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Abstract 
This paper focuses on statistical interconnect timing analysis in a 
parameterized block-based statistical static timing analysis tool. In 
particular, a new framework for performing timing analysis of RLC 
networks with step inputs, under both Gaussian and non-Gaussian 
sources of variation, is presented. In this framework, resistance, 
inductance, and capacitance of the RLC line are modeled in a 
canonical first order form and used to produce the corresponding 
propagation delay and slew (time) in the canonical first-order form. 
To accomplish this step, mean, variance, and skewness of delay and 
slew distributions are obtained in an efficient, yet accurate, manner. 
The proposed framework can be extended to consider higher order 
terms of the various sources of variation. Experimental results show 
average errors of less than 2% for the mean, variance and skewness 
of interconnect delay and slew while achieving orders of magnitude 
speedup with respect to a Monte Carlo simulation with 104 samples. 

1. Introduction 
As the CMOS technology continues to scale down toward 
Ultra Deep Sub-Micron (UDSM) technologies, variability is 
becoming a major obstacle to designing high-performance 
VLSI circuits [1][6]. Due to increased variability, the 
performance guarantee, and thus, the parametric yield of the 
designs are being threatened.  As a results, there is an urgent 
need for developing advanced design tools, which are capable 
of handling variability that stems from imperfect CMOS 
manufacturing processes (e.g., variations in Leff, TOX, VT or 
ILD thickness), environmental factors (e.g., drops in VDD due 
to resistive drop and ground bounce and temperature changes 
due to the creation of local hot spots on the die), or device 
fatigue phenomena (e.g., electro-migration, hot electron 
effects, and negative bias temperature instability.) The 
variability makes it extremely difficult to verify the timing of 
a design before committing it to manufacturing. Statistical 
timing analysis (denoted by σTA) provides an effective 
solution to this critical problem [1][3][6][14]. 

In block-based σTA, every timing quantity of interest 
(e.g., delay and slew, arrival time and required arrival time) is 
represented as a function of global sources of variation 
(denoted by Xi) and independent random sources of variation 
(denoted by Si) in the canonical first-order (denoted by CFO) 
form [6]. As with its STA counterpart, block-based σTA 
breaks the analysis task into two parts: 1) statistical 
interconnect timing analysis and 2) statistical gate timing 
analysis. Statistical gate timing analysis has been addressed in 
works such as [4][5][6][7][15].  In this paper, we focus on 
statistical interconnect timing analysis.  

Interconnect timing analysis in STA has been widely 
studied. AWE methods, which are based on a variable 

refinement waveform estimator for approximating a 
generalized linear RLC interconnect, have proven to be quite 
effective. More precisely, accurate AWE-based interconnect 
analysis tools (e.g., RICE [9], PRIMA [10]), use the moments 
of the impulse response to approximate poles of the circuit, 
and thus, obtain the time-domain waveform of the output 
under arbitrary inputs. Since more efficient interconnect 
timing analysis tools are needed during various steps of the 
physical design flow, there has been a lot of effort to come up 
with fast interconnect delay metrics and calculators. For 
instance, Elmore delay uses one moment of the impulse 
response transfer function to approximate the interconnect 
delay. The empirical D2M metric [8] uses the first two 
moments of the impulse response transfer function and 
propose a closed form delay metric. 

For σTA, considering variation of the interconnect, the 
authors in  [2] express the resistance and capacitance of an 
interconnect line as a linear function of random variables 
(r.v.’s) and then use these r.v.’s to compute the circuit 
moments. These variation-aware moments are used in 
standard closed-form delay metrics such as the Elmore delay 
metric to compute interconnect delay probability distribution 
functions (PDF’s.) In [3], the authors combine known closed-
form delay metrics such as Elmore and AWE-based 
algorithms to take advantage of the efficiency of the first 
category and the accuracy of the second. Unfortunately, these 
methods may lead to erroneous results due to the inaccuracy 
of the closed-form delay metrics. In [12], the authors present a 
parametric model-order reduction algorithm for addressing the 
variability of IC interconnect performance. Specifically, they 
show that variational modeling of interconnects can be cast as 
a general multi-parameter Krylov-based moment matching 
problem [13]. They also show that exploiting multi-point 
expansion under the Krylov framework can lead to compact 
interconnect models at increased computational cost.  

