

Reinforcement Learning-Based Dynamic Power Management of a Battery-Powered

System Supplying Multiple Active Modes

Maryam Triki1,Ahmed C. Ammari1,2

1MMA Laboratory, INSAT
Carthage University, Tunis, Tunisia

2Department of Elect.& Comp. Engineering,
 King Abdulaziz University, Jeddah, Saudi Arabia

Yanzhi Wang and Massoud Pedram
Department of Electrical Engineering

University of Southern California
Los Angeles, CA, USA

Abstract—This paper addresses the problem of extending
battery service lifetime in a portable electronic system while
maintaining an acceptable performance degradation level.
The proposed dynamic power management (DPM)
framework is based on model-free reinforcement learning
(RL) technique. In this DPM framework, the Power
Manager (PM) adapts the system operating mode to the
actual battery state of charge. It uses RL technique to
accurately define the optimal battery voltage threshold value
and use it to specify the system active mode. In addition, the
PM automatically adjusts the power management policy by
learning the optimal timeout value. Moreover, the SoC and
latency tradeoffs can be precisely controlled based on a user-
defined parameter. Experiments show that the proposed
method outperforms existing methods by 35% in terms of
saving battery service lifetime.

Keywords-Dynamic power management; reinforcement
learning, extending battery lifetime; battery-powered system
design.

I. INTRODUCTION
Batteries are widely used as the only source of power

in several applications. High power consumption reduces
the battery service lifetime1.Thus, reducing the power
consumption in battery-operated portable devices has
become a major concern. The goal of low-power design
for battery-powered devices is to extend the battery
service life while maintaining performance degradation
within an acceptable level. Dynamic power management–
which refers to a selective, shut-off or slow-down of
system components that are idle or underutilized– has
proven to be a particularly effective technique for
reducing power dissipation in such systems [1].
There are several DPM methods in the literature classified
into three categories: heuristic, stochastic, and learning
based methods. The heuristic methods attempt to predict
the length of the next idle time and shut the device down
if the predicted length of idle time justifies the cost. They

1 Battery lifetime is the time one can use the battery before it is

empty.[1]

perform well only when the requests are highly correlated
and do not take performance constraints into account. The
stochastic approaches can take into account both power
and performance. They model the request arrival times
and device service times as stationary stochastic processes
such as Markov Decision Processes (MDP) [2], [3], [4].
The essential shortcoming of these methods consists in
the need of an exact knowledge of the state transition
probability function of the MDP. However, the workload
of a complex system is usually varying with time and hard
for accurate prediction. The machine learning-based DPM
learns a policy online by trying to learn the best-suited
action for each system state, based on the reward or
penalty received. Such DPM methods can simultaneously
consider power and performance, and perform well under
various workload conditions [5], [6], [7], [8].

Although DPM techniques effectively reduce the
system power consumption, they are not able to obtain the
optimal policy for extending the service lifetime of a
battery operated devices. This is because the
characteristics of battery power source are not properly
modeled and exploited in these techniques [1]. Due to the
battery characteristics, a minimum power consumption
policy does not necessarily result in the longest battery
service life. To extend the service lifetime of battery-
powered devices, authors in [9] proposed three policies:
an open-loop policy, a closed-loop2 policy and a
combination of the two aforesaid policies. The open-loop
policies attempt to reduce the average power consumption
but they do not take into consideration the battery’s state
of charge (SoC) while managing the system power.
Compared to the open-loop policies, the closed-loop
policies are based on the observation of both battery’s
output voltage and system workload. The battery’s output
voltage is related nonlinearly with the charge state. As a
consequence, the closed-loop policies help in maximizing

2 Closed-loop policy is the switching from a high quality factor

system state to a low quality factor system state when the
output voltage of the battery drops below some threshold.[10]

2013 European Modelling Symposium

978-1-4799-2578-0/13 $31.00 © 2013 IEEE

DOI

413

2013 European Modelling Symposium

978-1-4799-2578-0/13 $31.00 © 2013 IEEE

DOI 10.1109/EMS.2013.74

413

2013 European Modelling Symposium

978-1-4799-2578-0/13 $31.00 © 2013 IEEE

DOI 10.1109/EMS.2013.74

437

the time of battery operation more effectively by adapting
a component’s shutdown scheme to the actual battery
charge state. However, the presented work in [9] used all
these policies in a heuristic manner. Rong et al. in[10]
attempt to maximize the battery service lifetime while
meeting a given service timing constraints. Unfortunately,
this work is based on the assumption of a continuous-time
MDP model given in advance for the power management
system which may not be realistic.

