
A Unified Framework for System-level Design: Modeling and Performance
Optimization of Scalable Networking Systems

Hwisung Jung, Massoud Pedram

Department of Electrical Engineering, University of Southern California
{hwijung, pedram}@usc.edu

Abstract
The need to bring high-quality systems to market at ever increasing
pace is driving the use of system-level models early in the design
process. This paper presents a new unified modeling framework,
called the extended queuing Petri net (EQPN), which combines
extended stochastic Petri net and G/M/1 queuing models, to realize
the design of reliable systems during the design time, while
improving the accuracy and robustness of power optimization for
high-speed scalable networking systems. The EQPN model is
employed to represent the performance behaviors and to minimize
energy consumption of the system under performance constraints
through mathematical programming formulations. Being able to
model the system with the EQPN would enable the users to
accomplish the design of reliable and optimized system at the
beginning of design cycle. The proposed system model is compared
with existing stochastic models under real simulation data.
Experimental results demonstrate the effectiveness of the modeling
framework and show that our proposed energy optimization
techniques ensure robust system-wide energy savings under tight
performance constraints.

1. Introduction
System modeling efforts should be pursued from both qualitative
and quantitative aspects to elucidate an effective mechanism for
controlling a complex electronic system under a set of performance
constraints. Furthermore, realistic modeling of a system is an
important step toward optimizing the performance and energy
consumption of the system, since such a model-based design
provides efficiencies in the design of complex system, which in turn
enables designers to successfully realize the target system
specification early in the design process. Typical scalable
networking systems such as Ethernet controllers and switches have
particularly tight time-to-market requirement, which requires a
highly efficient design cycle. The design of reliable, low-energy,
and high performance systems is best accomplished when the
system modeling is done with careful consideration of the
performance constraints [3].

A look at today’s high-speed networking system trends reveals
that multiple CPUs reside within a single system to satisfy the high-
functionality, high-performance demands of today’s applications.
However, this trend also translates into high-power densities, higher
operating temperatures, and reduced reliability. Furthermore, the
ability of the networking protocol of operating system to scale well
on a multi-CPU system is becoming requisite to eliminate the
receive processing bottleneck. Thereof, receive-side scaling (RSS),

a result of Microsoft’s scalable networking initiative [2], supports
dynamic load balancing to scale with the number of available CPUs
in the system, results in parallelism in packet receive processing [1].

As evidenced in the recent literature [4][5][6][7], increasing
interest has focused on the realization of target system specification.
Stochastic Petri net (SPN) and queuing network (QN) formalisms
have been used to model the execution of tasks under precedence
constraints in systems that exhibit concurrency, synchronization,
and randomness. The work presented in [4] studies the Petri net-
based performance modeling with a generalized stochastic Petri net
(GSPN) for distributed homogeneous system. In reference [5][6],
the authors propose the stochastic modeling of a power-managed
system based on the GSPN and continuous-time Markov decision
process (CTMDP). Performance modeling based on the timed Petri
net for multi-threaded multiprocessors is studied in [7] with the
assumption that traffic on links of interconnect network is
uniformly distributed.

Although these techniques can handle complex behavior such as
concurrency, synchronization, and heterogeneity, GSPN and
CTMDP have difficulty capturing the scheduling strategies. In
addition, CTMDP only permits exponential distribution functions
for the inter-arrival and service times, which are not realistic
assumption when modeling a complex real-time system. One way
to facilitate the scheduling problem formulation is to combine Petri
net models with a queuing network, which provides a mechanism
for modeling resource contention and scheduling aspects. The
combination of Petri net and queuing network, so-called queuing
Petri net, was originally proposed by Falko [8] to model systems
with GSPN and M/M/1 models. However, this modeling framework
still allows only an exponential distribution function for the inter-
arrival times of the system, which continues to be a major
shortcoming since an exponential distribution underestimates the
occurrence probability of a large request inter-arrival time and so it
does not adequately model the request arrival times in the idle
periods [9].

In this paper, we overcome these shortcomings by introducing a
new unified modeling framework, the extended queuing Petri net
(EQPN). EQPN model, characterized by a general distribution
function for inter-arrival times, provides a way of optimizing the
performance and power consumption. The numerical solution for
EQPN is based on a semi-Markov decision process (SMDP). This
paper presents a systematic approach for evaluating EQPN under
performance constraints. Mathematical programming formulations
and dynamic voltage and frequency scaling algorithm are employed
to realize more effective solutions during the modeling and
performance optimization of scalable networking system. This is
precisely the contribution of the present paper.

