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Abstract 
The need to bring high-quality systems to market at ever increasing 
pace is driving the use of system-level models early in the design 
process. This paper presents a new unified modeling framework, 
called the extended queuing Petri net (EQPN), which combines 
extended stochastic Petri net and G/M/1 queuing models, to realize 
the design of reliable systems during the design time, while 
improving the accuracy and robustness of power optimization for 
high-speed scalable networking systems. The EQPN model is 
employed to represent the performance behaviors and to minimize 
energy consumption of the system under performance constraints 
through mathematical programming formulations. Being able to 
model the system with the EQPN would enable the users to 
accomplish the design of reliable and optimized system at the 
beginning of design cycle. The proposed system model is compared 
with existing stochastic models under real simulation data. 
Experimental results demonstrate the effectiveness of the modeling 
framework and show that our proposed energy optimization 
techniques ensure robust system-wide energy savings under tight 
performance constraints. 

1. Introduction 
System modeling efforts should be pursued from both qualitative 
and quantitative aspects to elucidate an effective mechanism for 
controlling a complex electronic system under a set of performance 
constraints. Furthermore, realistic modeling of a system is an 
important step toward optimizing the performance and energy 
consumption of the system, since such a model-based design 
provides efficiencies in the design of complex system, which in turn 
enables designers to successfully realize the target system 
specification early in the design process. Typical scalable 
networking systems such as Ethernet controllers and switches have 
particularly tight time-to-market requirement, which requires a 
highly efficient design cycle. The design of reliable, low-energy, 
and high performance systems is best accomplished when the 
system modeling is done with careful consideration of the 
performance constraints [3]. 

A look at today’s high-speed networking system trends reveals 
that multiple CPUs reside within a single system to satisfy the high-
functionality, high-performance demands of today’s applications. 
However, this trend also translates into high-power densities, higher 
operating temperatures, and reduced reliability. Furthermore, the 
ability of the networking protocol of operating system to scale well 
on a multi-CPU system is becoming requisite to eliminate the 
receive processing bottleneck. Thereof, receive-side scaling (RSS), 

a result of Microsoft’s scalable networking initiative [2], supports 
dynamic load balancing to scale with the number of available CPUs 
in the system, results in parallelism in packet receive processing [1]. 

As evidenced in the recent literature [4][5][6][7], increasing 
interest has focused on the realization of target system specification. 
Stochastic Petri net (SPN) and queuing network (QN) formalisms 
have been used to model the execution of tasks under precedence 
constraints in systems that exhibit concurrency, synchronization, 
and randomness. The work presented in [4] studies the Petri net-
based performance modeling with a generalized stochastic Petri net 
(GSPN) for distributed homogeneous system. In reference [5][6], 
the authors propose the stochastic modeling of a power-managed 
system based on the GSPN and continuous-time Markov decision 
process (CTMDP). Performance modeling based on the timed Petri 
net for multi-threaded multiprocessors is studied in [7] with the 
assumption that traffic on links of interconnect network is 
uniformly distributed. 

Although these techniques can handle complex behavior such as 
concurrency, synchronization, and heterogeneity, GSPN and 
CTMDP have difficulty capturing the scheduling strategies. In 
addition, CTMDP only permits exponential distribution functions 
for the inter-arrival and service times, which are not realistic 
assumption when modeling a complex real-time system. One way 
to facilitate the scheduling problem formulation is to combine Petri 
net models with a queuing network, which provides a mechanism 
for modeling resource contention and scheduling aspects. The 
combination of Petri net and queuing network, so-called queuing 
Petri net, was originally proposed by Falko [8] to model systems 
with GSPN and M/M/1 models. However, this modeling framework 
still allows only an exponential distribution function for the inter-
arrival times of the system, which continues to be a major 
shortcoming since an exponential distribution underestimates the 
occurrence probability of a large request inter-arrival time and so it 
does not adequately model the request arrival times in the idle 
periods [9]. 

