
 
Reinforcement Learning-Based Dynamic Power Management of a Battery-Powered 

System Supplying Multiple Active Modes 
 

Maryam Triki1,Ahmed C. Ammari1,2 

1MMA Laboratory, INSAT 
Carthage University, Tunis, Tunisia 

2Department of Elect.& Comp. Engineering, 
 King Abdulaziz University, Jeddah, Saudi Arabia 

Yanzhi Wang and Massoud Pedram 
Department of Electrical Engineering  

University of Southern California  
Los Angeles, CA, USA 

  
 

Abstract—This paper addresses the problem of extending 
battery service lifetime in a portable electronic system while 
maintaining an acceptable performance degradation level. 
The proposed dynamic power management (DPM) 
framework is based on model-free reinforcement learning 
(RL) technique. In this DPM framework, the Power 
Manager (PM) adapts the system operating mode to the 
actual battery state of charge. It uses RL technique to 
accurately define the optimal battery voltage threshold value 
and use it to specify the system active mode. In addition, the 
PM automatically adjusts the power management policy by 
learning the optimal timeout value. Moreover, the SoC and 
latency tradeoffs can be precisely controlled based on a user-
defined parameter. Experiments show that the proposed 
method outperforms existing methods by 35% in terms of 
saving battery service lifetime.   

Keywords-Dynamic power management; reinforcement 
learning, extending battery lifetime; battery-powered system 
design. 

I.  INTRODUCTION  
Batteries are widely used as the only source of power 

in several applications. High power consumption reduces 
the battery service lifetime1.Thus, reducing the power 
consumption in battery-operated portable devices has 
become a major concern. The goal of low-power design 
for battery-powered devices is to extend the battery 
service life while maintaining performance degradation 
within an acceptable level. Dynamic power management– 
which refers to a selective, shut-off or slow-down of 
system components that are idle or underutilized– has 
proven to be a particularly effective technique for 
reducing power dissipation in such systems [1]. 
There are several DPM methods in the literature classified 
into three categories: heuristic, stochastic, and learning 
based methods. The heuristic methods attempt to predict 
the length of the next idle time and shut the device down 
if the predicted length of idle time justifies the cost. They 

                                                           
1    Battery lifetime is the time one can use the battery before it is 

empty.[1] 

perform well only when the requests are highly correlated 
and do not take performance constraints into account. The 
stochastic approaches can take into account both power 
and performance. They model the request arrival times 
and device service times as stationary stochastic processes 
such as Markov Decision Processes (MDP) [2], [3], [4]. 
The essential shortcoming of these methods consists in 
the need of an exact knowledge of the state transition 
probability function of the MDP. However, the workload 
of a complex system is usually varying with time and hard 
for accurate prediction. The machine learning-based DPM 
learns a policy online by trying to learn the best-suited 
action for each system state, based on the reward or 
penalty received. Such DPM methods can simultaneously 
consider power and performance, and perform well under 
various workload conditions [5], [6], [7], [8].  

Although DPM techniques effectively reduce the 
system power consumption, they are not able to obtain the 
optimal policy for extending the service lifetime of a 
battery operated devices. This is because the 
characteristics of battery power source are not properly 
modeled and exploited in these techniques [1]. Due to the 
battery characteristics, a minimum power consumption 
policy does not necessarily result in the longest battery 
service life. To extend the service lifetime of battery-
powered devices, authors in [9] proposed three policies: 
an open-loop policy, a closed-loop2 policy and a 
combination of the two aforesaid policies. The open-loop 
policies attempt to reduce the average power consumption 
but they do not take into consideration the battery’s state 
of charge (SoC) while managing the system power. 
Compared to the open-loop policies, the closed-loop 
policies are based on the observation of both battery’s 
output voltage and system workload. The battery’s output 
voltage is related nonlinearly with the charge state. As a 
consequence, the closed-loop policies help in maximizing 

                                                           
2   Closed-loop policy is the switching from a high quality factor 

system state to a low quality factor system state when the 
output voltage of the battery drops below some threshold.[10] 
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the time of battery operation more effectively by adapting 
a component’s shutdown scheme to the actual battery 
charge state. However, the presented work in [9] used all 
these policies in a heuristic manner. Rong et al. in[10] 
attempt to maximize the battery service lifetime while 
meeting a given service timing constraints. Unfortunately, 
this work is based on the assumption of a continuous-time 
MDP model given in advance for the power management 
system which may not be realistic. 

