Minimizing the Latency of Quantum Circuits during
Mapping to the lon-Trap Circuit Fabric

Mohammad Javad Dousti and Massoud Pedram
University of Southern California
Department of Electrical Engineering
Los Angeles, CA 90089, U.S.A.
{dousti, pedram}@usc.edu

Abstract— Quantum computers are exponentially faster than
their classical counterparts in terms of solving sme specific, but
important problems. The biggest challenge in realing a
quantum computing system is the environmental nois€One way
to decrease the effect of noise (and hence, redube overhead of
building fault tolerant quantum circuits) is to reduce the latency
of the quantum circuit that runs on a quantum circut. In this
paper, a novel algorithm is presented for scheduln placement,
and routing of a quantum algorithm, which is to berealized on a
target quantum circuit fabric technology. This algaithm, and the
accompanying software tool, advances state-of-theta in
quantum CAD methodologies and methods while considag key
characteristics and constraints of the ion-trap quatum circuit
fabric. Experimental results show that the presentg tool
improves results of the previous tool by about 41%.

Keywordss quantum computing; scheduling; routing;
placement; ion-trap technology; CAD tool

I. INTRODUCTION

Quantum computers are able to solve some NP-intkatee
problems in polynomial time, for which no deterrsiig, polynomial-
time algorithm is known on classical computers. Quan computers,
which function based on the laws of quantum physics intrinsically
different from classical computers. They use quanhits orqubits
instead of classical bits to represent informatidnqubit is like a
classical bit i.e., it can be set to either O dot,in addition, it can also
present any superposition of 0 and 1.

Similar to traditional computers, a CAD flow is wagd for
guantum computers not only to streamline the dgsigness, but also
to enable design of large and complex quantum itérclrigure 1
shows a typical CAD flow for quantum computers. Tray blocks
denote optimization tasks that benefit from desigtomation.

Algorithm
pTTTTTEEEEE TS l' """""

Quantum High-Level | Quantum Assembly Language (QASM) |
Description Language
Quantum Error

\

1
- i
! |

1
| & ! ;
Correcting | (Mapper (Scheduler, Placer, & Router)] 1
Codes (QECC) Compiler :]
1
! |
!)

[Quantum Physical Circuit Language |
Synthesizer N e .

Figure 1. A typical Quantum CAD flow for ion-trajpigntum circuit fabric.
PMD refers to the physical machine description,olhi$ different for
different quantum circuit implementation technokxyiBlocks in the dashed
box identify the focus of this paper.

This paper focuses on thmapper This tool maps the output of

synthesizer, which is stored in Quantum Assembly Language

(QASM) file, to a given quantum circuit fabric. Bhétep comprises of
scheduling QASM instructions, mapping them ontoténgetPhysical
Machine (previously referred to as the quantum circuitrii@band
issuing the needed commands to control the underlyhysical
machine to run the desired operation in the corceder. Several
efforts in this direction have been reported inlttezature which will
be reviewed at the end of this section.

This research was sponsored in part by a grant fr@mNational Scien
Foundation.

978-3-9810801-8-6/DATE12/©2012 EDAA

A key challenge in building quantum computers trat big enough
to solve real-life problems is the environmentabee more precisely,
loss of quantum information due to unwanted intiivas between the
guantum system and its environment. The circu@reshould remain
below a certain error threshold so the result masigh fidelity.Error
threshold can be calculated as a function of underlying jdays
technology, employed quantum error correction (QECG®d fault-
tolerant quantum control techniques.

The synthesis tool is responsible for adding QEG@ntrease the
error threshold. Unfortunately, it cannot determthe circuit error
before mapping, since it is unaware of total lagent the circuit.
Mapping circuit to a fabric can change the lateméythe circuit
because of scheduling, placement, and routing §iépError analysis
after circuit is being mapped can be done to deterrthe error and
redo the synthesis step if the error threshold tcaim$ is violated.
More precisely, if the error threshold is not entowand the circuit
takes longer time than expected, the circuit needee encoding to
improve the error threshold. In this work we foamsminimizing the
total latency of the circuit to minimize the eriorthe circuit. A CAD
tool, calledQuantum mapper based on Scheduling, Placement, and
Routing or QSPR, is developed to perform this task autimait.
QSPR is not the first tool of its kind, but it ingmes the performance
of existing tools dramatically. The rest of thistsen gives a survey of
previous quantum CAD tools and summarizes the ittions and
unique features of QSPR compared to prior art.