The remainder of this paper is organized as follows: Section 2
provides a background of the scalable networking system. The
details of the modeling framework are given in section 3. Section 4
presents performance optimization techniques. Experimental results
and conclusion are given in section 5 and section 6.

2. Background
In this section, we present a background of the scalable networking
system briefly, which includes a new Network Driver Interface
Specification (NDIS) technology called receiver-side scaling (RSS).

Figure 1 shows a simplified block diagram of the scalable
networking system, where the host system uses Ethernet controller,
i.e., network interface card (NIC), to send and receive packets.
Sending and receiving packets over the local interconnect, e.g.,
PCI-E bus [19], is handled by the NIC and device driver in the host
operating system. In general, NIC typically has a direct memory
access (DMA) engine to transfer data to the host system, In addition,
NIC includes a medium access control (MAC) unit to implement
the link level protocol for the underlying network, and use a signal
processing hardware to implement the physical (PHY) layer defined
in the network. Details of the NIC architecture and functionality are
omitted here to save space. Interested readers may refer to [14].

PHY
CoreEt

he
rn

et EMAC

RISC
Core

DMA PCI-E
I/F

Control

Memory
Arbiter

PC
I E

xp
re

ss
 B

us

RSS
Bus

Processing
Element

Processing
Element

Processing
Element

Network Interface Card Host System

PHY
CoreEt

he
rn

et EMAC

RISC
Core

DMA PCI-E
I/F

Control

Memory
Arbiter

PC
I E

xp
re

ss
 B

us

RSS
Bus

Processing
Element

Processing
Element

Processing
Element

Network Interface Card Host System

Figure 1. Block diagram of scalable networking system.

In the scalable networking, RSS implemented inside NIC
provides dynamic load balancing, while preserving in-order
delivery of messages on a per-stream basis. Specifically, RSS
enables packets from a single NIC to be processed in parallel on
multiple processing elements (e.g., CPUs), while preserving in-
order delivery to transmission control protocol (TCP) connections.
Furthermore, RSS enables parallel deferred procedure calls, queued
in the system in first-in first-out (FIFO) manner, and multiple
interrupts if the host system supports it.

B
us

Fetch &
Decode

Register

Issue
Queue

Integer &
FP Units

Load/Store
Units

Instruction & Data Cache

Flow
control

Flow
Queue B

us

Fetch &
Decode

Register

Issue
Queue

Integer &
FP Units

Load/Store
Units

Instruction & Data Cache

Flow
control

Flow
Queue

Figure 2. Architecture of processing element.

Figure 2 shows architecture of processing element (PE) in the
scalable networking system which improves the processing time by
executing multiple threads in parallel across multiple processing
elements. A thread consists of a sequence of instructions or data.
Each processing element has its own cache hierarchy (i.e., L1 and

L2 caches). The data packets are distributed to multiple processing
elements by RSS which rebalance the network processing load,
while preserving in-order delivery. In this paper, we consider in-
order processor architecture to simplify the modeling and analysis
steps. Interested readers for the details of multiple processing
element architecture may refer to [10][11].

3. A Unified Modeling Framework
In this section, we present a systematic approach for modeling a
scalable networking system by introducing a unified modeling
framework, i.e., the extended queuing Petri net (EQPN). We focus
on the model of the host system shown in Figure 1 to simplify the
modeling step, assuming that the data packets are distributed to
multiple processing elements by RSS inside NIC. It will not hurt
the quality of the paper if we concentrate on the host system side of
scalable networking for modeling since it sufficiently exhibits
concurrency, synchronization, and heterogeneity behaviors.

3.1 Extended Queuing Petri Net Model
To construct the model of the host system, we first consider the
functionality of a PE. The Figure 3 shows the extended stochastic
Petri net (ESPN) model [15], an extension of stochastic Petri net,
for the PE. Note that an ESPN is formally defined as a six-tuple (P,
T, E, M, F, G) such that i) P = {P1 , P2 , …, Pn }, n >0 and is a
finite set of places, ii) T = {T1 , T2 , …, Tn }, n >0 and is a finite set
of transitions, iii) E is a set of arcs known as a flow relation, iv) M:
P → N and is a marking, where N is the number of tokens, v) F is
the set of firing rates associated with the transitions, and vi) G:
F(M) × T→ F is a firing function which is associated with an
arbitrarily distributed firing time. Pictorially speaking, immediate
transitions are drawn as thin bar and timed transitions as thick bar.

P10

P12

P8

T7

T9

T8

P1

T1

P3

T3

P2

P4

T4

T2

P5

T5

P6
T10

P13

T11

P14

T18T15

P9

T16

P11

P15

T13T14

P7

T6

T12

T17

P16

P10

P12

P8

T7

T9

T8

P1

T1

P3

T3

P2

P4

T4

T2

P5

T5

P6
T10

P13

T11

P14

T18T15

P9

T16

P11

P15

T13T14

P7

T6

T12

T17

P16

Figure 3. ESPN modeling for processing element.