This paper addresses the problem of extending the 
battery service lifetime in a portable electronic system 
while maintaining an acceptable performance degradation 
level. The proposed dynamic power management (DPM) 
framework is based on model-free reinforcement learning 
(RL) technique that performs learning and power 
management in a continuous-time and event-driven 
manner. It has fast convergence rate and less reliance on 
the Markovian property. The presented DPM framework 
can dynamically perform power management according to 
both system’s workload and battery state of charge. It 
uses the reinforcement learning (RL) technique to learn 
online the optimal battery output voltage threshold value 
for a closed-loop policy. Experiments on measured data 
traces demonstrate the superior performance of the 
proposed dynamic power management method in 
comparison with prior works [10]. 

II. THEORETICAL BACKGROUND 
The general RL model, as illustrated in Fig.1, consists 

of an agent, a finite state space �, a set of available actions �, and a reward function �� �� � � � �. A policy 	 
��
� ���� � �� 
 � �� is a set of state-action pairs for all 
states in the RL framework. We use notation ���� 
 �� to 
specify the action chosen in state s according to policy  �.  

 
Fig.1.Agent-environment interaction model. 

 
Assume that the agent-environment interaction system 

is continuous in time but has countable number of events. 
Then there exists a countable set of time instances ����� ��� ��� � � ��� � �, known as epochs. At epoch ��, 
system has just transitioned to state 
� � �. The agent 
selects an action �� � � according to some policy 	. At 
time ����, the agent finds itself in a new state 
���, and in 
the time period ���� �����, it receives a scalar reward with 
rate ��.  

We define the return � as the discounted integral of 
reward rate, whenever a selection of action is made by the 
agent. Furthermore, we define the value of a state-action 
pair �
� �� under a policy 	, denoted by  !�
� ��, as the 
expected return when starting from state 
, choosing 
action � (according to the policy 	), and following 	 
thereafter. An optimal policy is the one that maximizes 
the value functions for all state-action pairs. 

To be realistic, the power manager has no predefined 
policy or knowledge about state transition characteristics 
unlike the stochastic DPM approaches. Therefore the 
agent has to simultaneously learn the optimal policy and 
use that policy to control. The temporal difference (TD) 
learning method for SMDP generates an estimate  ��
� �� for each state-action pair �
� �� at epoch ��, 
which is the estimate of the actual value  !�
� �� 
following policy 	. Suppose that state
� is visited at 
epoch ��, then at that epoch the agent chooses an action 
either with the maximum estimated value  ��
�� �� for 
various actions � � �, or by using other semi-greedy 
policies [11] . Moreover, the TD learning rule updates the 
estimate  ��
�� ��� at the next epoch ����, based on the 
chosen action �� and the next state 
���. 

Various TD learning algorithm implementations are 
mainly different from one another by their updating 
methods. We choose to use the TD(�) algorithm for 
SMDP due to a joint consideration of effectiveness, 
robustness and convergence rate. More specifically, the 
value update rule for a state-action pair at epoch ���� in 
the TD(�) algorithm for SMDP is given as follows: 

"�
� �� � � � ���� �#$%��
� �� 
  �#��
� �� $ & '
(�#��
� ��) * %+(+,-#

, ��
#� �#�
$ ./0�1 (+,-#  �#��
#$%� �1� +  �#��
#� �#�2��������(1) 