In this paper, we overcome these shortcomings by introducing a 
new unified modeling framework, the extended queuing Petri net 
(EQPN). EQPN model, characterized by a general distribution 
function for inter-arrival times, provides a way of optimizing the 
performance and power consumption. The numerical solution for 
EQPN is based on a semi-Markov decision process (SMDP). This 
paper presents a systematic approach for evaluating EQPN under 
performance constraints. Mathematical programming formulations 
and dynamic voltage and frequency scaling algorithm are employed 
to realize more effective solutions during the modeling and 
performance optimization of scalable networking system. This is 
precisely the contribution of the present paper. 



The remainder of this paper is organized as follows: Section 2 
provides a background of the scalable networking system. The 
details of the modeling framework are given in section 3. Section 4 
presents performance optimization techniques. Experimental results 
and conclusion are given in section 5 and section 6. 

2. Background 
In this section, we present a background of the scalable networking 
system briefly, which includes a new Network Driver Interface 
Specification (NDIS) technology called receiver-side scaling (RSS). 

Figure 1 shows a simplified block diagram of the scalable 
networking system, where the host system uses Ethernet controller, 
i.e., network interface card (NIC), to send and receive packets. 
Sending and receiving packets over the local interconnect, e.g., 
PCI-E bus [19], is handled by the NIC and device driver in the host 
operating system. In general, NIC typically has a direct memory 
access (DMA) engine to transfer data to the host system, In addition, 
NIC includes a medium access control (MAC) unit to implement 
the link level protocol for the underlying network, and use a signal 
processing hardware to implement the physical (PHY) layer defined 
in the network. Details of the NIC architecture and functionality are 
omitted here to save space. Interested readers may refer to [14]. 
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Figure 1. Block diagram of scalable networking system. 

In the scalable networking, RSS implemented inside NIC 
provides dynamic load balancing, while preserving in-order 
delivery of messages on a per-stream basis. Specifically, RSS 
enables packets from a single NIC to be processed in parallel on 
multiple processing elements (e.g., CPUs), while preserving in-
order delivery to transmission control protocol (TCP) connections. 
Furthermore, RSS enables parallel deferred procedure calls, queued 
in the system in first-in first-out (FIFO) manner, and multiple 
interrupts if the host system supports it. 
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Figure 2. Architecture of processing element. 

Figure 2 shows architecture of processing element (PE) in the 
scalable networking system which improves the processing time by 
executing multiple threads in parallel across multiple processing 
elements. A thread consists of a sequence of instructions or data. 
Each processing element has its own cache hierarchy (i.e., L1 and 

L2 caches). The data packets are distributed to multiple processing 
elements by RSS which rebalance the network processing load, 
while preserving in-order delivery. In this paper, we consider in-
order processor architecture to simplify the modeling and analysis 
steps. Interested readers for the details of multiple processing 
element architecture may refer to [10][11]. 

3. A Unified Modeling Framework 
In this section, we present a systematic approach for modeling a 
scalable networking system by introducing a unified modeling 
framework, i.e., the extended queuing Petri net (EQPN). We focus 
on the model of the host system shown in Figure 1 to simplify the 
modeling step, assuming that the data packets are distributed to 
multiple processing elements by RSS inside NIC. It will not hurt 
the quality of the paper if we concentrate on the host system side of 
scalable networking for modeling since it sufficiently exhibits 
concurrency, synchronization, and heterogeneity behaviors. 

3.1 Extended Queuing Petri Net Model 
To construct the model of the host system, we first consider the 
functionality of a PE. The Figure 3 shows the extended stochastic 
Petri net (ESPN) model [15], an extension of stochastic Petri net, 
for the PE. Note that an ESPN is formally defined as a six-tuple (P, 
T, E, M, F, G) such that i) P = {P1 , P2 , …, Pn }, n >0  and is a 
finite set of places, ii) T = {T1 , T2 , …, Tn }, n >0 and is a finite set 
of transitions, iii) E is a set of arcs known as a flow relation, iv) M: 
P → N and is a marking, where N is the number of tokens, v) F is 
the set of firing rates associated with the transitions, and vi) G: 
F(M) × T→ F is a firing function which is associated with an 
arbitrarily distributed firing time. Pictorially speaking, immediate 
transitions are drawn as thin bar and timed transitions as thick bar. 
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Figure 3. ESPN modeling for processing element. 