QUALE is a set of tools for the design and analysis
microarchitectures for ion-trap quantum comput¢?. One of
QUALE’s main tools does mapping of quantum insfarg. The tool
first creates aguantum instruction dependency gragRIDG) to
capture the dependency of instructions. The QIDGtréaversed
backward to schedule the instructions in an asdsgossible (ALAP)
manner. The tool models the quantum architectweula(what we
have termed quantum circuit fabric and is a fisiEe regular grid) as
a graph and the routing is done on this graph. Asee version of
Pathfinder [3] is subsequently used for routing afehling with
resource contentions.

QUALE'’s placement technique is callegnter placementin this
method, qubits are placed in the free traps closeshe center of
fabric. Although this method seems to be ineffitigince it places
qubits next to each other, the delay cost of rgugjabits is decreased.
The key disadvantage of the center placement tsttimindependent
of the structure of the given QIDG. Hence, two tmitiat have a lot
of interactions may be placed far from each otfilis increases the
routing cost of bringing the two qubits together perform the
required gate level operations.

QPOS uses a similar flow as QUALE, but distinguishetween the
source and destination operands of a two-qubituogon during the
routing step [4]. More precisely, the destinatiarbig is fixed in some
trap while the source qubit is moved to reach thestidation.
Extraction of instructions from the QIDG is donean as soon as
possible (ASAP) fashion based on some priority fionc In
particular, the initial priority of an instructias set to be the number
of instructions that depend on it. QPOS extractauéing path for each
of the ready-to-issue instructions. If there arg amerlaps among
these paths, QPOS selects an instruction to exécetethe source

qubit moved toward the destination site) based lom following
criteria: 1) highest initial priority, 2) lowest aunt of congestion that
is going to be introduced by using the path, ansh®)test path length.
Finally, QPOS maps these paths to the quantumitfetric and uses
a deadlock prevention algorithm to prohibit qubits locate in a
position that further movement is impossible. Reffiee [5] tweaks the
QPOS by assigning the initial priority of instruarts as the total delay
of dependent instructions.

QSPR improves the state-of-the-art with resped¢héoaforesaid in
the following important ways:

« It utilizes recent advances in the implementatiérthe ion-trap
technology in terms of multiplexing ions in charmehnd traps
and thus reduces the total execution latency oalherithm that
is being mapped to the quantum circuit fabric.

« It offers a more optimized global placement of thubits on the
quantum circuit fabric.

« It improves the routing algorithm by simultaneousigving both
the source (control) and destination (target) gulsib as to
minimize the movement delay. In addition, it comest turn
delays when finding the best route between sournd a
destination qubits.

The remainder of this paper is organized as follo@sctionll
describes the quantum circuit and ion-trap techmoldasics.
Sectionlll explains the scheduling method used. In sectnthe
placement and routing methodologies are descrilpeskectionV, the
experimental results based on QSPR are presentexlreBults are
compared with QUALE, which was the only tool avhiéa for the
public. SectiorVI concludes the paper.

Il. CIRCUIT REPRESENTATION ANDION-TRAP TECHNOLOGY
A. Quantum Circuit and Its Representation

Figure 2 shows an encoding circuit for cyclic quamterror-
correction. Note that in this circuit, four anailfagubits are initialized
to 0. Each qubit takes part in several one- andgulmt operations.
The 5 physical qubits at the output of the ciregjiresent a bundled
logical qubit capturing and protecting (within tHault tolerance
limits) the single input physical qubit. Figure Bosvs the QASM
description of this encoding circuit.