 
In the above expression, -� 
 ���� + �� is the time 

that the system remains in state 
�; & � �3�%� denotes the 
learning rate; , is the discount factor; �456,-#7 ��
�� ��� is 
the sample discounted reward received in -� time units;  ����
���� ��� is the estimated value of the state-action 
pair �
���� ��� in which 
��� is the actually occurring next 
state. Moreover, in (1) (����
� �� denotes the eligibility of 
each state-action pair �
� �� that reflects the degree to 
which this state-action pair has been chosen in the recent 
past. The eligibility is updated as follows: 

(����
� �� 
8(479:6;(��4���
� �� $ <=�
� ��� �
�� ���>����������������������(2) 

Where  ?��@� A� denotes the delta kronecker function. 
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III. SYSTEM MODELING 
We consider a portable, battery-powered electronic 

system and we focus on extending battery lifetime while 
maintaining performance degradation within an acceptable 
level. Basically, we propose an online adaptive approach 
that enhances the closed-loop policy. The PM uses 
reinforcement learning technique to accurately define the 
optimal battery voltage threshold value and accordingly 
controls the state transitions of the device. 

A. The Global System Architecture 
The basic system consists of a service requestor (SR) 

generating the requests, a service queue (SQ) to store the 
requests waiting for processing, and a service provider 
(SP) powered by a single battery to supply for the required 
services. For real systems, the SR most likely has a non-
stationary behavior and the exact generating time instances 
of service requests are not known a priori. 

B. Model of the Service Provider 
The Service Provider (SP) has six main states as 

shown in Fig.2. The SP is active (busy) while processing 
services, and becomes idle after it finishes servicing a 
request. The active state is defined by two sub-states: 
High Performance (HP) state when the system is 
providing high quality services, and Low Performance 
(LP) state when the system provides low quality services. 
In this work, we use the SP response time as the service 
quality metric. Thus, in the HP state the system services 
the SR more rapidly than in the LP state.  

 In the Idle state, the system is still fully up and 
operational, but there are no service requests to deal with. 
The transition between the active and idle states is 
autonomous, i.e., as soon as the system completes 
servicing all of the waiting requests, it enters the idle 
state. Similarly, the system goes from idle to active as 
soon as a service request arrives. The SP moves to the 
Sleep state-where it has reduced power consumption- only 
from the idle state. The duration that the SP is kept in the 
idle state before it enters the sleep state determines the 
tradeoff between the service latency and power 
dissipation of the SP. The Off state refers to a completely 
turned off system. 

 
Fig.2. State diagram of SP. 

C. Model of the Battery 
1) Basic Model of the Battery 

A battery state of charge (SoC) is usually changing 
with time depending both on user activities and on battery 
properties. Basically, the battery may be discharged when 
it is used. In addition, when the battery is given some rest 
it may recover an amount of its deliverable charge. These 
variations results into many states listed below: 

• FC state corresponds to the fully charged state 
and means that the battery is fully charged. 

• EX state denotes an exhausted battery in which 
the battery output voltage falls below a given 
voltage threshold (e.g., 80% of the nominal 
voltage).  

• FD state represents the fully discharged state in 
which the battery has been completely 
discharged and thus, the system becomes no 
more operational and goes to its off state. 

• AC state: State in which the battery output 
voltage exceeds the voltage threshold value. 

2) Circuit Model of the Battery 
 

We model the battery by connection of circuit 
elements as shown in Fig.3. The equivalent circuit model 
of the Li-ion battery is given in [12].  

 
Fig.3. Equivalent circuit model of the Li-ion battery. 

We use the following non-linear equations to define 
all the circuit model component values [13]. In these 
equations, BCD� are empirically-extracted regression 
coefficients and EFGFH represents the nominal energy 
capacity of the battery. 