Parameterized block-based σTA tools are still lacking in a 
practical accurate framework for interconnect timing analysis. 
In this work, we describe an accurate mathematical 
framework, which enables one to find the interconnect delay 
and slew in the CFO from. We point out that, although, in the 
remainder of this paper, we will mainly focus on the CFO 
random variables to represent the performance quantities of 
interest as a function of process and environmental sources of 
variation, the work itself is not limited to the first-order 
approximation of these quantities. In fact, it is easy to extend 
the approach to more complex (e.g., second-order) forms for 
parameter variations. In addition, although we provide the 



  

detailed analysis for the step input only, the basic derivations 
can be extended to the case of a ramped input.  

The remainder of this paper is organized as follows. In 
section 2, we review the background of the parameterized 
block-based σTA. We also present the technique which 
converts a variational function into a CFO form. Interconnect 
timing analysis for RLC network in block-based σTA 
considering step input is presented in section 3. Detailed 
analysis is presented in section 3.1 while an efficient 
approximation of statistical interconnect analysis of the 
solution of section 3.1 is discussed in section 3.2. 
Experimental results are given in section 4. Conclusions are 
discussed in section 5. Notice that notations in Table 1 are 
used throughout this paper. 

2. Background  
In σTA, it is required to evaluate the distribution of the delay 
and slew of the critical paths. So far, this goal has been done 
by calculating the mean and variance of the distributions of 
the delay and slew. However, the sources of variation may 
exhibit Gaussian or non-Gaussian distributions [14][15] and 
therefore, results in Gaussian or Non-Gaussian delay 
distributions. Therefore, in addition to calculating the mean 
and variance of the timing and electrical parameters, we also 
calculate the skewness of their distributions. 

Table 1: Notation and descriptions 
Notation Description 

hr(t) Impulse response in time domain 
HR(s) Impulse response in Laplace domain 
sr(t) Step response in time domain 
SR(s) Step response in Laplace domain 
rr(t) Ramp response in time domain 

RR(s) Ramp response in Laplace domain 

A
℘

 

Random variable A as a function of global and 
independent random sources of variations in the 

general (non-CFO) form 

A
<>

 
Random variable A in the CFO form 

Definition: The degree of asymmetry of a distribution is 
called skewness (denoted by κ.) A distribution, or data set, is 
symmetric if it looks the same to the left and right of the 
center point. The skewness for a normal distribution is zero. 
Negative values for the skewness indicate data that are 
skewed left whereas positive values for the skewness indicate 
data that are skewed right. By skewed left (right), we mean 
that the left (right) tail is heavier than the right (left) tail. The 
skewness of a distribution is defined to be [11]: 

3
3

µκ
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where µ3 is the 3rd central moment and σ2 is the variance 
(second central moment.) 

Lemma 1:  Suppose ∆S1,…,∆Sn are n independent 
random variables with distribution ∆Si ~ Disti (µ=0, σ2=1, κi). 
Then,  
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 Proof: It is omitted for brevity. 

2.1 CFO model in block-based σTA 
In block-based statistical timing analysis tool, a first-order 
variational model is employed for all timing quantities such as 
the gate and wire delays, arrival times, required arrival times, 
slacks and slews, i.e., all timing quantities are expressed in the 
CFO form as:  
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where a0 is the nominal value; ∆Xi‘s represent the variation of 
m global sources of variation, Xi, from their nominal values, 
ai’s are the sensitivities to each of the global sources of 
variation, ∆Sa is the variation of independent random variable 
Sa and am+1 is the sensitivity of the timing quantity to Sa. By 
scaling the sensitivity coefficients, we can assume that ∆Xi 
and ∆Sa have distributions with µ=0 and σ2=1 and 
skewness= κ denoted by Dist(µ=0,σ2=1,κ).  
         Variation in the physical dimensions of the wire causes 
change in its resistance and capacitance, thereby, making the 
gate delay and slew as well as wire delay and slew to vary 
accordingly. Therefore, we need to capture the effect of 
geometric variations on the electrical parameters. Classifying 
the sources of variation into global and independent random 
sources of variation, we represent electrical parameters of the 
wire (i.e., resistance and capacitance) in the CFO form. For 
instance, resistance and capacitance in the CFO form are 
calculated as follows:  
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where r0 and c0 represent nominal resistance and capacitance 
values, computed when the wire dimensions are at their 
nominal or typical values. ∆Xi‘s are the global sources of 
variation and ∆Sr and ∆Sc represent the independent random 
sources of variation for the resistance and capacitance, 
respectively; ri and ci are the sensitivity coefficients of 
resistance and capacitance with respect to the sources of 
variations, respectively. With appropriate scaling of the 
sensitivity coefficients, we can assume that ∆Xi, ∆Sr, and ∆Sc 
have distributions with µ=0 and σ2=1 and skewness=κ 
denoted by Dist(µ=0,σ2=1,κ). 