A job advances in the architecture as follows. First, the inbound
switching (i.e., load balancing) is performed at the NIC during P1.
After switching, the incoming traffic is written at the flow queue at
P2. If we consider the instruction fetch at P4, the processing of fetch
is modeled by transition T4 and T5 representing cache hit and miss,
respectively. We simplify the ESPN model by omitting the detail
procedure of cache miss handling. After the instruction cache
access at P5, the PE performs the instruction decoding P7 and the
issue queuing P8, consecutively. The decode logic takes instructions
from the flow queues and decodes them into micro-operations. The
execution of data is modeled by transitions T8 and T9 with places P9
and P10 representing data memory access and integer / float-point
unit access, respectively. If data memory access instruction is

presented, either data cache hit or miss occurs, resulting in data
cache access at P12. Then, processor needs the cache coherency
between L1 and L2 cache if L1 cache is updated by transferring the
data through outbound queue at P13. Finally, the stored data at the
queue are given to L2 through the outbound switch at P15. In this
ESPN model, we consider the write-back scheme as cache update
strategy. The definitions for the various places and transitions for
this model are summarized in Table 1.

Table 1. Legend for the ESPN model of Figure 3.
 Place

Inbound switchingP1

Description

P2 Inbound flow queue writing
P3 Writing done
P4 Instruction fetch
P5 Instruction cache accessing

Trans

Incoming switching delayT1

Description

T2 Queuing delay
T3 Immediate transition
T4 Immediate transition (cache hit)

T5 Immediate transition (cache miss)
P6 Instruction cache miss handling T6 Immediate transition
P7 Instruction decode T7

Memory accessP8

Memory inst. executingP9

Integer & FP unit accessing

T8

Integer & FP unit access
P10

Retirement

T9

T10 Immediate transition (reg. update)
T11P11

Data cache accessingP12

Outbound flow queue writingP13

P14

T12

Queuing delayT13

Writing done
P15

T14

Inst. cache updateT15

Data cache updateT16

Immediate transition (cache hit)

Issue queuing
Immediate transition

Immediate transition (reg. update)
Immediate transition

Immediate transition
Outbound switching

T17

T18 Immediate transition (cache miss)

P16 Data cache miss handling

Place

Inbound switchingP1

Description

P2 Inbound flow queue writing
P3 Writing done
P4 Instruction fetch
P5 Instruction cache accessing

Trans

Incoming switching delayT1

Description

T2 Queuing delay
T3 Immediate transition
T4 Immediate transition (cache hit)

T5 Immediate transition (cache miss)
P6 Instruction cache miss handling T6 Immediate transition
P7 Instruction decode T7

Memory accessP8

Memory inst. executingP9

Integer & FP unit accessing

T8

Integer & FP unit access
P10

Retirement

T9

T10 Immediate transition (reg. update)
T11P11

Data cache accessingP12

Outbound flow queue writingP13

P14

T12

Queuing delayT13

Writing done
P15

T14

Inst. cache updateT15

Data cache updateT16

Immediate transition (cache hit)

Issue queuing
Immediate transition

Immediate transition (reg. update)
Immediate transition

Immediate transition
Outbound switching

T17

T18 Immediate transition (cache miss)

P16 Data cache miss handling

The ESPN model described in Figure 3 can be considered as a
controlled Petri net. This is because the movement of tokens is
influenced by external enabling conditions called control places,
not shown here. For example, the transitions, T={T4, T5, T10, T11, T17,
T18}, are governed by the control blocks. Since the tokens in the
control places are consumed by the firing of controlled transitions
in a similar manger to the state places, we omitted the control
places to simplify the ESPN model.

Due to the incoming traffic at the NIC, the inbound data are
queuing at the flow queue to be fetched into the processor when it is
available. Queuing and scheduling mechanisms at the NIC enable
the processor to handle the resource contention at the interconnect
network. To facilitate the queuing strategy, we use a new modeling
formalism, extended queuing Petri net (EQPN). The main idea in
the creation of EQPN is to allow the queue to be integrated into the
places of an ESPN. An EQPN is defined as follows:
Definition 1: Extended Queuing Petri Net. An EQPN is a triplet
(ESPN, PQ , W) with a substitution in M, where

1) ESPN is the underlying Extended Stochastic Petri Net.
2) PQ = {PQ1 , PQ2}, where PQ1 ⊆ P is the set of timed queuing

places and PQ2 ⊆ P is the set of immediate queuing places.
3) W = {W1 , W2}, where W1 ⊆ T is the set of timed transitions

and W2 ⊆ T is the set of immediate transitions.

queue depositoryqueue depository

Figure 4. A queuing place and its schematic symbol.