A job advances in the architecture as follows. First, the inbound 
switching (i.e., load balancing) is performed at the NIC during P1. 
After switching, the incoming traffic is written at the flow queue at 
P2. If we consider the instruction fetch at P4, the processing of fetch 
is modeled by transition T4 and T5 representing cache hit and miss, 
respectively. We simplify the ESPN model by omitting the detail 
procedure of cache miss handling. After the instruction cache 
access at P5, the PE performs the instruction decoding P7 and the 
issue queuing P8, consecutively. The decode logic takes instructions 
from the flow queues and decodes them into micro-operations. The 
execution of data is modeled by transitions T8 and T9 with places P9 
and P10 representing data memory access and integer / float-point 
unit access, respectively. If data memory access instruction is 



presented, either data cache hit or miss occurs, resulting in data 
cache access at P12. Then, processor needs the cache coherency 
between L1 and L2 cache if L1 cache is updated by transferring the 
data through outbound queue at P13. Finally, the stored data at the 
queue are given to L2 through the outbound switch at P15. In this 
ESPN model, we consider the write-back scheme as cache update 
strategy. The definitions for the various places and transitions for 
this model are summarized in Table 1. 

Table 1. Legend for the ESPN model of Figure 3. 
 Place

Inbound switchingP1

Description

P2 Inbound flow queue writing
P3 Writing done
P4 Instruction fetch
P5 Instruction cache accessing

Trans

Incoming switching delayT1

Description

T2 Queuing delay
T3 Immediate transition
T4 Immediate transition (cache hit)

T5 Immediate transition (cache miss)
P6 Instruction cache miss handling T6 Immediate transition
P7 Instruction decode T7

Memory accessP8

Memory inst. executingP9

Integer & FP unit accessing

T8

Integer & FP unit access
P10

Retirement

T9

T10 Immediate transition (reg. update)
T11P11

Data cache accessingP12

Outbound flow queue writingP13

P14

T12

Queuing delayT13

Writing done
P15

T14

Inst. cache updateT15

Data cache updateT16

Immediate transition (cache hit)

Issue queuing
Immediate transition

Immediate transition (reg. update)
Immediate transition

Immediate transition
Outbound switching

T17

T18 Immediate transition (cache miss)

P16 Data cache miss handling

Place

Inbound switchingP1

Description

P2 Inbound flow queue writing
P3 Writing done
P4 Instruction fetch
P5 Instruction cache accessing

Trans

Incoming switching delayT1

Description

T2 Queuing delay
T3 Immediate transition
T4 Immediate transition (cache hit)

T5 Immediate transition (cache miss)
P6 Instruction cache miss handling T6 Immediate transition
P7 Instruction decode T7

Memory accessP8

Memory inst. executingP9

Integer & FP unit accessing

T8

Integer & FP unit access
P10

Retirement

T9

T10 Immediate transition (reg. update)
T11P11

Data cache accessingP12

Outbound flow queue writingP13

P14

T12

Queuing delayT13

Writing done
P15

T14

Inst. cache updateT15

Data cache updateT16

Immediate transition (cache hit)

Issue queuing
Immediate transition

Immediate transition (reg. update)
Immediate transition

Immediate transition
Outbound switching

T17

T18 Immediate transition (cache miss)

P16 Data cache miss handling

The ESPN model described in Figure 3 can be considered as a 
controlled Petri net. This is because the movement of tokens is 
influenced by external enabling conditions called control places, 
not shown here. For example, the transitions, T={T4, T5, T10, T11, T17, 
T18}, are governed by the control blocks. Since the tokens in the 
control places are consumed by the firing of controlled transitions 
in a similar manger to the state places, we omitted the control 
places to simplify the ESPN model. 