40 « [0} E
gl o @ ,—L|
g2«[0) {H] T ll:\::: z
73 '@l(:: ::\l{:,l Y
s l)) —I—Z——F
Figure 2. [[5,1,3]] encoding circuit; for cyclizigntum error-correcting [6]
Instruction # Instruction # Instruction
1 | QUBIT q0,0 g : qi ig gi 92,91
2 | QUBIT q1,0 q -Y g3,q1
' 8 | Hq2 14 | C-X g4,q1
3 | QUBIT g2,0 '
4 | QuBIT q3' 9 | Hag4 15 | C-Z 92,0
5 | QUBIT 4.0 10 | C-X 3,92 17 | C-Y ¢3,q0
a4 11 | C-Z q4,q2 18 | C-Z q4,q0

Figure 3. QASM program description of the [[5,1,8ficoding circuit.

B. lon-Trap Technology

lon-trap technology is the most promising technglofpr
implementing quantum circuits to date. Hence, isédected as the
underlying technology of QSPR. This technology jfes a quantum
circuit fabric with the following attributes [2][fB][7]: Qubits are
realized by ions. The number of available qubitsinthe provided in
the circuit fabric specificationChannelsact as wires for qubits. They
allow qubits to travel inside them. Channels have ttypes:
horizontal channelsand vertical channels Vertical and horizontal
channels are connected together throughuhetions When a qubit
wants to travel from a horizontal channel into atieal channel or
vice versa, it needs to makewan at some junctionJraps are sites
where quantum operations are performed. They araexted to the
channels, so qubits can reach them by travelimtir the channels.
A trap is calledfreg, if no qubit occupies it. In a 1-qubit operation,
only one qubit resides in a trap. In a 2-qubit afien, two qubits
inhabit a trap.

Figure 4 shows a 45x85 ion-trap fabric model, whics defined
and released as a part of QUALE package [2]. Atjancor a trap
occupies a unit square, whereas a channel occopiesor several
squares. In the latter case, the squares are dligna line. White
spaces in this figure represent empty locationtheriabric.

JcC Il i
c[Jc i |
iCc s (el e el -
c[e lUlnnillanalllnnnillanalll
cf [c g el 1 e)
cLle Ut Ut Mot [lannll
i C 1 1 Bl 1 ki]
c[e B e = s
Ccl |C D)J'U'\J"LLD“ il il
cl |c L[] I ulll
S S S R

Figure 4. A 45x85 ion trap fabric. J representsreiion, C represents
channel, and T represents a trap.
Qubits travels through the channels and junctionséch a trap in

order to interact with each other. Two kinds obceltions are possible
for qubits:

1. Move: This relocation happens when a qubit changes aisepl
by one cell without changing its previous direction

2. Turn: When a qubit wants to change its movement direction
first it needs tdurn and then move to the new location. Note
that a turn is a form of relocation that happeny wowly. A
turn typically takes 5 to 30 times longer than ave{d].

Referenced8][9] have shown that the separation of two ions in a
trap or channel is possible. Recently, referdd€d demonstrated that
the proposed approaches[8][9] can be integrated to build quantum
computers with large number of ions. Based ondkiglopment, we
introduce the notion of ehannel capacitgs the maximum number of
qubits that can be concurrently sent through a rdlarThis is a
technology-specific parameter. In this paper, we the channel
capacity to two. Note that junctions are designechsthat we can
route up to two qubits from any incoming channel¢sany outgoing
channel(s.) For example, we can route two qubimfthe left to the
top channel or one from the left to the top chararel another one
from the bottom to the right channel. A channejurction is called
freeif it has residual free capacity.