EQPN contains a new type of place, called a queuing place.
Such a place consists of two components: a queue and a depository

[8]. The token that has completed its service at the place, i.e., the
queue, immediately moves to the next place, i.e., the depository, as
depicted in Figure 4.

Combining the queue network and the ESPN now yields the
EQPN model as depicted in Figure 5. In this work, we use the
G/M/1 queuing model, where the inter-arrival times are generally
distributed and service times are exponentially distributed, which is
more realistic model for an actual system than the M/M/1 queuing
model used in [8].

P10

P12

P8

T7

T9

T8

P1

T1

T3

P4

T4

P5

T5

P6
T10

T11

T18T15

P9

T16

P11

P15

T14

P7

T6

T12

T17Q1

Q2

P16

P10

P12

P8

T7

T9

T8

P1

T1

T3

P4

T4

P5

T5

P6
T10

T11

T18T15

P9

T16

P11

P15

T14

P7

T6

T12

T17Q1

Q2

P16

Figure 5. Corresponding EQPN model.

Now that we have obtained the EQPN model of the given
system, we can convert it into a semi-Markov decision process
(SMDP) model by using the reachability graph, which consists of
reachable markings and arcs corresponding to transition firings.
Note that a SMDP is a tuple <S, A, Y, Z, R>, where S is a set of
states, A is a set of actions, Y is the transition probability function, Z
specifies the probability distribution of transition times for each
state-action pairs, and R is the expected reward function [12].
Reachability graph, which can be obtained by the reachable
marking table, contains two types of markings: vanishing and
tangible [13]. A vanishing marking is one that enables only
immediate transitions. A tangible marking, denoted by g where g ∈
M, is described by the marking process as a function of the time t.
Notice that an underlying EQPN is a type of semi-Markov process
as described in theorem 1.

Theorem 1: The marking process {g(t), t≥0} of an EQPN is
equivalent to a semi-Markov process with discrete state space [13].

S1 S2 S3

S5

S4

hit

miss

S6 S7

S8

S10

switch & queue

S11

S12

S9

S13 S14

miss

hit

cache

cache miss handler

processor

switch & queue

S1 S2 S3

S5

S4

hit

miss

S6 S7

S8

S10

switch & queue

S11

S12

S9

S13 S14

miss

hit

cache

cache miss handler

processor

switch & queue

Figure 6. SMDP model of the system.

A SMDP model is constructed from the EQPN model by adding
the decision dimension and by removing the vanishing markings
from the reachability graph as shown in Figure 6. The system is
thus modeled as the SMDP with a state set S = {S1, S2, …, Sm},

where m is the number of processing modes available to the system.
A state represents a marking of the EQPN.

3.2 Analysis of EQPN Model
Regarding the queuing model in the EQPN, as shown in Figure 5,
the service time behavior is captured by a given service time
distribution for the EQPN when the system (e.g., PE) is in the
active state. Similarly, the input request behavior is modeled by
some inter-arrival time distribution.

We first analyze the characteristics of the queuing model in the
SMDP derived from the EQPN model. Let Si represent the ith state
in the SMDP, and let Ii denote the task (data in the scalable
networking) inter-arrival time whose distribution depends only on
the present state Si. Assuming that the inter-arrival times are
mutually independent, we can define the arrival process of tasks at
time t from state i to state j of the SMDP as follows: 1

() { , | }ij i+1 i 1 ia t Prob S j I t S i+= = ≤ = (1)

Let W denote the number of waiting tasks in the PE just before a
new task arrives. Assuming an infinite queue size, we have

{ } (1) , 0,1, ...,n
nq Prob W n nγ γ= − = ∞= (2)

where γ is the unique solution of Laplace-Stieltjes transform (LST)
of the inter-arrival time distribution function [16]. We assume that
the service times in the PEs are exponentially distributed with the
mean value of 1µ− . Let TW.k and TS.k represent the waiting time and
the service time of the tasks in the kth PE. Since the response time,
TR.k, of the PE is the expected time that the tasks spend in the queue
and in the PE, TR.K = ((1 - γ)µ)-1. The waiting time spent in the
queue is obtained by subtracting the service time from the response
time. This yields

. .
1

(1)
γ

µ µ γ
= − =

−W k R kT T (3)

Regarding the traffic in the scalable networking, we consider
the utilization of a PE i.e., how much of the computational resource
provided by the PE has been employed by the application. The
utilization ratio, uPE, is thus defined as the fraction of time that the
PE is working, which can be calculated as