IJK 
 B���(L;M�NOPQ $ B�R�ISJKR� $ B�T�ISJK�� $ 

B�U�ISJK $ B�V�  (3) 

�S 
 B���(LMM�NOPQ $ B�R�                     (4) 

�HS 
 BR��(LWM�NOPQ $ BRR�                    (5) 

XYZ 
 [T��\]^M�_`ab $ [TR�                     (6) 

�Hc 
 BU��(LdM�NOPQ $ BUR�                      (7) 

EHc 
 BV��(LeM�NOPQ $ BVR�                       (8) 

EL 
 fg33) EFGFH                               (9) 

Sleep 

Idle 

BusyLP BusyHP 

Off 
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In these equations, IJKdenotes the voltage open circuit 
and ISJKdenotes the voltage at Soc.  

IV. DPM FRAMEWORK USING REINFORCEMENT 
LEARNING 

    This paper focuses on extending service lifetime of 
a single battery-powered electronic system. The goal is to 
find an optimal policy for minimizing the energy 
delivered from the battery while maintaining an 
acceptable average number of waiting requests in the 
service queue. Basically, the problem we are addressing 
in this paper is to identify the battery output voltage 
threshold -for a closed-loop policy- that should be set in 
order to make the battery service lifetime optimal. To do 
so, we are going to implement a reinforcement learning 
technique that shall learn the optimal threshold voltage 
that guarantees the best tradeoffs between the battery 
lifetime and the system-performance.  First, a system with 
a given pre-specified timeout policy is used. The RL 
technique is thus implemented to define the optimal 
voltage threshold value for that fixed timeout value. Then, 
the framework is enhanced with an optimal Timeout-
learned policy that integrates a learned voltage threshold 
policy to get the best system performance. 

A.  System with a pre-specified given timeout policy 
Let V denote the threshold value of the battery output 

voltage. A list of V values will serve as the action set � 
for the PM in controlling the SP for switching from the 
high performance state (BusyHP) to a low performance 
state (busyLP). The PM learns to choose the optimal 
action�� � �, which corresponds to the optimal V value, 
by using an RL technique. Notice that, to accurately learn 
the best supply voltage, we must run multiple battery 
charging/discharging cycles. The proposed RL framework 
operates as follows. At each decision epoch, the PM will 
issue commands to the SP to implement the decision 
according to the following four cases:   

1. The SP is in the idle state and a request comes 
before the timeout period expires. Thus, the PM 
decides to turn the SP into the active state. 

2. The SP is transitioning to the active state. 
According to the battery output voltage, the PM 
decides either or not to turn the SP into the low 
performance state. More precisely, if the battery 
output voltage falls below a given threshold value, 
the SP operates in the LP state. 

3. The SP is in the idle state and the timeout has 
expired. Thus, the SP is put to sleep. 

4. The SP is in the sleep state and a request comes. In 
this case, the PM turns the SP active to process the 
incoming requests. 

In this implementation, the optimal policy is achieved by 
minimizing the cost function which is a linearly weighted 

combination of (i) the battery operation time and (ii) the 
average response time. 

B. Framework enhancement with learning of the optimal 
timeout Value 
The duration the SP is kept in the idle state before it 

enters the sleep state determines the tradeoff between the 
service latency and power dissipation of the SP. The major 
difficulty is to accurately define the optimal timeout period 
(the minimum duration of idle time before entering into 
the sleep mode). An undesirable situation is where the SP 
is put to sleep after a short period of time, only to be 
awakened immediately, e.g. the next service request comes 
early. Thus, the system has to pay for the extra energy and 
latency of waking up the SP to process the new coming 
requests. On the other hand, if the power manager sets the 
timeout to be long and yet no service requests arrives in 
that period, then the SP has unnecessarily wasted power by 
not going to sleep. 

