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Abstract—As cloud computing is becoming the new generation
of computing paradigm because of its many attractive attributes,
huge data centers are built and operated to host the cloud
services. Since these data centers usually incur a high electricity
bill, the problem of reducing the electricity cost and maximizing
the profit for a data center operator arises naturally. Because
of the trend of dynamic pricing policies in the energy market,
in which the electricity price changes across different hours of
a day, the use of energy storage devices, such as batteries and
supercapacitors, in a data center can be extended in addition
to judicious computing/memory/storage resource management
policies as another way to cut down on the operational cost.
In this paper, we formulate a generalized optimization problem
to minimize the linear combination of the electricity cost and
the average request response time in a data center with energy
storage devices. Solutions based on convex optimization tech-
niques are proposed and the experimental results are discussed
to demonstrate the effectiveness of the proposed formulation and
the solution methods.

I. INTRODUCTION

Cloud computing has been envisioned as the new gen-
eration of computing paradigm for its major advantages in
on-demand self-service, ubiquitous network access, location
independent resource pooling, and transference of risk [1]. In a
cloud computing system, the computation and storage demands
are shifted from users at network edges to a Cloud, in which
resource abundant data centers are hosted. By accessing the
business applications in the form of cloud services through
the network, an application user can reduce or even eliminate
the costs related to “in-house” resource provisioning for these
applications. An overview of the cloud computing architecture
can be found in [2].

To accommodate the ever-growing demand for cloud ser-
vices, massive data centers are built which consume a large
amount of electricity power, thus leading to soaring utility bills.
For instance, Microsofts data center in Quincy, Washington
consumes 48 megawatts which is enough to power 40,000
homes [3]. And according to the data from [4], [5], utility
bills contribute an average of 24% of the total amortized cost
of a data center. Consequently, controlling the utility costs is
an essential problem for a data center operator to maximize its
profit. On the other hand, due to the service level agreement
(SLA) formed between the service provider and the clients, the
service provider often ends up over-provisioning the resources
[6], which causes an increase in the total power consumption
of the servers and adds to the electricity bill. Therefore, the
well known problem of optimal resource allocation has been

studied by a series of prior work [7]-[11]. For instance, [10]
addresses the resource allocation problem in a multi-tier cloud
computing system aimed at profit maximization.

Because of the trend of dynamic energy pricing [12],
the change energy price has become another factor that can
significantly affect the total energy cost in addition to the total
power consumption of a data center. In the case where the
time-of-use (TOU) pricing policies are adopted by the utility
companies, i.e. the electricity price changes at different times
of a day, another natural thought to cut down on the utility
bills is to reshape the energy consumption profile by adjusting
the utilization level of the servers in the data center during
different hours of a day. With the same energy consumption
budget provided, raising utilization levels when the electricity
price is relatively lower and lowering the utilization levels
otherwise will no doubt result in lower electricity bill cost
compared to the policy in which the utilization levels of the
servers remain the same at all time. Although promising at
first sight, the efficacy of this approach is greatly dependent on
the incoming pattern of the service requests. Since one major
motivation of dynamic pricing is to balance the power demand
in different hours of a day, the peak hours with high energy
prices are likely to overlap those with more user activities and
higher request incoming rate. When a large number of service
requests are arriving at the data center, the utilization levels of
the servers cannot be lowered much even if the energy price
is high, since under-provisioning of resources will cause SLA
violations, the penalty of which can overwhelm the benefits of
energy saving.

As a solution to the problem stated above, the usage of
energy storage devices (ESDs), such as the UPS unit [13],
which is originally designed to deal with power outages, can
be extended to reserve energy in off-peak hours for the use in
the peak hours. The utilization of ESDs in data centers is also
studied from various aspects by some other work. Authors of
[14] proposed an control algorithm to minimize the electricity
cost based on the i.i.d assumption of the workload profile. And
the problem of “peak shaving” is considered in [15] in order to
reduce the infrastructure cost of a data center. Moreover, in the
presence of energy sell-back policies, e.g. Renewable Energy
Standard Offer Program', data center operators can also make
use of the enlarged capacity of the ESDs to make profit from
the electricity price difference between the peak hours and the
off-peak hours.
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Fig. 1. System framework of a data center with an ESD