I1l. INSTRUCTIONSCHEDULING

The scheduling problem we must solve belongs todhss of
Minimum-Latency Resource-Constrained (MLRC) schiedul
problems. Resource constraints are defined by tmnrel and
junction capacity limitations as specified abovefditunately, there
is a complication here that differentiates betweem scheduling
problem and that found in standard high level sssithtools for ASIC
design. The complication is as follows. The ded&yan instruction
found in the QIDG of the quantum computational t4S¥ASM
program) is calculated as follows:

Instruction DE|ay: Eate+ Touting+ T:ongestio (1)

where T is the delay of required quantum operation, whiha
known and fixed technology-dependent parametggin§ is the move
and turn delays of the operand qubits on the fabrieach the target
trap; and Tongestion'S the time an instruction waits in order to gatess
to a free channel or junction for routing. The lagb delay values
become known only after placement and routing stepsompleted.

A complete solution to this problem requires atiahplacement of
qubits and simultaneous scheduling of instructiand routing of the
guantum operands. Our approach schedules new dtistr(s) after
routing of each issued instruction. A priority valis defined for each
unscheduled ready instruction as a linear comlunadf the number
of unscheduled operations that depend on it plesi¢hgth of the
longest path delay from that instruction to the ande of the QIDG.
Higher priority instructions are scheduled first.

IV. LAYout
A. Placement of All Qubits
The placement of qubits will greatly affect the ting and
congestion costs of any resulting solution. Thel gbahe placement
step is to minimize the total computation latendyttee scheduled
QIDG. It is the sum of instruction latencies foe tvorst case (longest

delay) path in the QIDG. The problem is hard, so nesort to
heuristics to solve it.

We make use of the fact that the quantum compuattae fully
reversible, that is, given a QIDG, thereoise-to-one correspondence
between input and output qubits and that the inpatsbe produced
from the outputs by reversing the directions ofealyes in the QIDG
and performing the inverse gate level operatiorsyavhere. We call
QIDG with inverse gate-level operations for its esdand reversed
edges, theincomputeQIDG or simply UIDG. We can thus define a

between the two qubits will take place, (ii) theuting of the two
qubits toward this target trap site.

The target trap site is chosen to be near the mddé@ation of the
destination and source qubits in the X and Y dioest In particular
the median location is first calculated, then acded conducted to
find the nearest available trap to this mediantiona The goal of the
routing step is to minimize Jing+ Tcongestion THIS is done by creating
a weighted graph to model the fabric. In this graphch vertex
represents a junction and each edge represen@naahThe weight

forward latencywhen a QIDG is executed according to a given totalof an edge is defined as

order (schedule) on a given circuit fabric; sintifave can define a

backward latencyfor the case that the corresponding UIDG is gdge weight

executed according to the reverse scheduling ofider.forward and
backward latencies are the same if we ignore thding and
congestion delays. Otherwise, they may be diffefiremt one another.

The proposed placement algorithm works as folloie. start with

(n+1)xchannel length & channel capac)
0, otherwise

wheren is the number of qubits that are already usingitiruse the
channel as a part of their routing. Increasing teigf an edge
discourages the router to select a path contathiatgedge, and hence,

an arbitrarycenter placemerfor the input qubits (see discussion about decreases the channel routing and congestion delaye that the

QUALE's placer in the sectioh) Let's denote this initial placement
as R. The schedule is known based on the previous keprcall this
total ordering on all instructions (gate-level ag@ns) S. The
reversed schedule (obtained by simply reversingdte# ordering of
instructions) is denoted by S*. Given, Rve can then execute each
instruction in the QIDG according to S. Details tbk router are
explained below. As a result, we obtain a seriemiafo-commands
issued by the quantum system controller, specifyiregmoves and
turns of individual qubits and the gate level ogiers. A complete
computational solution is thus obtained as a pladr initial placement
P, of qubits and drace of quantum control micro-commands, which
we denote asT In addition, as an incidental effect, we prodageew
placement R’ for the outputs qubits (and hence the correspgndin
input qubits.)

The next step starts by executing each instrudiothe UIDG
according to S* and using;Pas the initial placement solution. The
result is another control trace;Tdnd a new qubit placement,. RVe
denote as aniteration this sequence composed of a forward
computation on QIDG resulting in a placement solut®, a control
trace T, and a forward latency ,L followed by a backward
computation on UIDG resulting in another placemBnta control
trace T1, and a backward latency,L’ We perfornK iterations, and in
the end, pick the forward or backward computattoat tesults in the
smallest latency. If the optimum latency is achieer a forward
computation in th&® iteration, the reported solution ig, Hy, and L.