This paper addresses the problem of extending the
battery service lifetime in a portable electronic system
while maintaining an acceptable performance degradation
level. The proposed dynamic power management (DPM)
framework is based on model-free reinforcement learning
(RL) technique that performs learning and power
management in a continuous-time and event-driven
manner. It has fast convergence rate and less reliance on
the Markovian property. The presented DPM framework
can dynamically perform power management according to
both system’s workload and battery state of charge. It
uses the reinforcement learning (RL) technique to learn
online the optimal battery output voltage threshold value
for a closed-loop policy. Experiments on measured data
traces demonstrate the superior performance of the
proposed dynamic power management method in
comparison with prior works [10].

II. THEORETICAL BACKGROUND
The general RL model, as illustrated in Fig.1, consists

of an agent, a finite state space �, a set of available actions �, and a reward function �� �� � � � �. A policy 	
��
� ���� � ��
 � �� is a set of state-action pairs for all
states in the RL framework. We use notation ����
 �� to
specify the action chosen in state s according to policy �.

Fig.1.Agent-environment interaction model.

Assume that the agent-environment interaction system

is continuous in time but has countable number of events.
Then there exists a countable set of time instances ����� ��� ��� � � ��� � �, known as epochs. At epoch ��,
system has just transitioned to state
� � �. The agent
selects an action �� � � according to some policy 	. At
time ����, the agent finds itself in a new state
���, and in
the time period ���� �����, it receives a scalar reward with
rate ��.

We define the return � as the discounted integral of
reward rate, whenever a selection of action is made by the
agent. Furthermore, we define the value of a state-action
pair �
� �� under a policy 	, denoted by !�
� ��, as the
expected return when starting from state
, choosing
action � (according to the policy), and following 	
thereafter. An optimal policy is the one that maximizes
the value functions for all state-action pairs.

To be realistic, the power manager has no predefined
policy or knowledge about state transition characteristics
unlike the stochastic DPM approaches. Therefore the
agent has to simultaneously learn the optimal policy and
use that policy to control. The temporal difference (TD)
learning method for SMDP generates an estimate ��
� �� for each state-action pair �
� �� at epoch ��,
which is the estimate of the actual value !�
� ��
following policy 	. Suppose that state
� is visited at
epoch ��, then at that epoch the agent chooses an action
either with the maximum estimated value ��
�� �� for
various actions � � �, or by using other semi-greedy
policies [11] . Moreover, the TD learning rule updates the
estimate ��
�� ��� at the next epoch ����, based on the
chosen action �� and the next state
���.

Various TD learning algorithm implementations are
mainly different from one another by their updating
methods. We choose to use the TD(�) algorithm for
SMDP due to a joint consideration of effectiveness,
robustness and convergence rate. More specifically, the
value update rule for a state-action pair at epoch ���� in
the TD(�) algorithm for SMDP is given as follows:

"�
� �� � � � ���� �#$%��
� ��
 �#��
� �� $ & '
(�#��
� ��) * %+(+,-#

, ��
#� �#�
$./0�1 (+,-# �#��
#$%� �1� + �#��
#� �#�2��������(1)

In the above expression, -�
 ���� + �� is the time

that the system remains in state
�; & � �3�%� denotes the
learning rate; , is the discount factor; �456,-#7 ��
�� ��� is
the sample discounted reward received in -� time units; ����
���� ��� is the estimated value of the state-action
pair �
���� ��� in which
��� is the actually occurring next
state. Moreover, in (1) (����
� �� denotes the eligibility of
each state-action pair �
� �� that reflects the degree to
which this state-action pair has been chosen in the recent
past. The eligibility is updated as follows:

(����
� ��
8(479:6;(��4���
� �� $ <=�
� ��� �
�� ���>����������������������(2)

Where ?��@� A� denotes the delta kronecker function.