Due to the incoming traffic at the NIC, the inbound data are 
queuing at the flow queue to be fetched into the processor when it is 
available. Queuing and scheduling mechanisms at the NIC enable 
the processor to handle the resource contention at the interconnect 
network. To facilitate the queuing strategy, we use a new modeling 
formalism, extended queuing Petri net (EQPN). The main idea in 
the creation of EQPN is to allow the queue to be integrated into the 
places of an ESPN. An EQPN is defined as follows: 
Definition 1: Extended Queuing Petri Net. An EQPN is a triplet 
(ESPN, PQ , W) with a substitution in M, where 

1) ESPN is the underlying Extended Stochastic Petri Net. 
2) PQ = {PQ1 , PQ2}, where PQ1 ⊆ P is the set of timed queuing 

places and PQ2 ⊆ P is the set of immediate queuing places. 
3) W = {W1 , W2}, where W1 ⊆ T is the set of timed transitions 

and W2 ⊆ T is the set of immediate transitions. 

 

queue depositoryqueue depository

Figure 4. A queuing place and its schematic symbol. 

EQPN contains a new type of place, called a queuing place. 
Such a place consists of two components: a queue and a depository 

[8]. The token that has completed its service at the place, i.e., the 
queue, immediately moves to the next place, i.e., the depository, as 
depicted in Figure 4.  

Combining the queue network and the ESPN now yields the 
EQPN model as depicted in Figure 5. In this work, we use the 
G/M/1 queuing model, where the inter-arrival times are generally 
distributed and service times are exponentially distributed, which is 
more realistic model for an actual system than the M/M/1 queuing 
model used in [8]. 
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Figure 5. Corresponding EQPN model. 

Now that we have obtained the EQPN model of the given 
system, we can convert it into a semi-Markov decision process 
(SMDP) model by using the reachability graph, which consists of 
reachable markings and arcs corresponding to transition firings. 
Note that a SMDP is a tuple <S, A, Y, Z, R>, where S is a set of 
states, A is a set of actions, Y is the transition probability function, Z 
specifies the probability distribution of transition times for each 
state-action pairs, and R is the expected reward function [12]. 
Reachability graph, which can be obtained by the reachable 
marking table, contains two types of markings: vanishing and 
tangible [13]. A vanishing marking is one that enables only 
immediate transitions. A tangible marking, denoted by g where g ∈ 
M, is described by the marking process as a function of the time t. 
Notice that an underlying EQPN is a type of semi-Markov process 
as described in theorem 1. 

Theorem 1: The marking process {g(t), t≥0} of an EQPN is 
equivalent to a semi-Markov process with discrete state space [13]. 
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Figure 6. SMDP model of the system. 

A SMDP model is constructed from the EQPN model by adding 
the decision dimension and by removing the vanishing markings 
from the reachability graph as shown in Figure 6. The system is 
thus modeled as the SMDP with a state set S = {S1, S2, …, Sm}, 



where m is the number of processing modes available to the system. 
A state represents a marking of the EQPN.  

3.2 Analysis of EQPN Model 
Regarding the queuing model in the EQPN, as shown in Figure 5, 
the service time behavior is captured by a given service time 
distribution for the EQPN when the system (e.g., PE) is in the 
active state. Similarly, the input request behavior is modeled by 
some inter-arrival time distribution. 

We first analyze the characteristics of the queuing model in the 
SMDP derived from the EQPN model. Let Si represent the ith state 
in the SMDP, and let Ii denote the task (data in the scalable 
networking) inter-arrival time whose distribution depends only on 
the present state Si. Assuming that the inter-arrival times are 
mutually independent, we can define the arrival process of tasks at 
time t from state i to state j of the SMDP as follows: 1 

( ) { , | }ij i+1 i 1 ia t Prob S j I t S i+= = ≤ =               (1) 

Let W denote the number of waiting tasks in the PE just before a 
new task arrives. Assuming an infinite queue size, we have 