In addition to the learning of the optimal battery 
threshold value, the proposed DPM framework is 
enhanced with learning the optimal timeout policy under 
non-stationary workload. In this case, the PM will 
automatically learn the optimal timeout policy for the 
system and then accordingly learn the best threshold 
voltage output value (V) suitable for  that timeout policy. 
A list of voltage threshold values (V ) will serve as the 
action set A. In addition, a list of timeout values (hJiH) will 
serve as a second action set �j. The PM learns to choose 
the optimal a = V for the optimal �k= hJiH  values among 
the action sets A and �j . Details of the finally implemented 
RL-Based DPM algorithm are provided in Algorithm 1. 
The cost function for learning the optimal timeout value is 
a linearly weighted combination of (i) instantaneous power 
consumption and (ii) the number of requests buffered in 
the SQ. 

V. SIMULATION RESULTS 
In this section, the effectiveness of the DPM 

framework on extending the battery lifetime is shown. For 
the experiments we consider a Lithium-Ion battery as it is 
widely utilized for portable system. Table1 lists some of 
battery characteristics (See [13] for details about 
extracting the Battery parameters). 

TABLE I.  EXTRACTED SIMULATION PARAMETERS OF THE 
BATTERY. 

b11 -0.67 b12 -16.21 b13 -0.03 
b14 1.28 b15 -0.40 b16 7.55 
b21 0.10 b22 -4.32 b23 0.34 
b31 0.15 b32 -19.60 b33 0.19 
b41 -72.39 b42 -40.83 b43 102.80 
b51 2.07 b52 -190.41 b53 0.20 
b61 -695.30 b62 -110.63 b63 611.50 

Cinit 0.35     
 

416416440



Algorithm 1:The Enhanced RL-Based DPM Algorithm. 
 
Input: An action set  �j of hJiH  values, an action set � 
of V values, the battery output voltage lJiH. 
Do for 1,2,3,..,10000 (number of charge/discharge cycle) 

Initialization :  The battery is fully charged 

Repeat 
At each decision epoch ��: 

Choose an action �, which corresponds to a 
specific battery output voltage threshold, from the 
action set �. 
Choose an action���m , which corresponds to the 
Timeout value, from the action set �j. 
Let the PM execute the timeout policy with 
timeout value ��m . 
If the SP is in the idle state: 

If some request comes before the timeout 
period (with duration of ��m ) expires: 

The PM turns the SP active for processing 
requests until the SP becomes idle again. 
Then we have reached decision epoch ����. 

Else 
The PM keeps SP idle for ��mperiod of time. 

End 
Else if the SP is in the sleep state: 

If some request comes: 
The PM turns the SP active for processing 
requests until the SP becomes idle again. 
Then we have reached decision epoch ����. 

Else 
The PM keeps SP in the sleep state. 

End 
Else (the SP is in the active state) 

IflJiH n � : 
The PM turns the SP into the Low 
Performance state for processing requests. 
Then we have reached decision epoch ����. 

Else 
The PM turns the SP into the High 
Performance state for processing requests. 
Then we have reached decision epoch ����. 

End 
End 

 Evaluate the chosen action �k using the TD(�) 
technique. 
Until the battery is fully discharged 
Evaluate the chosen action � using the RL technique. 

The first set of experiments demonstrates the 
effectiveness of the basic DPM framework implemented 

without considering the learning of the optimal timeout 
value. These experiments are applied to a Hard Disk Drive 
(HDD) with parameters defined in table 2. The timeout 
value is fixed to 0.2 Tbe. We conduct two experiments by 
assuming different HDD characteristics such as voltage; 
current and time of service values for both high 
performance state and low performance state (see Table 
2). At each state, given the SP current and voltage, we 
calculate the battery voltage and current. Assuming the 
battery voltage is constant in each state, the actual power 
drawn from the battery is obtained. The SoC degradation 
denotes the amount of the consumed charge from the 
initial battery state of charge. We perform different 
simulations under multiple battery‘s charging and 
discharging cycles. For the workload, we measured a real 
6-hour server accessing trace using the tcpdump utility in 
Linux server. Then, we copy it multiple times to simulate 
multiple charge/discharge cycles of a battery.  