Environment Reward rate

rk

rk+1

sk

ak

sk+1
State

Action

Agent

414414438

III. SYSTEM MODELING
We consider a portable, battery-powered electronic

system and we focus on extending battery lifetime while
maintaining performance degradation within an acceptable
level. Basically, we propose an online adaptive approach
that enhances the closed-loop policy. The PM uses
reinforcement learning technique to accurately define the
optimal battery voltage threshold value and accordingly
controls the state transitions of the device.

A. The Global System Architecture
The basic system consists of a service requestor (SR)

generating the requests, a service queue (SQ) to store the
requests waiting for processing, and a service provider
(SP) powered by a single battery to supply for the required
services. For real systems, the SR most likely has a non-
stationary behavior and the exact generating time instances
of service requests are not known a priori.

B. Model of the Service Provider
The Service Provider (SP) has six main states as

shown in Fig.2. The SP is active (busy) while processing
services, and becomes idle after it finishes servicing a
request. The active state is defined by two sub-states:
High Performance (HP) state when the system is
providing high quality services, and Low Performance
(LP) state when the system provides low quality services.
In this work, we use the SP response time as the service
quality metric. Thus, in the HP state the system services
the SR more rapidly than in the LP state.

 In the Idle state, the system is still fully up and
operational, but there are no service requests to deal with.
The transition between the active and idle states is
autonomous, i.e., as soon as the system completes
servicing all of the waiting requests, it enters the idle
state. Similarly, the system goes from idle to active as
soon as a service request arrives. The SP moves to the
Sleep state-where it has reduced power consumption- only
from the idle state. The duration that the SP is kept in the
idle state before it enters the sleep state determines the
tradeoff between the service latency and power
dissipation of the SP. The Off state refers to a completely
turned off system.

Fig.2. State diagram of SP.

C. Model of the Battery
1) Basic Model of the Battery

A battery state of charge (SoC) is usually changing
with time depending both on user activities and on battery
properties. Basically, the battery may be discharged when
it is used. In addition, when the battery is given some rest
it may recover an amount of its deliverable charge. These
variations results into many states listed below:

• FC state corresponds to the fully charged state
and means that the battery is fully charged.

• EX state denotes an exhausted battery in which
the battery output voltage falls below a given
voltage threshold (e.g., 80% of the nominal
voltage).

• FD state represents the fully discharged state in
which the battery has been completely
discharged and thus, the system becomes no
more operational and goes to its off state.

• AC state: State in which the battery output
voltage exceeds the voltage threshold value.

2) Circuit Model of the Battery

We model the battery by connection of circuit
elements as shown in Fig.3. The equivalent circuit model
of the Li-ion battery is given in [12].

Fig.3. Equivalent circuit model of the Li-ion battery.

We use the following non-linear equations to define
all the circuit model component values [13]. In these
equations, BCD� are empirically-extracted regression
coefficients and EFGFH represents the nominal energy
capacity of the battery.

IJK
 B���(L;M�NOPQ $ B�R�ISJKR� $ B�T�ISJK�� $

B�U�ISJK $ B�V� (3)

�S
 B���(LMM�NOPQ $ B�R� (4)

�HS
 BR��(LWM�NOPQ $ BRR� (5)

XYZ
 [T��\]^M�_`ab $ [TR� (6)

�Hc
 BU��(LdM�NOPQ $ BUR� (7)

EHc
 BV��(LeM�NOPQ $ BVR� (8)

EL
 fg33) EFGFH (9)

Sleep

Idle

BusyLP BusyHP

Off

415415439

In these equations, IJKdenotes the voltage open circuit
and ISJKdenotes the voltage at Soc.

IV. DPM FRAMEWORK USING REINFORCEMENT
LEARNING

 This paper focuses on extending service lifetime of
a single battery-powered electronic system. The goal is to
find an optimal policy for minimizing the energy
delivered from the battery while maintaining an
acceptable average number of waiting requests in the
service queue. Basically, the problem we are addressing
in this paper is to identify the battery output voltage
threshold -for a closed-loop policy- that should be set in
order to make the battery service lifetime optimal. To do
so, we are going to implement a reinforcement learning
technique that shall learn the optimal threshold voltage
that guarantees the best tradeoffs between the battery
lifetime and the system-performance. First, a system with
a given pre-specified timeout policy is used. The RL
technique is thus implemented to define the optimal
voltage threshold value for that fixed timeout value. Then,
the framework is enhanced with an optimal Timeout-
learned policy that integrates a learned voltage threshold
policy to get the best system performance.