Despite all the work that focus on request dispatch-
ing/resource allocation or the usage of ESDs, none of them is
able to identify the inter-dependency between the two problems
and to formulate a combined problem that determine the
management policies for both the server cluster and the ESDs.
In fact, the workload of the data center, which is one of the
major parameter in the problem formulation of [14], can be
more accurately modeled using the information of the resource
allocation scheme among the servers. At the same time, as
is stated earlier, a data center operator can benefit from the
extended usage of ESDs by exploiting resource allocation poli-
cies more aggressively. In this paper, we jointly consider the
request dispatching, resource allocation, and the usage of ESDs
to balance between the average response time of the requests
and the total electricity bill. The response time of a service
request is modeled using the generalized processor sharing
(GPS) model [16], [17], the power consumption of the data
center is calculated based on the utilization level of each server,
and the charging/discharging of a unified ESD at the data
center level is considered. A generalized optimization problem
considering energy sell-back is formulated, and some solution
methods based on convex optimization [18] techniques are
proposed.

The rest of this paper is organized as follows: the system
model is introduced in Section II. Section III shows the
formulation of the optimization problem. Section IV presents
the solution methods. The experimental results are presented
in Section V. And the last section is the conclusion.

II. SYSTEM MODEL

In this paper, we consider a data center comprised of a
set of heterogeneous servers with different amount of compu-
tation resources and/or power consumptions, and an array of
rechargeable batteries is installed as the ESD. Incoming service
requests are dispatched among the servers, and the electricity
power drawn from the power grid can be distributed between
the server cluster and the battery array. The system framework
is shown in Fig. 1.

A. Pricing model

The utility company is considered to adopt a TOU (time-of-
use) pricing policy which has potentially different electricity
prices in different time slots (from several minutes to one hour)
of the day. Let L denote the number of time periods (slots) of

a day. The duration of the [-th time period is denoted by 7;.
During the [-th time period, the price of buying a unit amount
of electricity energy is denoted by Pricep ;, while the price of
selling a unit amount of electricity energy back to the power
grid is denoted by Priceg ;. Generally speaking, Pricep ; and
Priceg, are higher during peak hours than off-peak hours.

B. Request arrival and processing model

In order to find an analytical form of the average response
time of a service request, the arrival of the service requests is
assumed to follow a Poisson process with an average arrival
rate of )\; during the [-th time period. For the k-th server
in the data center which has K servers in total, the average
processing rate is denoted by ;. For any given k and [, if the
probability that a service request is dispatched to server k is
denoted by py,; during the I/-th time period, then the arrival of
service requests at the k-th server is known to follow a Poisson
process with an average arrival rate of py; - A; according to
the properties of exponential distributions. According to the
GPS model, if ¢ ; denotes the portion of resources allocated
by the k-th server to process the incoming service requests
during the [-th time period, the average response time of the
requests processed by the k-th server during the [-th time
period, denoted by Ry, ;, can be calculated as
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The average response time of service requests over the whole
day, denoted by R, can be calculated as
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C. ESD model

In this paper, we consider the case that a single array
of rechargeable batteries is installed at the data center level
with the maximum energy capacity of Eg ;.. The amount
of energy stored in the batteries at the beginning of the -
th time period is denoted by Eg;. To retain the capability
of handling power outages and to ensure safety, a minimum
amount of energy, denoted by Eg ,,:,, must be kept within
the batteries during any time period. The amount of energy
charged to and discharged from the batteries during the [-
th time period are denoted by Ec; and Ep;, respectively.
There exists an upper bound of the amount of energy that
can be charged to or discharged from the battery, denoted by
Ec mae, and Ep 44,1, T€spectively, because of the limited
power density of the batteries and power capacity of conversion
circuitry. Moreover, a charging efficiency, denoted by nc¢,
and a discharging efficiency, denoted by np, are included
in the proposed model to account for the energy conversion
loss between the power grid, the batteries, and the power
consuming components in the data center.Please note that
although both E¢;’s and Ep,’s are introduced in order to
simplify the problem formulation, it is intuitively true and can
be proved straightforwardly that they cannot have non-zero
values at the same time for any given time period [. In other
words, the ESD will not be charged and discharged in the same
time period.