TABLE II.  THE ASSUMED HDD CHARACTERISTICS FOR THE TWO 
EXPERIMENTS 

 Experiment 1 Experiment 2 
LP mode HP mode LP mode HP mode 

Current (Amp) 0.4 0.6 0.4 0.8 
Voltage (V) 3.6 3.6 3.6 3.6 

Time of service (s) 1.7 1.2 1.7 1.2 
Power sleep (W) 0.13 
Power idle (W) 0.2 
Time transition  
idle to sleep (s) 1.6 

Time transition  
sleep to active (s) 1.6 

 
To better understand how the battery lifetime is 

affected, we report in Fig.4 the SoC degradation and 
latency tradeoff curve obtained for the HDD using the 
both experiment 1 and 2 setting parameters in comparison 
with what it is obtained with the pre-specified timeout 
policy. It is seen from fig 4 that the developed DPM 
framework provides a wide range of SoC-latency 
tradeoffs for both experiments 1 and 2 settings. The SoC 
and latency tradeoffs are precisely controlled based on a 
user-defined parameter that is weighing the cost 
function’s linear combination of (i) the battery operation 
time and (ii) the average response time. Better 
performances are obtained for the HDD with experiment 
1 characteristics particularly for low latency values. 
Higher average latencies would imply reduced 
performance at the gain of longer battery duration and 
higher values of battery output voltage threshold. Given 
that the HDD is running the same LP mode current for 
both experiments, similar tradeoff curve behaviors are 
observed for increasing latency values for both 
experiment 1 and 2 settings. In comparison with the fixed-
timeout policy, 15.7% maximum battery SoC 
improvement is obtained for low delay constraints using 
the HDD experiment 1 parameter settings. Using 
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experiment 2 settings, even better performances are 
obtained achieving 29.89% of SoC saving in comparison 
with the fixed-timeout policy. This even outperforms 
reference [10] by 35.86% in terms of battery lifetime 
extension.  

 
Fig.4. SoC-latency trade off curves of the 0.2 Tbe fixed timeout policy  
running the RL-based DPM on HDD for  both  experiment 1, and 2 sets. 
 

To show the effectiveness of the enhanced RL- battery 
DPM framework with learning timeout, we run a third 
experiment with the same workload for the HDD using 
experiment 1 parameter settings. . For this experiment, 
learning timeout is activated with a second action set �j 
timeout values (hJiH)  listed as follows :{ 0.1Tbe, 0.2 Tbe, 
0.3 Tbe,0. 5Tbe, 2 Tbe,3Tbe and 5 Tbe }. In this case, the PM 
will simultaneously learn the optimal timeout value 
among the timeout action set values and, then learn the 
best battery voltage threshold for the optimal learned 
timeout policy. The obtained results are given in fig 5. 

 
Fig.5. SoC-latency tradeoff curves of the  RL-based DPM with and 
without learning timeout using HDD with experiment 1 parameter 
settings. 

It is clear from figure 5 that incorporating learning the 
timeout with learning the voltage threshold further helps 
minimizing the average power consumption. In this case, 
average power reduction and battery lifetime extension 
are combined together to higher the effectiveness of the 
proposed DPM framework. 

In comparison with a pre-specified given timeout 
policy, the Enhanced framework with learning timeout 
can achieve a “wider and deeper” SoC-latency tradeoff 
curve and outperforms the basic one under the same 
latency values. The enhanced RL-based DPM algorithm 
with Timeout-learning can achieve much lower power 
consumption than the basic RL-based DPM framework 
particularly when the system has tight latency constraint.  

 
VI. CONCLUSION  

In this paper we proposed a closed-loop policy that 
increases battery lifetime by using reinforcement learning 
technique to accurately define the best battery voltage 
threshold value and accordingly set the system active 
mode. The proposed DPM framework is model-free and 
requires no prior information of the workload 
characteristics. Moreover, the PM uses the TD(�) 
algorithm for SMDP to define the best timeout value and 
automatically adjusts the power management policy to 
further enhance energy savings. 
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