A. System with a pre-specified given timeout policy
Let V denote the threshold value of the battery output

voltage. A list of V values will serve as the action set �
for the PM in controlling the SP for switching from the
high performance state (BusyHP) to a low performance
state (busyLP). The PM learns to choose the optimal
action�� � �, which corresponds to the optimal V value,
by using an RL technique. Notice that, to accurately learn
the best supply voltage, we must run multiple battery
charging/discharging cycles. The proposed RL framework
operates as follows. At each decision epoch, the PM will
issue commands to the SP to implement the decision
according to the following four cases:

1. The SP is in the idle state and a request comes
before the timeout period expires. Thus, the PM
decides to turn the SP into the active state.

2. The SP is transitioning to the active state.
According to the battery output voltage, the PM
decides either or not to turn the SP into the low
performance state. More precisely, if the battery
output voltage falls below a given threshold value,
the SP operates in the LP state.

3. The SP is in the idle state and the timeout has
expired. Thus, the SP is put to sleep.

4. The SP is in the sleep state and a request comes. In
this case, the PM turns the SP active to process the
incoming requests.

In this implementation, the optimal policy is achieved by
minimizing the cost function which is a linearly weighted

combination of (i) the battery operation time and (ii) the
average response time.

B. Framework enhancement with learning of the optimal
timeout Value
The duration the SP is kept in the idle state before it

enters the sleep state determines the tradeoff between the
service latency and power dissipation of the SP. The major
difficulty is to accurately define the optimal timeout period
(the minimum duration of idle time before entering into
the sleep mode). An undesirable situation is where the SP
is put to sleep after a short period of time, only to be
awakened immediately, e.g. the next service request comes
early. Thus, the system has to pay for the extra energy and
latency of waking up the SP to process the new coming
requests. On the other hand, if the power manager sets the
timeout to be long and yet no service requests arrives in
that period, then the SP has unnecessarily wasted power by
not going to sleep.

In addition to the learning of the optimal battery
threshold value, the proposed DPM framework is
enhanced with learning the optimal timeout policy under
non-stationary workload. In this case, the PM will
automatically learn the optimal timeout policy for the
system and then accordingly learn the best threshold
voltage output value (V) suitable for that timeout policy.
A list of voltage threshold values (V) will serve as the
action set A. In addition, a list of timeout values (hJiH) will
serve as a second action set �j. The PM learns to choose
the optimal a = V for the optimal �k= hJiH values among
the action sets A and �j . Details of the finally implemented
RL-Based DPM algorithm are provided in Algorithm 1.
The cost function for learning the optimal timeout value is
a linearly weighted combination of (i) instantaneous power
consumption and (ii) the number of requests buffered in
the SQ.

V. SIMULATION RESULTS
In this section, the effectiveness of the DPM

framework on extending the battery lifetime is shown. For
the experiments we consider a Lithium-Ion battery as it is
widely utilized for portable system. Table1 lists some of
battery characteristics (See [13] for details about
extracting the Battery parameters).

TABLE I. EXTRACTED SIMULATION PARAMETERS OF THE
BATTERY.

b11 -0.67 b12 -16.21 b13 -0.03
b14 1.28 b15 -0.40 b16 7.55
b21 0.10 b22 -4.32 b23 0.34
b31 0.15 b32 -19.60 b33 0.19
b41 -72.39 b42 -40.83 b43 102.80
b51 2.07 b52 -190.41 b53 0.20
b61 -695.30 b62 -110.63 b63 611.50

Cinit 0.35

416416440

Algorithm 1:The Enhanced RL-Based DPM Algorithm.