D. Power consumption model

While modeling the total electricity power consumption of
a data center, one should not only consider the power consump-
tion of the servers, but also account for the power consumption
overhead, e.g. the power consumption of the power delivery
infrastructure, networking, and the cooling system, etc. If we
use Fyqqe to denote the power usage effectiveness (PUE)
factor [19] of the data center, which reflects the proportion
of electricity power consumed by components other than the
servers and ranges between 1.2 to more than 2.0, then, based
on [20], the equivalent power consumption of the k-th server
during the I-th time period, denoted by P, ;, can be calculated
as
Pk,l :Pidle,k + (Eusage - ]-) : Ppeak,k

3
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where Pigje r is the power consumption of the k-th server
when it is idle, Ppeqr 1 is the peak power consumption of the
k-th server when its utilization level reaches 100%, and € is a
constant. Since Py ; is a linear function of ¢ ;, Eqn. (3) can
be rewritten as

Py = Peoni + Plinic - Ok 4

where P, 1 and P;, j are coefficients that can be calculated
based on the values of Pjge i, Ppeak,k> Fusage, and e. If the
k-th server is turned off during the [-th time period, then
the server does not consume any power and only a part of
the power consumption overhead is incurred, which will be
denoted by P, ¢s 5. If we let x,; = 1 in the case that the k-th
server is turned on during the [-th time period, and z;; = 0
otherwise, then the total power consumption related to the
server cluster in the [-th time period, denoted by Ec., 1, can
be calculated as

Eservy =11 - Z @k Peg+ (1 —ap) Pogrr]  (5)
%

And the total amount of energy drawn from the power grid by
the data center during the [-th time period, denoted by Fyosq1.1,
can be expressed as

Eiotaty = Eservg +Ecy —np - Epy (6)

Eiotar,; > 0 means that the energy flows from the power grid
to the data center, while Ey,,; < 0 means that the energy
flows from the data center back to the power grid.

III. PROBLEM FORMULATION

Provided the request arrival rate, the energy price function,
and specifications of the data center and the battery array, we
formulate the problem of determining the resource allocation
scheme for the servers and the charging/discharging scheme for
the battery array as an optimization problem as shown below:

Find x1.1’s, pr,i’s, ¢r,1’s, Esy’s, Ec;’s, and Ep;’s
Minimize

Z Celec,l (Etotal,l) + kdelay ‘R (7)
l

Subject to
Ok Pk — P - A = 0, vk, (8)
R < Rpax )
Esit1=FEs;+nc-Ec;—Ep,, Vi (10)
Esr+1=Esyg (11
kak,l = 1, Vl (12)
Grg < Tp i, Vk, I (13)
Pk, = 0, Yk, 1 (14)
¢ra =0, vk, (15)
Es; € [Esmin; £5,maz] ; Vi (16)
Ec,y € [0, Ecmaz,] » vl (17)
Ep; €0, Epmaz), vl (18)
g € {01}, vk (19)

where Cejec; () is the energy cost function defined as

c Priceg;-E, E=>0
elec,l (E) - {PT”I;CQS'J . E, E<0 (20)
The control variables are the set of servers to be turned on
during each time period, the probabilities to dispatch a request
to each server, the proportion of resources that each server
allocates for the service requests, the amount of energy stored
in the battery array in each time period, and the amount
of the energy charged to/discharged from the battery array.
The objective function is set as a linear combination of the
total energy cost per day and the average response time per
service request in order to achieve a desirable balance between
the power consumption and the delay performance and to
maximize the profit gained by the data center operator. Etoai,1
is calculated as in Eqn. (6), R is calculated as in Eqn. (2),
and kgerqy is the coefficient that adjusts the weight of the
average response time and may vary based on different SLAs.
Constraint (8) ensures that the amount of resources allocated
to an incoming request flow is enough to process it with
finite waiting time. Constraint (9) sets the maximum tolerable
average response time for the incoming service requests.
Constraint (10) addresses the change of amount of stored
energy in the battery array between different time periods.
Constraint (11) makes sure that the amount of energy charged
to and discharged from the battery array are balanced and the
battery array will have the same amount of stored energy at
the beginning of each day. Constraint (12) ensures that all
the incoming service requests will be dispatched to a server.
Constraint (13) prohibits any resource allocation from a server
that is currently turned off. Constraints (14) - (19) set the
domain of the control variables. It is worth noting that the
case that energy sell-back is not allowed is also included in
the formulation which correspond to the case that all energy
sell-back prices, Priceg;’s are set to zero. We omit the proof
of equivalence since it is straightforward.