Observation: Invariant Functional Form Property: This 

property states that: ( ) ( )y f x Y f X
℘ ℘

= ⇔ = , which follows from 
the fact that the form of function f is independent of its input 
type (i.e., whether it is deterministic or variational.) 
2.2 Conversion to CFO form 
As mentioned earlier, it is important to represent timing and 
electrical quantities in the CFO form. This in turn enables one 
to propagate first order sensitivities to different sources of 
variation through the circuit timing graph [7]. In addition, it 
makes statistical computation efficient and practical and 
provides timing diagnostics at the cost of a small cost in run 
time. The remaining question is how to convert a quantity of 
interest (which itself is a function of different CFO variables) 
into the CFO form.  



  

In general, suppose that G is a nonlinear function of m 
global and p independent random sources of variation. To 
represent G in the CFO form, we differentiate the function 
with respect to the global and independent random sources of 
variation, and therefore it can be written as: 
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(2) 

where the distribution of ∆SG can be calculated using  
Lemma 1.   

3. Statistical Interconnect Timing Analysis 
Problem Statement: Given is an RLC network representation 
where every electrical parameter (r, l, and c) is in the CFO 
form. Considering a step input, the objective is to calculate the 
minimum mean squared error (MSE) fit of the distribution of 
the α% transition time at any node in the network in the CFO 
form such that: 
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where tα is the α% transition time and v(t) is the voltage  of 
the node in the time domain.  
3.1 Detailed Analysis  
In STA, we have seen that for a general RLC circuit, the 
impulse response transfer function from the input node to any 
node of the circuit can be written as: 

( ) ( )
( )

0 0

u v
V sx i jHR s a s b si jV sin

i j

= =

= =
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where ai and bj can be represented as functions of the 
electrical parameters of the circuit. If a unit step input voltage 
is applied to the circuit, the voltage step response at any node 
of the circuit in Laplace domain may be written as; 

( ) ( ) ( )HR s
V s SR sx s

= =  

In σTA, due to the variability of the electrical parameters, 
ai’s and bj‘s are not deterministic scalar values. Instead, by 
using the technique in section 2.2, we represent them in the 
CFO form. Thus, we can rewrite the revised impulse response 
in Laplace domain as: 
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where ai,0 and bj,0 are the nominal values of the si and sj 
coefficient, respectively; ∆Xk, k=1….m represent all m global 
sources of variation; ∆Sl, l=1…p are all independent random 
sources of variation in the circuit; ai,k is the sensitivity of ai to 
∆Xk; bj,k is the sensitivity of bj to ∆Xk; a*

i,m+l is the sensitivity 
of ai to ∆Sl; and b*

j,m+l is the sensitivity of bj to ∆Sl. For 
instance, if a si coefficient is not a function of the either global 
or independent random sources of variation, then the 
corresponding sensitivity coefficient will be zero. 

