L2 norm 
errors which show that the robust transformations, MAD and Qb, result 
in superior accuracy for compression ratio greater than 80%. Fig. 5(b) 
also shows that the average L2 norm errors of RPCAs are less than that 
of the PCA. For example, the RPCA gives a 5-fold reduction of the 
average error and a 2-fold reduction of maximum error compared to the 
PCA at a compression ratio 95%.  
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Fig. 5. (a) Maximum error (b) Average error versus compression for PCA and two 

RPCAs. 

2) Outlying Waveform Detection 
Another application of PCA is the detection of outlying waveform. 
After applying the transformation to a library, the relative 
approximation error can be used as a criterion to identify the outlying 
waveforms. Two bases are used to approximate the waveforms. We 
apply PCA and Qb RPCA to a library of 2,157 waveforms which 
include the waveform shown in Fig. 6. It is shown that both PCA and 
RPCA are able to find this waveform as a waveform with maximum 
approximation error. However the RPCA approximation, blue 
waveform, has lower deviation from the original waveform which 

10% 



means basis extraction by RPCA has been affected less by the outlying 
waveforms. In addition, the RPCA transformation approximates all 
waveforms with an average error 0.5% which is one-third of the 
average error resulted by the PCA transformation. This means RPCA is 
more effective for approximating the majority of the waveforms with 
higher accuracy. 
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Fig. 6. Outlying waveform detection by using PCA and RPCA. 

We applied RPCA and PCA to another library with 2,157 waveforms. 
As shown in Fig. 7(a) PCA incorrectly classifies a fairly good 
waveform (subjective judgment) as an outlying waveform whereas 
RPCA does the classification accurately. As another example, Fig. 7(b) 
shows that RPCA finds an outlying waveform and 
approximates/converts it to a normal looking waveform while PCA 
approximates it incorrectly.  
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Fig. 7. Outlying waveform detection by using RPCA and PCA. 

3) Stratification 
We apply three different transformations to a library of 2157 
waveforms. We set the compression ratio to 95% and the tolerable 
maximum error to 4%. It is clear from Table 2 that the PCA cannot 
stratify the library waveforms while meeting the peak error bound. 
However the MAD and Qb RPCAs manage to stratify the library into 4 
levels. The PCA stratification did not succeed when it was applied to 20 
different libraries. The MAD RPCA is faster than the Qb RPCA. It is 
notable that a level ID is assigned to each compressed waveform, which 
is used for the reconstruction process. This level ID may reduce the 
compression ratio down to 91%.  Fig. 8 shows the stratification tree of 
the library by using the Qb RPCA. Each node in this rooted denotes the 
total number of waveforms in a subset of the library waveforms with 
the maximum and average percentage errors obtained for that subset. 
Note that, without waveform stratification, five bases would be needed 
to attain this level of accuracy which gives a compression ratio of 76%. 

 
Fig. 8. A sample 4‐level stratification tree  

Table 2: Stratification using one basis 

Transf. Max 
Error 

Avg. 
Error 

Branch. 
Level 

Compress. 
Ratio 

Time 
(min) 

PCA − − ∞ − ∞ 
RPCA- 
MAD 4% 0.5% 4 95% 1.5 

RPCA- Qb 3.9% 0.5% 4 95% 6.6  
 

VII.SUMMARY 
We described a robust and extensible framework for modeling 
variational CSM waveforms in terms of a set of statistically varying 
input parameter set. The key ideas were: (1) represent the CSM data in 
terms of V-operator values and the coefficients of the first few principle 
directions in an orthonormal space, and (2) use input variable 
transformation and a combination of signomial hypersurface modeling 
to construct analytical models of the individual coefficients in terms of 
input elements. The proposed variational CSM framework results in 
significantly compressed CSM library data; at the same time it enables 
interpolation among given sample data to produce the required CSM 
data for a previously uncharacterized set of input element values. As 
another contribution, (3), this paper proposes a library waveform 
stratification algorithm which yields high compression ratios. The 
proposed algorithm is based on a robust (projection pursuit based) PCA. 
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