Generally speaking, the problem formulated as above is
a mixed-integer non-linear programming (MINLP) problem,
which does not have any efficient solution methods. Even
if all the integer variables x;’s are given in prior, the
problem is still difficult to solve using conventional convex
optimization techniques [18] because the objective function is
neither convex nor concave.



Set initial values p, 0)’5 q/)kl s, Eg?l)’s, Eg;’s, and E}?)l’s
k<« 0

repeat
Find the optimal values for p(k+1)’ Egkf 1)’s,
Egclﬂ)’s and Egﬂlﬂ)’s based on q/)kl S
Find the optimal values for qﬁ(kﬂ S, E(Skf 1)’5,

Egclﬂ) s, and Egﬂlﬂ)’s based on p(kﬂ) S
k+—k+1
until solution converges

Fig. 2. Pseudo code for the solution of resource allocation and battery
management problem

IV. SOLUTION METHODS

Because of the non-convexity of the problem and the exis-
tence of the integer-valued variables, one can only obtain the
optimal solution by using exhaustive search or some stochastic
algorithm, e.g. simulated annealing [21] or genetic algorithm
[22]. In this section, we propose two solution methods that
use convex optimization techniques to derive near-optimal
solutions.

First of all, we decompose the problem into two sub-
problems, namely, (i) the problem of resource allocation
and battery management, which finds the optimal policy
of request dispatching, resource allocation, and the amount
charging/discharging energy, and (ii) the problem of server
consolidation which determines the set of servers to be turned
on. In this way, the continuous variables and the integer-valued
variables are separated.

A. Solution to the problem of request dispatching, resource
allocation, and battery management

While solving this problem, we assume that the values of
all xy;’s are given. Based on the assumption that Priceg,; <
Pricep, for any given [, i.e. the price to sell electricity back to
the power grid cannot exceed the price to buy electricity from
the power grid at any time (please note that this also includes
the case that energy sell-back is not allowed), the energy cost
function, Cejec,i(+), as defined in Eqn. (20), can be rewritten
as

Ceiec,i(F) = max (Pricep, - E, Priceg; - E) 201

Since Eyoq1, as calculated in Eqn. (6) is a linear function of
®r1’Ss Celec, () is a convex function that only depends on the
values of ¢ ;’s.

Although the problem is still non-convex because of the
relationship between Ry ;, py, and ¢y as specified in Eqn.
(1), it can be further decomposed into two set of convex
problems: fixing the value of py, ;’s, the problem is convex with
respect to variables ¢y;’s, Fg;’s, Ec;’s, and Ep;’s, while
fixing the value of ¢y ;’s, the problem is convex with respect
to variables py;’s, Eg;’s, Ec;’s, and Ep;’s. Therefore, an
iterative solution method consisting of a request dispatching
phase and a resource allocation phase can be used to solve this
problem. In the request dispatching phase, the values of py ;’s,
Es;’s, Ec,;’s, and Ep;’s are found subject to constraints (8)
- (11), (13), (15) - (18). In the resource allocation phase, the

values of ¢ ;’s, Es;’s, Ec;’s, and Ep;’s are found subject
to constraints (8) - (12), (14), (16) - (18). The pseudo code
description of the algorithm is shown in Fig. 2.

In the special case that the purchase price and the sell-back
price of electricity are the same at any time, i.e. Price; :=
Pricep,; = Priceg,, an alternative solution method based on
a hierarchical solution framework can be used to achieve better
result.