We are interested in calculating the interconnect delay 
and slew in the CFO form. Assuming a step input is applied to 
the RLC network, the following theorem shows how to 
evaluate α% transition time of voltage step response of any 
node in the network in its CFO form. From this result, we can 
easily find the solution to the problem statement.  
Theorem: Consider an RLC network excited by a step input. 
Assume that each electrical parameter (r, l, and c) of the tree 
is in the CFO form. The MSE fit of the distribution of the α% 
transition time of any node in the network in the CFO form is 
calculated as follows: 
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The distribution of ∆Stα is given as: 
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Proof: See appendix. 
Eqn. (5) (which is simply the inverted form of ,0

( )vx t
α

α= ) 
means that to calculate tα,0 (i.e., the nominal value of the α% 
transition time), we must perform delay analysis for a step 
input with all the circuit elements set to their respective 
nominal values, which can be done by using any timing 
calculator such as AWE methods [17]. hr(tα,0) in Eqn’s (6) and 
(7) is the impulse response of the circuit at time tα,0 when the 
circuit is in its nominal condition, and can be calculated by 
AWE methods [17]. This value appears in all of the 
coefficients and is independent from the variations, so it 
should be calculated only once. 



  

As shown in Eqn. (6),  Λi(tα,0) is equal to the inverse 
Laplace of the “derivative of non-CFO step response” when 
sources of variations are set to zero. Therefore, if we 
substitute the non-CFO impulse response (cf. Eqn. (3)) into 
Eqn. (6), then Λi(tα,0) may be calculated as a function of the 
ai,0 and bj,0, and sensitivity coefficients of ai,l, bj,k, a*

i,m+l 
,b*

j,m+l. These coefficients are calculated by using the RICE 
program [9]. Similar set of steps are performed to calculate 
Ψm+j(t). Finally, Eqn. (8) provides the skewness of ∆Stα. 

Figure 1 presents the summary of the algorithm for 
statistical timing analysis, called SITA. 

// the accurate solution
{
    // Eqn. (5).
  ),0
    // global sources of variation

( ) // Eqn. (6),0
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// Eqn.(6)
    // independent sources of variation

( ) // Eqn. (7),0
*        // Eqn.(7)

    //  Eqn. (7), 1

// Eqn. (4)
}
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Figure 1: General SITA Algorithm 

3.2 An Approximate Solution 
Eqn’s (4)-(8) return an accurate solution of the parameterized 
block-based non-Gaussian statistical timing analysis in the 
CFO form. However, it is useful to have an efficient, yet 
reasonably accurate, solution for interconnect timing analysis 
during the design flow. Therefore, we propose the following 
approximate algorithm.  

The CPU-intensive portion of the SITA algorithm is 
calculating hr(tα,0), Λi(tα,0), and Ψm+j(tα,0). Thus, we use 
exponential waveform approximation to calculate hr(tα,0) and 
single-pole approximation to calculate Λi(tα,0) and Ψm+j(tα,0). 
These approximations will result in the following equations 
(The derivations are omitted for readability): 
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The proposed approximate solution to the general SITA 

algorithm is presented in Figure 2, called SITA-Aprx. 

4. Experimental Results 
We used two different circuit configurations for generating 
the experimental results. The first one consists of an RLC 
ladder topology with 5 segments connected in series (nodes 
are labeled 1 to 5 from the input to the output) as shown in 

Figure 3(a), whereas the second one is an RC tree with two 
branches as depicted in Figure 3(b). A step input is applied to 
both interconnect configurations.  

, , , ) //An approximate solution
{
    ,0

// Use delay metrics such as Elmore, D2M, ... for finding 0- % 
           transition of the node for the nominal condition of
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Figure 2: SITA-Aprx Algorithm 

We considered three different global sources of variation 
(interconnect width, interconnect thickness, and the ILD 
variation) and one independent random source of variation for 
each electrical parameter (i.e., r, l, and c) in the circuit. We 
used empirical capacitance modeling equations [16] to 
compute linear coefficients (sensitivities) of the CFO model. 
We considered a 3-sigma variation of 30% for all sources of 
variation. We also assumed that sources of variation are 
skewed with different skewness values as explained in each 
subsection. The mean, variance, and skewness of interconnect 
delay and also 10%-90% transition times (slew) at a number 
of nodes (highlighted in Figure 3), were calculated by using 
both SITA and SITA-Aprx algorithms (In SITA-Aprx 
algorithm, we used D2M delay metric for calculating tα,0). We 
also performed Monte Carlo simulation with 10,000 samples 
for each test scenario and recorded the resulting mean, 
variance, and skewness of interconnect delay and 10%-90% 
transition times. Average percentage errors between results 
obtained by the Monte Carlo (Actual) and results based on 
SITA and SITA-Aprx algorithms (Analytical) are reported.  