 ()PEu BP BP IP= + (4)

where BP is the duration of the busy period of the PE, and IP is the
duration of its idle period. Without presenting the proof, we simply
state (cf. [16]):

() (1)BP IP E T γ+ = − (5)

where E(T) is the expected number of transitions in the SMDP.
Thus, considering the number, n, of tasks waiting in the queue, we
can calculate BP and IP as follows

0
1

() ()
,

1 1

n

i
i

E T E T
BP q IP q

γ γ=

= ⋅ = ⋅
− −

∑ (6)

The utilization of the PE is an important factor since it affects the
latency and bandwidth of scalable networking system.

1 In this paper, subscripts denote state information whereas superscripts
denote time stamp.

As a performance metric, we use the link utilization (LU), a
direct measure of traffic workload, to find the under-utilized PE as
follows.

() (,) / 0 1,
G

clkc
LU e D e c N LU≤ ≤= ∑ (7)

where {1
(,)

0
=

if traffic passes on link e at cycle c
D e c

otherwise
, G is the

required number of clock cycles at the given frequency for the PE,
e is the link path between NIC and PE, and Nclk is the number of
clock cycles of the link given to the PE.

4. Performance Optimization
In this section, we present the performance (e.g., energy)
optimization formulation based on SMDP by developing
mathematical programming models.

Let actpowk.π and slpowk represent the power consumption
incurred in the kth PE during its active mode running at optimal
policy π and during its sleep mode, respectively. Basically, a
particular policy tells the system what action (e.g., DVFS) to
perform in order to optimize the performance. Incorporating with
the SMDP model, we obtain the optimal policy π for power
optimization as follows. First, the expected power of the system
(i.e., PE) in active mode can be defined as

'

1
(,) () (' | ,) (, ')

(,)τ ∈
= + ∑exp

s S
Probpow s a pow s s s a ene s s

s a
 (8)

where pow(s) is the power consumption of the system in state s,
Prob(s’ | s, a) is the probability of being in state s’ after action a in
state s, ene(s, s’) is the energy required by the PE to transit from
state s to s’, and τ(s, a) is the expected duration of time that the
system spent in state s if action a is chosen. Second, let a sequence
of states s0, s1, …, sk denote a processing path δ from s0 to sk of
length h with the property that p(s0, s1), …, p(sk-1, sk) > 0, where p(x,
y) is the probability that the system moves to state y from state x.
For a policy π, we can define the discount cost C of a processing
path δ of length h as follows.

0
() (,)π δ γ

=∑ h

i
it i i

expC pow s a (9)

where γ is a discount factor, 0 ≤ γ < 1, and ti is the time that the
system spent in state si before action ai causes a transition to state
si+1. Considering the expectation with respect to the policy π over
the set of processing path starting in state s, we can define the
expected cost of the system, given that the system starts in state s
by

actpowπ
avg(s) = EXP[Cπ(δ)] (10)

With the above-mentioned variables and their characteristics, we
can write the linear programming as

avgs a

a '

() (,)

(,) (',) (' | ,) 0

(,) (,) 1

(,) 0

min

s.t.

,

π ϕ

ϕ ϕ

ϕ τ

ϕ

=

=

≥

−

∈ ∈

∑ ∑
∑ ∑ ∑
∑ ∑

s a

s a

actpow s s a

s a s a Prob s s a

s a s a

s a all s S a A

 (11)

where ϕ(s, a) is the frequency that the system is in state s and action
a is issued. Note that the optimal solution to the SMDP policy
optimization problem belongs to the set of deterministic policy [12].

Now that we have obtained the policy π for optimal active
power consumption, the total energy dissipation of the PE is
defined as

.() ()π

π π
∈ ∈

= ⋅ + −∑ ∑total k avg l k k d l k
l L l L

ene actpow s exe slpow T exe (12)

where exel.k.π is the execution time of task l, where l ∈ L (set of
tasks), running under policy π at the kth PE, Td is the given deadline.
Changing the voltage level (and correspondingly the operating
frequency) of the PE affects the execution time of the tasks. Clearly,
exel.k.π = TW.k.π + TS.k.π . When there is a positive slack for the task to
run on a PE, application of DVFS can result in significant energy
saving. Thus, our goal is to minimize energy consumption for a PE,
subject to performance constraints as follows.

.

1 0

n

. .i=1

0

/

1

0 1 0, ...,,

min

s.t.