First, for any specific time period [, if the charging and
discharging of the battery array is not considered and the max-
imum allowable latency is set to [2; 4, then the problem of
finding the optimal request dispatching and resource allocation
policy can be formulated as follows

Find p;.;’s and ¢y ;’s for a given [

Minimize
Oserv,l (Rl,max)
Subject to
Pkl "Mk~ DL A 20, VE (22)
Rl < Rl,mam (23)
dokPrl =1, (24)
Prl L Thyl, vk (25)
Py = 0, Yk (26)
¢r1 =0, vk 27

where Cierp,i (Rimaz) is the minimum cost that can be
achieved without using the ESD under the maximum average
latency of R 4. and can be expressed as

NT R,

P’l”iC@l . Ese'r’u N + kdelay Z /\lﬂ
l

Cserv,l (Rl,max) = (28)

Ry is the average response time in the I-th time period which
can be calculated as

R =" priRi (29)
ke

with Ry ;’s specified as in Eqn. (1). Near-optimal solution
can be obtained from this problem by iteratively finding the
optimal values for py;’s and ¢y, ;’s. The algorithm is shown in
Fig. 3. By solving the problem with different values of I} 4.,
one can build up a lookup table which stores the minimum
overall cost with different average latency constraints. Please
note that more generalized lookup tables that includes the
values of Cisery i (Rimae) under different electricity prices
and/or request incoming rates can also be used to improve
computational efficiency in the case that the user’s behavior
or the pricing policy changes frequently.

Provided that the solution for the problem of request
dispatching and resource allocation can be found locally with
any given R,.. ., from the global perspective, the original
problem can be transformed into the problem of finding the
optimal R,,q;,;’s as well as the charging/discharging policy
for the battery array (i.e. Es;’s, Ec;’s, and Ep;’s), which is
formulated as follows:

Find R qz’s, s, Ecy’s, and Ep;’s



Set initial values p,(fl)’s and gb,(fl)’s

k<0
repeat

Find the optimal values for p;k;r 1>
l+1),

s based on gb,(fl)’s

Find the optimal values for qbgf s based on p,(ckf Lo
k«k+1

until solution converges

Fig. 3.  Pseudo code for solving the request dispatching and resource
allocation problem for each time period

Minimize

Z [Cserv,l (Rl,maz) + P’I"’L'Ct’fl . (EC,l —ND - ED,Z)]
l

Subject to

Zl ()‘l : ,‘Tl : Rl,max)
Zl (/\l Tl)

as well as constraints specified in (10), (11), (16) - (18).
Constraint (30) ensures that the maximum average latency in
each time period is set in a way such that the global maximum
average latency constraint can be satisfied.

< Rmag (30)

Generally speaking, Csery,i (Rimaz) iS @ monotonically
decreasing convex function with respect to R a4, 1.€., the
total cost related to the server will increase super-linearly
if the maximum average latency is reduced. Therefore, the
problem of finding the maximum average latency for each
time slot as well as the charging/discharging policy is a convex
optimization problem because the objective function and the
inequality constraints are convex, and the equality constraints
are affine. Standard solvers can be used to obtain the optimal
solution with polynomial time complexity.

B. Solution to the problem of server consolidation

In the problem of server consolidation, we find the optimal
set of servers to be turned on in each time period which is
controlled by boolean variables xj;’s. When the size of the
problem is small, one can run exhaustive searches or apply
branch and bound algorithms to find the optimal consolidation
policy. In the case that the problem size is relatively large and
the computational efficiency is a major consideration, we can
use a heuristic based on a greedy algorithm to find the near-
optimal consolidation policy.

The algorithm uses a loop to find the values for xy,;’s. The
algorithms as proposed in Section IV-A are used as kernel
algorithms in each iteration of the loop to solve the problem
of optimal request dispatching, resource allocation, and ESD
management and calculate the total cost. Initially, all xy ;’s
are set to 1, i.e. all servers are turned on. In each iteration, we
search for the (k, 1) pair which results in the lowest utilization
level. The corresponding zj,; is set to 0 and the new total cost
is calculated and compared with the previous one. The process
continues until no more cost reduction can be achieved. The
framework of the algorithm is shown in Fig. 4.