  
(a) (b) 
Figure 3. (a) RLC ladder and (b) RC tree. 

A. RLC ladder with 5 series-connected segments  
The load in this section is considered to be an RLC ladder with 
5 segments. The nominal values of Width, Thickness, and ILD 
are chosen to be (W)nom= {0.4, 0.5, 0.6, 0.7, 0.8}µm,  
(T)nom={0.4, 0.5, 0.6, 0.7, 0.8} µm, (ILD)nom={0.2, 0.3, 0.4, 
0.5, 0.6}µm. The scaled distribution of the sources of 
variation is considered to have a skewness of 0.4, 0.6, and 0.8. 
We performed our experiments by using both algorithms – 
SITA and SITA-Aprx - as explained before. The results are 
shown in Table 2 for the skewness of 0.4, in Table 3 for the 
skewness of 0.6, and in Table 4 for the skewness of 0.8. 
Experimental results show an average error of 1%, 2%, and 
2% for mean, variance and skewness of interconnect delay 
and slew for SITA algorithm and an average error of 4%, 3%, 
and 3% for mean, variance and skewness of interconnect 
delay and slew for the SITA-Aprx algorithm. The error in 



  

node “a1” is more than the error in node “a5” when the SITA-
Aprx is utilized. This is due to the resistive shielding effect. 
However, when using SITA, error levels in both nodes are 
close to one another.  As the skewness value increases from 
0.4 to 0.8, the error in the calculated mean, variance, and 
skewness of delay and slew increases, but only slightly.  

The only source of error when using the SITA algorithm 
is the linear first order modeling (CFO equations) for the 
timing and electrical parameters. For SITA-Aprx, the delay 
metric for calculating tα,0, the single-pole approximation of Λ 
and Ψ and the method of impulse response calculation 
presented in section 3.2, increases the error (fortunately by a 
small amount.) However, the runtime of the SITA algorithm is 
on average 90 times shorter than that of the Monte Carlo 
based approach. Furthermore, the runtime of SITA-Aprx is on 
average about 15 times shorter than the SITA runtime. 

Table 2: Average error (%) for the RLC ladder (Skewness=0.4) 
 Delay Slew 

SITA SITA-Aprx SITA SITA-Aprx Average error 
a1 a5 a1 a5 a1 a5 a1 a5 

Mean 0.6 0.5 3.9 3.0 0.7 0.7 3.6 3.4 
Variance 1.2 1.1 2.7 2.2 1.4 1.0 2.6 1.9 
Skewness 1.6 1.8 3.5 3.1 2.3 2.2 3.0 2.7 

Table 3: Average error (%) for the RLC ladder (Skewness=0.6) 
 Delay Slew 

SITA SITA-Aprx SITA SITA-Aprx Average error 
a1 a5 a1 a5 a1 a5 a1 a5 

Mean 0.9 1.3 4.7 3.1 1.0 0.9 4.3 3.7 
Variance 1.5 1.8 3.3 2.5 1.7 1.5 3.1 2.4 
Skewness 2.0 2.1 3.8 3.2 2.2 2.0 3.4 2.9 

Table 4: Average error (%) for the RLC ladder (Skewness=0.8) 
 Delay Slew 

SITA SITA-Aprx SITA SITA-Aprx Average error 
a1 a5 a1 a5 a1 a5 a1 a5 

Mean 1.1 1.4 4.9 4.0 1.2 1.4 4.5 4.1 
Variance 1.9 2.1 3.8 3.3 2.1 1.9 3.7 2.9 
Skewness 2.6 2.2 3.5 2.9 2.2 2.0 3.3 3.2 

B. RC tree with two branches  
Now the interconnect topology is an RC tree as shown in 
Figure 3(b). The nominal value of Width, Thickness, and ILD 
are again chosen to be (W)nom= {0.4, 0.5, 0.6, 0.7, 0.8}µm,  
(T)nom={0.4, 0.5, 0.6, 0.7, 0.8} µm, (ILD)nom={0.2, 0.3, 0.4, 
0.5, 0.6}µm. The scaled distribution of the sources of 
variation is considered to have a skewness of 0.5, 0.75, and 1. 