π

= =

=

≥

=

⋅ + ≤

=

≤ ≤

∑ ∑
∑
∑

total k

i i ki i

d

n n

i S k

n

ii

i

q q u

i q T T

q

q i n

ene

 (13)

where
1 ..=
⋅ =∑ n

ii vW ki q T , TS.k.v is affected by the DVFS setting,

1 0
/() /n n

i ii i
BP BP IP q q

= =
+ =∑ ∑ , and uk is a lower bound on the PE

utilization, which is provided by the developers.

5. Experimental Results
In the experimental setup, we use a network interface card (NIC),
i.e., Ethernet controller [20], which includes receiver-side scaling
(RSS) capabilities for scalable networking, to obtain the real-
application data used to evaluate our EQPN models. Table 2 shows
the performance characteristics of the Ethernet controller, obtained
by measuring the throughput for streams of various packet sizes,
where we use SmartBits 2000 (performance analysis system) [21]
to generate various packet streams. Note that we fix the IP packet
size in the simulation with the inter-packet gap set to 0.0096us.

Table 2. Performance characteristics of Ethernet controller.

 Packet size
(bytes)

1518

1024

512

256

128

64

Inter-arrival
time (sec)

Service rate
(pkt/sec)

84819

124936

245100

317400

325200

338000

Arrival rate
(pkt/sec)

12.2E-6

8.28E-6

4.19E-6

2.14E-6

1.12E-6

0.60E-6

81699

120656

238549

466417

892857

1644736

11.7E-6

8.00E-6

4.08E-6

3.15E-6

3.07E-6

2.95E-6

Service
time (sec)

Packet size
(bytes)

1518

1024

512

256

128

64

Inter-arrival
time (sec)

Service rate
(pkt/sec)

84819

124936

245100

317400

325200

338000

Arrival rate
(pkt/sec)

12.2E-6

8.28E-6

4.19E-6

2.14E-6

1.12E-6

0.60E-6

81699

120656

238549

466417

892857

1644736

11.7E-6

8.00E-6

4.08E-6

3.15E-6

3.07E-6

2.95E-6

Service
time (sec)

The first experiment is designed to demonstrate the
effectiveness of our proposed EQPN model as shown in Figure 7 by
calculating the number of tasks and comparing these results with
both the actual data obtained from real-applications as shown in
Table 2 and those obtained based on GSPN model (which assumes
an exponential distribution for inter-arrival times). The parameter

values for the EQPN and GSPN models, which depend on the
arrival rate and the mean service time as variables, are obtained by
using the Queue2.0 [18] simulation tool. Note that all values are
normalized to the actual data. For example, when the arrival rate is
0.54 and the mean service time is 1.2, the EQPN model gives
around 0.3 for the number of task, similar to the actual data,
whereas the GSPN model yields around 0.4. We point out that the
EQPN model gives accurate performance results compared to the
actual data while the GSPN model overestimates the performance
loss.

Figure 7. Evaluation of EQPN for the various numbers of tasks.

In the second experiment, we evaluate the proposed performance
optimization methods. Considering the processing element, we use
the system specification model from UltraSPARC-IIi processor [17],
which consumes 17.6W active power dissipation at 1.7V, 650MHz
and 20mW power for sleep mode. It also supports 1/2 and 1/6
clocking frequencies for power-saving modes. Our goal is to
minimize the energy consumption of the PE under following
scenario:

Scenario: Processing element can accept two streams of data (i.e.,
tasks): low-priority data and high-priority data with service mean µ-

1 = 1. We use non-preemptive priority policy [16], where a high-
priority data can move ahead of all the low-priority data waiting in
the queue.

Different arrival rates of high-priority data are used to generate the
multiple rows in Table 3. We set that Td = 9 and uk = 0.8 as
performance constraints, and assume that the arrival rate of low-
priority data = 0.5 and the service mean µ-1 = 1. PE has three
operating voltage/frequency levels: 1.7V/650MHz, 1.6V/325MHz
and 1.5V/108MHz. For example, in the first row in Table 3, it takes
3.64 times (=2366 clock cycles @650MHz) to proceed both high
and low priority data, which consumes 64.1 energy dissipation in
the original model (i.e., not using sophisticated energy optimization
techniques), including the sleep power, whereas the PE achieves
56.8 energy consumption if running at 325MHz. Note that all
values are normalized. Table 3 presents the comparison result by
simulation, where the values of frequency ϕ(s, a) are calculated
with equation (11). The results report that SMDP-based
optimization method can adjust the optimal policy when workload
characteristics change, giving the consistent energy dissipation. It
also indicates that further reductions in energy savings can be
achieved using the SMDP-based optimization when we increase the
arrival rate of high-priority threads.

Table 3. Experimental results for SMDP-based optimization.