Tl < I,Vk,l
Calculate the total cost, Ciotar
repeat
Ctotal,O < Ctotal
Among all (k,[)’s such that x5 ; = 1, find (Kmin, lmin)
such that ¢km.in7l7nin = min{¢;€7l}
Set Thpinslmin < 0
Calculate the total cost, Ciotar
until C(totu,l > Ctotal,O

Fig. 4. Pseudo code for the algorithm to solve the problem of server
consolidation

Normalized request arrival rate
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Fig. 5. Request arrival rate within one day

V. EXPERIMENTAL RESULTS

In this section, we present the simulation results on some
selected scenarios. Please note that we use normalized param-
eter values rather than real values for power and delay related
parameters in the simulation.

In the first scenario, we consider the case that the electricity
sell-back price is the same as the purchase price, and discuss
how the ESD management, combined with proper request
dispatching and resource allocation policies, can help reduce
the total cost as defined in Eqn. (7). In this part, the server
consolidation schemes are not considered, and the second
algorithm proposed in Section IV-A which has a two-level
hierarchical structure is applied. Each day is divided into 24
time periods, each lasting for one hour. A server cluster of 10
servers are considered. The request arrival rate in different time
periods of a day is set according to the data extracted from the
29-day period Google cluster dataset® as shown in Fig. 5 with
the maximum arrival rate among all time periods (i.e. max \;)
of 5. The processing rate of each server, defined as p, follows
a uniform distribution on [1,2]. Py, follows a uniform
distribution on [0.2,0.3], Py;p k is set to two times Pey, 1, and
Pyyy i is set to 20% of P,y ;. The electricity price in each
time period, defined as Price;, follows a uniform distribution
on [0.1,0.2]. The total energy capacity of the ESD, defined as
E5 maq, may vary from 0 to 50. The amount of reserved energy
in the ESD, defined as Eg yin, is set to 10% of Eg 144, and
the maximum amount of energy to be charged/discharged in
each time period, defined as E¢ 02/ ED maz, may vary from
10% to 90% of Eg na. in all time periods. The efficiency of

Zhttps://code.google.com/p/googleclusterdata/
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charging and discharging are both set to 0.9. The coefficient
kdelay, as specified in Eqn. (7), is set to 1. When setting
Ecmae and Ep ez to 50% of Eg pqq., and setting the
maximum allowable average latency, defined as R,,qz, tO
different values, the relationship between the cost function and
E5 maq 1s shown in Fig. 6. As can be seen from the figure, the
total cost is a monotonically decreasing function of Eg 4,
with all R,,..’s that are simulation. When R,,,, = 1, the
reduction on the total cost is as large as 34% when having
an ESD with a maximum capacity of 50 compared to the
case in which no ESD is used. When setting Eg 4, to 30,
and varying K¢ maa/ED maz from 10% of Eg e, to 90%
of Eg maz, the total cost under different I2,,,, conditions are
shown in Fig. 7. As can be seen from the figure, increasing the
maximum amount of charging/discharging energy in each time
period will increase the amount of cost saving. Comparing to
the case that E¢ pae/ED,,ae 15 set to 10% of Eg a4, setting
Ecmai! ED,,ax 10 50% of Eg 4, further reduces the total
cost by 16% when R,,,, = 1.

Total cost

Il ithout server consolidation
I ith server consolidation

1.0 1.2 15
R

§gt=Ed

Fig. 8. The effect of server consolidation on the total cost

In the second scenario, we consider the case that energy
sell-back is not allowed, and discuss the effect of server
consolidation. In this case only the first algorithm proposed
in Section IV-A as specified in Fig. 2 is applicable. Eg ,,qz is
set to 50, Ec mae and Ep jma, are set to 50% of Ey,q,, and
all other parameters are the same as in the first scenario. The
total costs with and without server consolidation are shown in
Fig. 8. As can be seen from the figure, the server consolidation
results in 19% - 27% cost reduction.

VI. CONCLUSION

In this paper, a generalized problem is formulated to ad-
dress the problem of request dispatching, resource allocation,
and ESD management in a data center. The objective function
of a linear combination of the total electricity cost per day and
the average response time per request is considered. Solutions
based on convex optimization techniques are proposed to
solve the formulated problem efficiently. Experimental results
show that both the ESD management algorithm and the server
consolidation have significant effects on reducing the total cost.
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