{ } (1 ) , 0,1, ...,n
nq Prob W n nγ γ= − = ∞=         (2) 

where γ is the unique solution of Laplace-Stieltjes transform (LST) 
of the inter-arrival time distribution function [16]. We assume that 
the service times in the PEs are exponentially distributed with the 
mean value of 1µ− . Let TW.k  and TS.k represent the waiting time and 
the service time of the tasks in the kth PE. Since the response time, 
TR.k, of the PE is the expected time that the tasks spend in the queue 
and in the PE, TR.K = ((1 - γ)µ)-1. The waiting time spent in the 
queue is obtained by subtracting the service time from the response 
time. This yields 

. .
1

(1 )
γ

µ µ γ
= − =

−W k R kT T                            (3) 

Regarding the traffic in the scalable networking, we consider 
the utilization of a PE i.e., how much of the computational resource 
provided by the PE has been employed by the application. The 
utilization ratio, uPE, is thus defined as the fraction of time that the 
PE is working, which can be calculated as 

                                       ( )PEu BP BP IP= +                              (4) 

where BP is the duration of the busy period of the PE, and IP is the 
duration of its idle period. Without presenting the proof, we simply 
state (cf. [16]): 

( ) (1 )BP IP E T γ+ = −                        (5) 

where E(T) is the expected number of transitions in the SMDP. 
Thus, considering the number, n, of tasks waiting in the queue, we 
can calculate BP and IP as follows 

0
1

( ) ( )
,

1 1

n

i
i

E T E T
BP q IP q

γ γ=

= ⋅ = ⋅
− −

∑                 (6) 

The utilization of the PE is an important factor since it affects the 
latency and bandwidth of scalable networking system. 

                                                                 
1  In this paper, subscripts denote state information whereas superscripts 
denote time stamp.  

As a performance metric, we use the link utilization (LU), a 
direct measure of traffic workload, to find the under-utilized PE as 
follows. 

( ) ( , ) / 0 1,
G

clkc
LU e D e c N LU≤ ≤= ∑           (7) 

where {1
( , )

0
=

if traffic passes on link e at cycle c
D e c

otherwise
, G is the 

required number of clock cycles at the given frequency for the PE,  
e is the link path between NIC and PE, and Nclk is the number of 
clock cycles of the link given to the PE. 

4. Performance Optimization 
In this section, we present the performance (e.g., energy) 
optimization formulation based on SMDP by developing 
mathematical programming models. 

Let actpowk.π and slpowk represent the power consumption 
incurred in the kth PE during its active mode running at optimal 
policy π and during its sleep mode, respectively. Basically, a 
particular policy tells the system what action (e.g., DVFS) to 
perform in order to optimize the performance. Incorporating with 
the SMDP model, we obtain the optimal policy π for power 
optimization as follows. First, the expected power of the system 
(i.e., PE) in active mode can be defined as 

'

1
( , ) ( ) ( ' | , ) ( , ')

( , )τ ∈
= + ∑exp

s S
Probpow s a pow s s s a ene s s

s a
   (8) 

where pow(s) is the power consumption of the system in state s, 
Prob(s’ | s, a) is the probability of being in state s’ after action a in 
state s, ene(s, s’) is the energy required by the PE to transit from 
state s to s’, and τ(s, a) is the expected duration of time that the 
system spent in state s if action a is chosen. Second, let a sequence 
of states s0, s1, …, sk denote a processing path δ from s0 to sk of 
length h with the property that p(s0, s1), …, p(sk-1, sk) > 0, where p(x, 
y) is the probability that the system moves to state y from state x. 
For a policy π, we can define the discount cost C of a processing 
path δ of length h as follows. 

0
( ) ( , )π δ γ

=∑ h

i
it i i

expC pow s a                    (9) 

where γ is a discount factor, 0 ≤ γ < 1, and ti is the time that the 
system spent in state si before action ai causes a transition to state 
si+1. Considering the expectation with respect to the policy π over 
the set of processing path starting in state s, we can define the 
expected cost of the system, given that the system starts in state s 
by 

actpowπ
avg(s) = EXP[Cπ(δ)]                        (10) 

With the above-mentioned variables and their characteristics, we 
can write the linear programming as 

avgs a

a '

( ) ( , )

( , ) ( ', ) ( ' | , ) 0

( , ) ( , ) 1

( , ) 0

min

s.t.