We performed the experiments by employing both SITA 
and SITA-Aprx algorithms. Results are reported in Table 5 for 
the skewness of 0.5, Table 6 for the skewness of 0.75, and 
Table 7 for the skewness of 1. Experimental results show an 
average error of 1%, 3%, and 2% for mean, variance and 
skewness of interconnect delay and slew for SITA algorithm 
and an average error of 5%, 3%, and 3% for mean, variance 
and skewness of interconnect delay and slew for the SITA-
Aprx algorithm.  As the skewness value increases from 0.5 to 
1, error in the calculated mean, variance, and skewness of 
delay and slew increases slightly. Similar observations apply 
with respect to the sources of error in SITA and SITA-Aprx 
algorithms. Finally, note that SITA is on average 94 times 
faster than the Monte Carlo based approach while SITA-Aprx 
is on average 18 times faster than SITA. 

5. Conclusion 
We presented an analytical framework for handling the non-
Gaussian statistical interconnect timing analysis in block-
based statistical static timing analysis. We expressed the 
resistance and capacitance of a line in canonical first order 
forms. We subsequently utilized these forms to perform 
accurate timing analysis of RLC interconnect, thereby, 
producing the CFO form of the propagation delay and slew of 
interconnects. Experimental results showed an average error 
of 1%, 2%, and 2% for mean, variance and skewness of 
interconnect delay and slew for SITA algorithm and a speed 
up of two orders of magnitude compared to Monte Carlo 
simulation results with 104 samples. Furthermore we proposed 
an approximate analytical method to solve the aforesaid 
problem. The average error of this approximation is about 5%, 
3%, and 3% for mean, variance and skewness of interconnect 
delay and slew compared to Monte Carlo simulation while 
offering a speed up of at least one order of magnitude 
compared to the accurate analytical method.  

Table 5: Average error (%) for the RC tree (Skewness=0.5) 
 Delay Slew 

SITA SITA-Aprx SITA SITA-Aprx Average error 
b1 b5 b1 b5 b1 b5 b1 b5 

Mean 0.5 0.8 4.9 4.0 0.8 0.9 4.2 3.3 
Variance 2.8 2.5 3.3 3.1 2.5 2.3 3.2 3.3 
Skewness 2.2 2.1 2.8 2.7 3.1 3.0 3.1 3.1 

Table 6: Average error (%) for the RC tree (Skewness=0.75) 
 Delay Slew 

SITA SITA-Aprx SITA SITA-Aprx Average error 
b1 b5 b1 b5 b1 b5 b1 b5 

Mean 0.9 1.0 5.4 5.1 1.1 1.2 5.0 4.3 
Variance 3.0 2.7 3.2 3.4 3.2 3.1 3.2 3.1 
Skewness 2.5 2.3 3.2 3.0 2.5 2.4 3.2 3.4 

Table 7: Average error (%) for the RC tree (Skewness=1) 
 Delay Slew 

SITA SITA-Aprx SITA SITA-Aprx Average error 
b1 b5 b1 b5 b1 b5 b1 b5 

Mean 1.3 1.2 5.8 5.2 1.4 1.3 6.0 5.1 
Variance 3.2 3.1 3.5 3.1 3.4 2.9 3.9 3.1 
Skewness 2.7 2.6 3.9 3.2 2.4 2.6 3.7 3.1 
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7. Appendix 
Definition: The inverse of the Laplace transform can be calculated 
as: 
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where γ is a vertical contour in the complex plane chosen so that all 
singularities of f(s) are to the left of it [11] 
Proof of Theorem: Since v(tα) is a random variable, we must find 
tα in the CFO form s.t.  
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The above nonlinear stochastic equation is not easy to 
evaluate, therefore, we approximate v(tα) with:  
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To satisfy the minimization in Eqn. (12), we have; 
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From the definition, the first condition in Eqn. (14) can be 
written as: 
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Therefore, 
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Thus, ( )1
,0t sr αα

−= ; which proves Eqn (5). The second 
condition in Eqn. (14) may be treated as follows: 
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Now, 
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which proves Eqn (6). Finally, to prove Eqn. (7) we can write; 
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Consequently, 
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