If, however, the optimum latency is achieved forbackward
computation in th&" iteration, the reported solution ig.P reverse of
Ty, and L}.

Clearly the runtime and solution quality of the pweed placer will

channel routing delay is proportional to channelgth and than
captures the congestion in the channel — so the e@gght accounts
for both Tiouing @Nd Teongestion If @ channel is fully congested, its edge
weight goes to infinity to avoid further use of thieannel. When a
qubit exits a channel, the weight of the correspumnedge will be
decreased bychannel length This model has an important
shortcoming i.e., it does not account for the tdafay, which is a
large overhead in the routing. Figure 5.a showmallscircuit fabric
example. The mentioned graph model of this fabsicdépicted in
Figure 5.b. To route from the bottom left cornettte top right corner
of this fabric, as indicated in the figure, the tesus free to select any
of the paths with equal Manhattan distances. Thassible choices
are shown in Figure 5.b. However, path (1) is te shortest path,
since it contains only one turn. The effect of tdelay has not been
considered in other models in the literature [2][94

Cost

== Turn delay
— Channel length
N ————

(b)
Figure 5. Graph modeling of a fabric for routing) A tile of fabric. The goal
is to find the best route from the bottom left carto the top right corner of
the fabric. (b) A weighted simple graph to model thbric. Three possible
paths for routing are shown. Although path (1 best path, it looks the
same as path (2) and (3) to the router. (c) Thameed graph model to
support turns. The shortest path is now have oméytarn.

(a) (©)

depend orK. Our proposed placement algorithm makes use of the To support the turn delay, the previous model andged as follows:

reversibility of computations in the quantum domditso, it takes the
scheduling solution into account as opposed tostaedard VLSI
placement algorithms, which consider only node eatiwity (and/or
direction of edges) in the given netlist. This isyywan iterative
approach where the initial placement of a forwaythputation on the
QIDG is the result of the placement obtained frombackward
computation on the UIDG and vice versa will findodoplacement
solutions. The quality of our placer has been fnrtimproved by

Each vertex is replaced with two vertices. Thet finse connects the
horizontal channel(s), whereas the second one ctstiee vertical

channel(s.) These two new vertices are connectegath other

through an edge. This edge represents the rectuinednd its weight

is equal to the turn delay in the given technoldggure 5.c shows the
abovementioned enhancement to support the turtysi€ldne newly

added edges are shown by dashed black lines.

When an instruction is taken from the scheduler, rifuter tries to

starting withm random center placements (random seeds) and, fqpyte it on the fabric graph using the Dijkstralsrest path algorithm

each such seed, doing a local neighborhood seaitthawariable
number of iterations (as described above.) Thesghberhood
searches are stopped when the quality of the rdealt not improve
for three consecutive placement runs. We call tiéshod asMulti-
start Variable-length Forward/Backward(MVFB) placer. The
sensitivity analysis with respect to is reported in the experimental
results section of this paper. We only point outhbat the latency of

with the edge weighting function described abola.path is found, it
is returned as the solution after the weights béddes on the path is
appropriately increased. If it is impossible tatean instruction due
to channel congestion, the instruction is addedatbusy queue
Instructions will be fetched and re-executed frous flueue only after
the status of some channels in the circuit fabnanges. Note that an
event driven simulatois continuously in operation, keeping track

a solution obta@ned by’ placements (which denotes the total numbergisiys of routing resources, delays of gate lepetations, moves and
of placements in MVFB witlm random seeds) based on our proposetyends. The events are as follows:

algorithm is lower than that of the best random central placement
solutions.