,

 

  

  

π ϕ

ϕ ϕ

ϕ τ

ϕ

=

=

≥

−

∈ ∈

∑ ∑
∑ ∑ ∑
∑ ∑

s a

s a

actpow s s a

s a s a Prob s s a

s a s a

s a all s S a A

           (11) 



where ϕ(s, a) is the frequency that the system is in state s and action 
a is issued. Note that the optimal solution to the SMDP policy 
optimization problem belongs to the set of deterministic policy [12]. 

Now that we have obtained the policy π for optimal active 
power consumption, the total energy dissipation of the PE is 
defined as 

. . . . .( ) ( )π

π π
∈ ∈

= ⋅ + −∑ ∑total k avg l k k d l k
l L l L

ene actpow s exe slpow T exe   (12) 

where exel.k.π is the execution time of task l, where l ∈ L (set of 
tasks), running under policy π at the kth PE, Td is the given deadline. 
Changing the voltage level (and correspondingly the operating 
frequency) of the PE affects the execution time of the tasks. Clearly, 
exel.k.π = TW.k.π + TS.k.π . When there is a positive slack for the task to 
run on a PE, application of DVFS can result in significant energy 
saving. Thus, our goal is to minimize energy consumption for a PE, 
subject to performance constraints as follows. 

.

1 0

n

. .i=1

0

/

1

0 1 0, ...,,

min

s.t. 

  

  

π

= =

=

≥

=

⋅ + ≤

=

≤ ≤

∑ ∑
∑
∑

total k

i i ki i

d

n n

i S k

n

ii

i

q q u

i q T T

q

q i n

ene

                                                   (13) 

where 
1 ..=
⋅ =∑ n

ii vW ki q T , TS.k.v is affected by the DVFS setting, 

1 0
/( ) /n n

i ii i
BP BP IP q q

= =
+ =∑ ∑ , and uk is a lower bound on the PE 

utilization, which is provided by the developers. 

5. Experimental Results 
In the experimental setup, we use a network interface card (NIC), 
i.e., Ethernet controller [20], which includes receiver-side scaling 
(RSS) capabilities for scalable networking, to obtain the real-
application data used to evaluate our EQPN models. Table 2 shows 
the performance characteristics of the Ethernet controller, obtained 
by measuring the throughput for streams of various packet sizes, 
where we use SmartBits 2000 (performance analysis system) [21] 
to generate various packet streams. Note that we fix the IP packet 
size in the simulation with the inter-packet gap set to 0.0096us. 

Table 2. Performance characteristics of Ethernet controller. 

 Packet size
(bytes)

1518

1024

512

256

128

64

Inter-arrival
time (sec)

Service rate
(pkt/sec)

84819

124936

245100

317400

325200

338000

Arrival rate
(pkt/sec)

12.2E-6

8.28E-6

4.19E-6

2.14E-6

1.12E-6

0.60E-6

81699

120656

238549

466417

892857

1644736

11.7E-6

8.00E-6

4.08E-6

3.15E-6

3.07E-6

2.95E-6

Service
time (sec)

Packet size
(bytes)

1518

1024

512

256

128

64

Inter-arrival
time (sec)

Service rate
(pkt/sec)

84819

124936

245100

317400

325200

338000

Arrival rate
(pkt/sec)

12.2E-6

8.28E-6

4.19E-6

2.14E-6

1.12E-6

0.60E-6

81699

120656

238549

466417

892857

1644736

11.7E-6

8.00E-6

4.08E-6

3.15E-6

3.07E-6

2.95E-6

Service
time (sec)

 

The first experiment is designed to demonstrate the 
effectiveness of our proposed EQPN model as shown in Figure 7 by 
calculating the number of tasks and comparing these results with 
both the actual data obtained from real-applications as shown in 
Table 2 and those obtained based on GSPN model (which assumes 
an exponential distribution for inter-arrival times). The parameter 

values for the EQPN and GSPN models, which depend on the 
arrival rate and the mean service time as variables, are obtained by 
using the Queue2.0 [18] simulation tool. Note that all values are 
normalized to the actual data. For example, when the arrival rate is 
0.54 and the mean service time is 1.2, the EQPN model gives 
around 0.3 for the number of task, similar to the actual data, 
whereas the GSPN model yields around 0.4. We point out that the 
EQPN model gives accurate performance results compared to the 
actual data while the GSPN model overestimates the performance 
loss. 