Input: An action set �j of hJiH values, an action set �
of V values, the battery output voltage lJiH.
Do for 1,2,3,..,10000 (number of charge/discharge cycle)

Initialization : The battery is fully charged

Repeat
At each decision epoch ��:

Choose an action �, which corresponds to a
specific battery output voltage threshold, from the
action set �.
Choose an action���m , which corresponds to the
Timeout value, from the action set �j.
Let the PM execute the timeout policy with
timeout value ��m .
If the SP is in the idle state:

If some request comes before the timeout
period (with duration of ��m) expires:

The PM turns the SP active for processing
requests until the SP becomes idle again.
Then we have reached decision epoch ����.

Else
The PM keeps SP idle for ��mperiod of time.

End
Else if the SP is in the sleep state:

If some request comes:
The PM turns the SP active for processing
requests until the SP becomes idle again.
Then we have reached decision epoch ����.

Else
The PM keeps SP in the sleep state.

End
Else (the SP is in the active state)

IflJiH n � :
The PM turns the SP into the Low
Performance state for processing requests.
Then we have reached decision epoch ����.

Else
The PM turns the SP into the High
Performance state for processing requests.
Then we have reached decision epoch ����.

End
End

 Evaluate the chosen action �k using the TD(�)
technique.
Until the battery is fully discharged
Evaluate the chosen action � using the RL technique.

The first set of experiments demonstrates the
effectiveness of the basic DPM framework implemented

without considering the learning of the optimal timeout
value. These experiments are applied to a Hard Disk Drive
(HDD) with parameters defined in table 2. The timeout
value is fixed to 0.2 Tbe. We conduct two experiments by
assuming different HDD characteristics such as voltage;
current and time of service values for both high
performance state and low performance state (see Table
2). At each state, given the SP current and voltage, we
calculate the battery voltage and current. Assuming the
battery voltage is constant in each state, the actual power
drawn from the battery is obtained. The SoC degradation
denotes the amount of the consumed charge from the
initial battery state of charge. We perform different
simulations under multiple battery‘s charging and
discharging cycles. For the workload, we measured a real
6-hour server accessing trace using the tcpdump utility in
Linux server. Then, we copy it multiple times to simulate
multiple charge/discharge cycles of a battery.

TABLE II. THE ASSUMED HDD CHARACTERISTICS FOR THE TWO
EXPERIMENTS

 Experiment 1 Experiment 2
LP mode HP mode LP mode HP mode

Current (Amp) 0.4 0.6 0.4 0.8
Voltage (V) 3.6 3.6 3.6 3.6

Time of service (s) 1.7 1.2 1.7 1.2
Power sleep (W) 0.13
Power idle (W) 0.2
Time transition
idle to sleep (s) 1.6

Time transition
sleep to active (s) 1.6

To better understand how the battery lifetime is

affected, we report in Fig.4 the SoC degradation and
latency tradeoff curve obtained for the HDD using the
both experiment 1 and 2 setting parameters in comparison
with what it is obtained with the pre-specified timeout
policy. It is seen from fig 4 that the developed DPM
framework provides a wide range of SoC-latency
tradeoffs for both experiments 1 and 2 settings. The SoC
and latency tradeoffs are precisely controlled based on a
user-defined parameter that is weighing the cost
function’s linear combination of (i) the battery operation
time and (ii) the average response time. Better
performances are obtained for the HDD with experiment
1 characteristics particularly for low latency values.
Higher average latencies would imply reduced
performance at the gain of longer battery duration and
higher values of battery output voltage threshold. Given
that the HDD is running the same LP mode current for
both experiments, similar tradeoff curve behaviors are
observed for increasing latency values for both
experiment 1 and 2 settings. In comparison with the fixed-
timeout policy, 15.7% maximum battery SoC
improvement is obtained for low delay constraints using
the HDD experiment 1 parameter settings. Using

417417441

experiment 2 settings, even better performances are
obtained achieving 29.89% of SoC saving in comparison
with the fixed-timeout policy. This even outperforms
reference [10] by 35.86% in terms of battery lifetime
extension.

Fig.4. SoC-latency trade off curves of the 0.2 Tbe fixed timeout policy
running the RL-based DPM on HDD for both experiment 1, and 2 sets.