B. Routing of Two Qubits

All we need to explain at this point is how to ®uthe source and
destination operands of a quantum instruction. piueess involves
(i) selection of the target trap in which the gdeel operation

Execution of an instruction finishes -- The simulator
schedules more instruction(s) that depend(s) onfitished

instruction.
¢ A qubit (from a previously scheduled instruction) &its a
channel -- The edge weight of the routing channel is

appropriately decreased. The simulator issues mstrictions
from the busy queue.

V. EXPERIMENTAL RESULTS
A. Experimental Setup
QSPR is implemented in Java. The parameters usedthto
simulations are as follows: de1us; Tur=10us;
T1 qubit gate operation LOUS; Ta.qubit gate operation100LS; Channel Capacity= 2.
A PC with Intel Core i7-2820QM CPU and 8GB DDR3-RANas
used to run the simulations.

An ideal circuit fabric model is defined to evaleidhe efficiency of
QSPR results. In this model, it is assumed thafe&io=Ous and
Trouing=0us. The execution latency of this ideal model (whighshall
call baseling is a lower bound on the execution time of anycgda
and routed result. A Monte Carlo placer is impletednthat places
qubits in the nearest traps to the center of theidain different

permutations.m’ permutations are randomly selected as initia

placements, and the scheduled instructions areedofdr each of
them. The execution latency of the circuit is dedivfor each
placement. Then, the best result in terms of Iaténselected.

Quantum circuits are susceptible to environmentaise) so,
encoding circuits play the key role in real quanttinsuits. They are
located on the critical path of circuit [5], andgroving their latency
improves the overall latency of the circuit. Henwegvaluate QSPR,
six encoding circuits are selected from [6] and posed in QASM
and fed to QSPR as benchmark. Besides, the fatasepted in Figure
4, is used for all of the benchmarks.

B. Simulation Results

Table 1 shows simulation results for our proposkedqs, MVFB,
and the Monte Carlo (MC) placer for two cases25 andm=100.
Note that because MVFB uses a variable numberepétibns per
placement seed (random initial placement solutiovg, will only
know the total number of placements runs after M\{fi&er is done.
For each testbench circuit, the number of placemam for the MC
approach was set to be exactly twice the numbatecdtions that
MVFB approach used.

Table 1. Comparison of MVFB and MC methods baseéx@tution latency

and CPU runtime for m=25 and m=100

m=25 m=10C
Circuit |Heuristic Lgt)((;]%y RL%':ilrJne ::C%::n L;’S]cc'y RL(J:nTilrJne ::Cro:f::n
(n9 (ms) RUNS (u9) (ms) Runs
15130 e | oer | o] ® [oo 32
1430 g —ere [ea] 7° [i
19430 e | 1a0 | a5 | 0 [rioe s | *°
(14820 ie [Soac | de5| % |Seoc | aoe |
[129,1,7]] m\éFB gig 3232 82 gigc gggg 3
[[23,1,7]] m\éFB §§’§§ ?1212151 89 gggg 1902555 315
As can be seen, the MVFB placer produces highelitguasults

(i.e., lower execution latency for the quantum wireanapped to the
ion-trap circuit fabric) for both m=25 and m=100sea. By design of
experiment, the CPU runtimes of the MVFB and MCcpta are
nearly the same, with the MVFB placer being a bitér on larger
circuits due to doing local neighborhood searchea smaller number
of random seeds (although the total number of ptece runs for both
cases are the same.) Note also that, as expehtedn=100 case
always yields better results than m=25 for both \BVEnd MC

placers.

Table 2 compares the (ideal) baseline, QUALE, aBfPR) in terms
of the execution latency of the mapped (schedyketed and routed)
circuits. Note that QUALE is the only publically @lable quantum
circuit mapping tool. For QSPR, the MVFB placercisosen with
m=100. First, note that QSPR’s results are supetgorthose of
QUALE. The last column shows percentage improvenémfSPR
over QUALE. The improvement is from 24% up to 55Phis value
increases as the latency of the base circuit iseeaSecond, the
latency difference between the baseline resultdtea@SPR/QUALE
results shows the impact of,Jing+ Tcongestion The general trend shows

that Toutingt TeongesionN@ve higher impact on the latency of larger
circuits.