 

Figure 7. Evaluation of EQPN for the various numbers of tasks.

In the second experiment, we evaluate the proposed performance 
optimization methods. Considering the processing element, we use 
the system specification model from UltraSPARC-IIi processor [17], 
which consumes 17.6W active power dissipation at 1.7V, 650MHz 
and 20mW power for sleep mode. It also supports 1/2 and 1/6 
clocking frequencies for power-saving modes. Our goal is to 
minimize the energy consumption of the PE under following 
scenario: 

Scenario: Processing element can accept two streams of data (i.e., 
tasks): low-priority data and high-priority data with service mean µ-

1 = 1. We use non-preemptive priority policy [16], where a high-
priority data can move ahead of all the low-priority data waiting in 
the queue. 

Different arrival rates of high-priority data are used to generate the 
multiple rows in Table 3. We set that Td = 9 and uk = 0.8 as 
performance constraints, and assume that the arrival rate of low-
priority data = 0.5 and the service mean µ-1 = 1. PE has three 
operating voltage/frequency levels: 1.7V/650MHz, 1.6V/325MHz 
and 1.5V/108MHz. For example, in the first row in Table 3, it takes 
3.64 times (=2366 clock cycles @650MHz) to proceed both high 
and low priority data, which consumes 64.1 energy dissipation in 
the original model (i.e., not using sophisticated energy optimization 
techniques), including the sleep power, whereas the PE achieves 
56.8 energy consumption if running at 325MHz. Note that all 
values are normalized. Table 3 presents the comparison result by 
simulation, where the values of frequency ϕ(s, a) are calculated 
with equation (11). The results report that SMDP-based 
optimization method can adjust the optimal policy when workload 
characteristics change, giving the consistent energy dissipation. It 
also indicates that further reductions in energy savings can be 
achieved using the SMDP-based optimization when we increase the 
arrival rate of high-priority threads.  



Table 3. Experimental results for SMDP-based optimization. 
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The third experiment is to demonstrate the robustness of our 
proposed energy optimization method in the case of dynamic traffic 
workload on the link between the NIC and PE. To simplify the 
experimental setup, we assume that the PE accepts only one type of 
data, and link utilization (LU) on the link between the NIC and PE 
is changed to 0.7 from 1. Table 4 shows the comparison results for 
energy consumption in the PE for the cases: 1) LU = 1.0 in the 
original model, 2) LU = 0.7 in the original model, and 3) LU = 0.7 
in our proposed model. Notice that when the arrival rates of data are 
0.9 and 0.8, the optimization method is not applicable since it 
exceeds the response time, which incur performance degradation. 
From the table, we can see that the proposed method ensures 
system-wide energy savings (up to 11.5%) with the enhanced 
utilization factor when the traffic workload is changed by dynamic 
load balancing. 

Table 4. Experimental results for LU-based optimization. 
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6. Conclusion 
We proposed a new unified modeling framework for the system-
level design, called the extended queuing Petri net (EQPN), to 
improve the modeling accuracy of scalable networking system. By 
modeling the system with EQPN, the parameters in the model 
become more realistic which allows state durations to have arbitrary 
distribution. Performance optimizations based on SMDP models are 
formulated under performance constraints to ensure system-wide 
energy savings. Experimental results with real-application show 
that or model gives accurate performance results and has better 
performance than previous models. The EQPN model clearly 
enables the user to accomplish the design of reliable and optimized 
electronic system under performance constraints, early in the design 
cycle. 
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