 Original model

Energy Energy
Saving

0.02

0.04

0.06

0.08

0.10

Arrival
Rate of
High-
Priority
Data

Frequency that the system
is in state s and action a
(high-priority case)

0.61 0.31 0.10

0.56

0.60

0.63

0.67

1.11

1.22

1.35

1.50

1.67

0.53

Energy

64.1

66.5

69.6

72.7

76.4

SMDP-based Optimization

62.1

65.3

64.8

65.1

64.9

3.3%

1.8%

6.9%

10.5%

15.1%

[ϕ (s, a1) ϕ (s, a2) ϕ (s, a3)]

Waiting
Time at
High-
Priority
Queue

Waiting
Time at
Low-
Priority
Queue

Power
for
High-
Priority
Data

Power
for
Low-
Priority
Data

13.1

12.9

11.9

11.4

10.8

6.6

6.0

5.6

4.8

4.1

0.59 0.28 0.10

0.55 0.27 0.09

0.53 0.26 0.06

0.49 0.25 0.08

Original model

Energy Energy
Saving

0.02

0.04

0.06

0.08

0.10

Arrival
Rate of
High-
Priority
Data

Frequency that the system
is in state s and action a
(high-priority case)

0.61 0.31 0.10

0.56

0.60

0.63

0.67

1.11

1.22

1.35

1.50

1.67

0.53

Energy

64.1

66.5

69.6

72.7

76.4

SMDP-based Optimization

62.1

65.3

64.8

65.1

64.9

3.3%

1.8%

6.9%

10.5%

15.1%

[ϕ (s, a1) ϕ (s, a2) ϕ (s, a3)]

Waiting
Time at
High-
Priority
Queue

Waiting
Time at
Low-
Priority
Queue

Power
for
High-
Priority
Data

Power
for
Low-
Priority
Data

13.1

12.9

11.9

11.4

10.8

6.6

6.0

5.6

4.8

4.1

0.59 0.28 0.10

0.55 0.27 0.09

0.53 0.26 0.06

0.49 0.25 0.08

The third experiment is to demonstrate the robustness of our
proposed energy optimization method in the case of dynamic traffic
workload on the link between the NIC and PE. To simplify the
experimental setup, we assume that the PE accepts only one type of
data, and link utilization (LU) on the link between the NIC and PE
is changed to 0.7 from 1. Table 4 shows the comparison results for
energy consumption in the PE for the cases: 1) LU = 1.0 in the
original model, 2) LU = 0.7 in the original model, and 3) LU = 0.7
in our proposed model. Notice that when the arrival rates of data are
0.9 and 0.8, the optimization method is not applicable since it
exceeds the response time, which incur performance degradation.
From the table, we can see that the proposed method ensures
system-wide energy savings (up to 11.5%) with the enhanced
utilization factor when the traffic workload is changed by dynamic
load balancing.

Table 4. Experimental results for LU-based optimization.