Table 2. Comparison of Baseline, QUALE and QSP®iims of execution
latency of QECC circuits.

N - Execution | Difference wrt Improvement
T ELITEIE Latency (us)] Baseline {1s) | wrt gUALE (%)
Basdine 51C -
[[5.1,3]] | QUALE 832 32z 23.80
QSPF 634 124
Basdine 51C -
[[7,1,3]] | QUALE 79¢ 28¢ 23.56
QSPF 61C 10C
Basdine 91C -
[[9,1,3]] | QUALE 221¢ 130¢ 47.70
QSPF 115¢ 24¢
Basdine 250(-
[[14,8,3]] | QUALE 7511 5011 54.87
QSPF 339(89C
Basdine 251(-
[[19,1,7]] | QUALE 683¢ 432¢ 50.38
QSPF 3392 88:
Basdine 141(-
[[23,1,7]] | QUALE 373¢ 232¢ 44,73
QSPF 206¢ 65¢€
VI. CONCLUSION

In this paper, we targeted the circuit latencyhasabjective function
and reduced it to minimize the amount of noise antum circuit
absorbs. This was done by building a CAD tool, Whimproved the
mapping of a QASM file on a given ion-trap fabrig 4% to 55%
wrt the previous tool. A heuristic called MVFB péwent was
proposed which improved the center placement usdte previous
tool. This heuristic was shown to generate highelity results than
the Monte Carlo method. Moreover, it was observet g and
TeongestiorPlay an important role in the latency of largecaits.

ACKNOWLEDGMENT
The authors would like to thank Todd Brun for hialuable
comments on the ion-trap fabric and recent advaimcése quantum
computing technologies.

REFERENCES

[1] S. Balensiefer, L. Kregor-Stickles, and M. @sk“An Evaluation
Framework and Instruction Set Architecture for Tnap Based Quantum
Micro-Architectures,” in Proceedings of the 32nd annual international
symposium on Computer Architectu?€05, pp. 186-196.

[2] S. Balensiefer, L. Kreger-Stickles, and M. @sk'QUALE: quantum
architecture layout evaluator,” ifroceedings of SPIEDrlando, FL, USA,
2005, pp. 103-114.

[3] L. McMurchie and C. Ebeling, “PathFinder: a gogation-based
performance-driven router for FPGAs,” Rroceedings of the 1995 ACM
third international symposium on field-programmablgate arrays
Monterey, California, United States, 1995, pp. 117~

[4] T. S. Metodi, D. D. Thaker, A. W. Cross, F. Thong, and I. L.
Chuang, “Scheduling physical operations in a quantinformation
processor,” inProceedings SPIE Defense & Security symposiriando,
FL, USA, 2006, p. 62440T-62440T-12.

[5] M. Whitney, N. Isailovic, Y. Patel, and J. Kiabowicz, “Automated
generation of layout and control for quantum citgiiin Proceedings of
the 4th international conference on Computing fiensf Ischia, Italy, 2007,
pp. 83-94.

[6] “Cyclic QECC.” [Online]. Available:
http://i20smtp.ira.uka.de/home/grassl/QECC/Cyalidéx.html. [Accessed:
15-Aug-2011].

[7] D. Kielpinski, C. Monroe, and D. J. Winelantirchitecture for a
large-scale ion-trap quantum computeXature vol. 417, no. 6890, pp.
709-711, Jun. 2002.

[8] M. A. Rowe et al., “Transport of Quantum Statnd Separation of lons
in a Dual RF lon Trap,arXiv:quant-ph/0205094May 2002.

[9] W. K. Hensinger et al., “T-junction ion trapray for two-dimensional
ion shuttling, storage, and manipulatiod\pplied Physics Lettersol. 88,
2006.

[10] D. R. Leibrandt et al., “Demonstration of eakable, multiplexed ion
trap for quantum information processingrXiv:0904.2599 Apr. 2009.