To show the effectiveness of the enhanced RL- battery
DPM framework with learning timeout, we run a third
experiment with the same workload for the HDD using
experiment 1 parameter settings. . For this experiment,
learning timeout is activated with a second action set �j
timeout values (hJiH) listed as follows :{ 0.1Tbe, 0.2 Tbe,
0.3 Tbe,0. 5Tbe, 2 Tbe,3Tbe and 5 Tbe }. In this case, the PM
will simultaneously learn the optimal timeout value
among the timeout action set values and, then learn the
best battery voltage threshold for the optimal learned
timeout policy. The obtained results are given in fig 5.

Fig.5. SoC-latency tradeoff curves of the RL-based DPM with and
without learning timeout using HDD with experiment 1 parameter
settings.

It is clear from figure 5 that incorporating learning the
timeout with learning the voltage threshold further helps
minimizing the average power consumption. In this case,
average power reduction and battery lifetime extension
are combined together to higher the effectiveness of the
proposed DPM framework.

In comparison with a pre-specified given timeout
policy, the Enhanced framework with learning timeout
can achieve a “wider and deeper” SoC-latency tradeoff
curve and outperforms the basic one under the same
latency values. The enhanced RL-based DPM algorithm
with Timeout-learning can achieve much lower power
consumption than the basic RL-based DPM framework
particularly when the system has tight latency constraint.

VI. CONCLUSION

In this paper we proposed a closed-loop policy that
increases battery lifetime by using reinforcement learning
technique to accurately define the best battery voltage
threshold value and accordingly set the system active
mode. The proposed DPM framework is model-free and
requires no prior information of the workload
characteristics. Moreover, the PM uses the TD(�)
algorithm for SMDP to define the best timeout value and
automatically adjusts the power management policy to
further enhance energy savings.

REFERENCES
[1] L. Benini, A. Bogliolo, G. De Micheli, A survey of design

techniques for system level dynamic power management, IEEE
Trans. on VLSI Systems, 2000, Vol. 8, Issue 3, 299-316.

[2] L. Benini, G. Paleologo, A. Bogliolo, and G. De Micheli, “Policy
optimization for dynamic power management”, IEEE Trans. on
CAD, 1999, Vol. 18, 813-833.

[3] Q. Qiu, and M. Pedram, “Dynamic Power Management Based on
Continuous-Time Markov Decision Processes”, DAC, 1999, pp.
555-561.

[4] T. Simunic, L. Benini, P. Glynn, and G. De Micheli, “Event-driven
power management”, IEEE Trans. on CAD, 2001.

[5] H. Jung, M. Pedram, Dynamic power management under uncertain
information, DATE, Apr. 2007, pp. 1060-1065.

[6] G. Dhiman, and T. Simunic Rosing, “Dynamic power management
using machine learning”, ICCAD, Nov. 2006, pp. 747-754.

[7] Y. Wang, Q. Xie, A.C. Ammari, and M. Pedram, “Deriving a near-
optimal power management policy using model-free reinforcement
learning and Bayesian classification”, DAC, Jun. 2011, pp. 875-
878.

[8] S. Bradtke, and M. Duff, Reinforcement learning methods for
continuous-time Markov decision problems, in Advances in Neural
Information Processing Systems 7, MIT Press, 1995, pp. 393-400.

[9] L. Benini, G. Castelli, A. Macii, and R. Scarsi, “Battery-driven
dynamic power management,” IEEE Design & Test of Computers,
Vol. 18, pp.53-60, 2001.

[10] P. Rong, and M. Pedram, “Battery-Aware Power Management
Based on Markovian Decision Processes,” IEEE Trans. on
Computer Aided Design, Vol. 25, No. 7, Jul. 2006, pp. 1337-1349.

[11] T. Simunic, and S. Boyd, “Managing power consumption in
networks on chips”, in DATE, 2002.

[12] M. Chen and G. Rincon-Mora, “Accurate electrical battery model
capable of predicting runtime and I-V performance,” IEEE T. on
Energy Conversion, 2006.

[13] D. Shin, Y. Wang, N. Chang, and M. Pedram, “Battery-
supercapacitor hybrid system for high-rate pulsed load
applications,” Proc. of Design Automation and Test in
Europe (DATE), Mar. 2011.

418418442