Original model

Energy Energy
Savings

0.9

0.8

0.7

0.6

0.5

Response
Time
TR

3.10

2.32

1.71

1.37

7.65

Energy

135.0

53.9

41.0

29.9

24.3

LU-based Optimization

26.6

21.5

15.9

13.9

12.3

0%

0%

11.4%

11.5%

11.4%

Arrival
Rate of
Data

Util.
of
PE

0.63

0.56

0.49

0.42

0.35

0.63

0.56

0.98

0.83

0.71

0.4

0.3

0.2

0.1

1.17

1.06

1.01

0.99

20.6

18.7

17.9

17.7

11.6

11.2

10.9

11.1

11.4%

11.4%

11.3%

11.2%

0.28

0.21

0.14

0.07

0.56

0.42

0.28

0.14

When LU = 0.7

Response
Time
TR

1.22

1.02

0.89

0.79

1.52

0.74

0.71

0.70

0.70

Energy

26.6

21.5

17.9

15.7

13.9

13.0

12.5

12.4

12.5

2.40

2.18

2.08

2.12

2.21

2.64

3.39

5.00

9.99

Busy
+ Idle
Period

Response
Time
TR

1.22

2.04

1.78

1.58

1.52

1.48

1.42

1.40

1.40

Util.
of
PE

When LU = 1.0

Original modelOriginal model

Energy Energy
Savings

0.9

0.8

0.7

0.6

0.5

Response
Time
TR

3.10

2.32

1.71

1.37

7.65

Energy

135.0

53.9

41.0

29.9

24.3

LU-based Optimization

26.6

21.5

15.9

13.9

12.3

0%

0%

11.4%

11.5%

11.4%

Arrival
Rate of
Data

Util.
of
PE

0.63

0.56

0.49

0.42

0.35

0.63

0.56

0.98

0.83

0.71

0.4

0.3

0.2

0.1

1.17

1.06

1.01

0.99

20.6

18.7

17.9

17.7

11.6

11.2

10.9

11.1

11.4%

11.4%

11.3%

11.2%

0.28

0.21

0.14

0.07

0.56

0.42

0.28

0.14

When LU = 0.7

Response
Time
TR

1.22

1.02

0.89

0.79

1.52

0.74

0.71

0.70

0.70

Energy

26.6

21.5

17.9

15.7

13.9

13.0

12.5

12.4

12.5

2.40

2.18

2.08

2.12

2.21

2.64

3.39

5.00

9.99

Busy
+ Idle
Period

Response
Time
TR

1.22

2.04

1.78

1.58

1.52

1.48

1.42

1.40

1.40

Util.
of
PE

When LU = 1.0

Original model

6. Conclusion
We proposed a new unified modeling framework for the system-
level design, called the extended queuing Petri net (EQPN), to
improve the modeling accuracy of scalable networking system. By
modeling the system with EQPN, the parameters in the model
become more realistic which allows state durations to have arbitrary
distribution. Performance optimizations based on SMDP models are
formulated under performance constraints to ensure system-wide
energy savings. Experimental results with real-application show
that or model gives accurate performance results and has better
performance than previous models. The EQPN model clearly
enables the user to accomplish the design of reliable and optimized
electronic system under performance constraints, early in the design
cycle.

References
[1] http://www.sun.com/processors/UltraSPARC-T1/ Technical document.

[2] http://www.microsoft.com/whdc WinHEC 2004 version, Apr. 2004.

[3] L. Spracklen, and S.G. Abraham, “Chip Multhreading: Opportunities
and Challenges,” Proc. of 11th HPCA, Feb. 2005.

[4] N. Lopez-Benitez, “Petri-Net Based Performance Evaluation of
Distributed Homogeneous Task Systems,” IEEE Trans. on Reliability,
Vol. 49, No.2, June 2000.

[5] Q. Qiu, Q. Wu, and M. Pedram, “Stochastic Modeling of a Power-
Managed System - Construction and Optimization,” IEEE Trans. on
Computer-Aided Design, Vol. 20, No. 10, Oct. 2001.

[6] Al Bogliolo, L. Benini, E. Lattanzi, and G. D. Micheli, “Specification
and Analysis of Power-Managed System,” Proc. of the IEEE, Vol. 92,
No. 8, Aug. 2004.

[7] W.M. Zuberek, R. Govindarajan, and F. Suciu, “Timed Colored Petri
Net Models of Distributed Memory Multithreaded Multiprocessors,”
Proc. of Workshop on Colored Petri Nets and Design, June 1998.

[8] F. Bause. “Queuing Petri Nets,” In Proc. of the 5th Intl Workshop on
Petri Nets and Performance Models, Toulouse, France, 1993.

[9] T. Simunic, et al., “Event-driven power management,” IEEE Trans. On
Computer-Aided Design, Vol.20, No. 7, Jul. 2001.

[10] D. Bertozzi, and L. Benini, “Xpipes: A Network-On-Chip Architecture
for Gigascale Systems-on-Chip,” IEEE Magazine, 2nd quarters, 2004.

[11] R. Kumar, et al., “Single-ISA Heterogeneous Multicore Architecture:
The Potential for Processor Power Reduction,” Proc. of 36th Annual
IEEE/ACM Int’l Symposium on Microarchitecture, Dec. 2003.

[12] M.L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley Publisher, New York, 1994.

[13] J. Wang, Timed Petri Nets: Theory and Application, Kluwer Academic
Publishers, 1998.

[14] Y. Hoskote, et al, “A TCP Offload Accelerator for 10Gb/s Ethernet in
90nm CMOS,” IEEE Journal of Solid-State Circuits, Vol. 38, No. 11,
Nov. 2003.

[15] J. Dugan, K. Dtrivedi, R. Geist, and V. Nicola, “Extended stochastic
Petri nets: applications and analysis”, Proc. of Performance, Dec. 1984.

[16] D. Gross, and C.M. Harris, Fundamentals of Queuing Theory, Wiley,
3rd edition, 1998.

[17] http://www.sun.com/processors/UltraSPARC-IIi/. UltraSPARC doc.

[18] http://www.win.tue.nl/cow/Q2 . Queue 2.0 online tool.

[19] http://www.pcisig.com/specification PCI-Express Base Specification.

[20] http://www.broadcom.com NetXtreme Gigabit Ethernet Controller.

[21] http://www.spirentcom.com SmartBits 2000 Performance Analysis
System.

