

Jinan Lou, Wei Chen, M. Pedram

Department of EE - Systems
University of Southern California
Los Angeles, CA 90089

- Introduction
- Algorithm
- Experimental Results
- Conclusions

Motivation

- Designers face more aggressive timing requirements
- Interconnect delay contributes more and more to the overall performance of VLSI designs
- Unification-based algorithms provide a (partial) answer
 - Simultaneous Steiner tree routing and fanout optimization
 - Simultaneous placement and gate sizing

Prior Work

- In-Place Gate Sizing
 - Fishburn-85, Sapatnekar-93, Kung-96, Coudert-96
- Technology Mapping and Placement
 - Pedram-91, Salek-97
- Gate Sizing and Placement
 - Chuang-94, Chen-99

Problem Definition

 Given a mapped and placed circuit, perform simultaneous logic restructuring and re-placement of newly-created gates in the circuit so as to minimize the circuit delay

Delay Calculation

A pin-to-pin delay model:

super-cell delay wire delay

$$m{d}_{ij} = m{ au}_i + m{r}_i imes m{(c_{net}} + m{c_{load}}) + m{r_{net}} imes m{c_{load}}$$

Super-cell Definition

- A super-cell implements a multi-input, multioutput Boolean function
- A level-L super-cell is identified by a root and a set of gates, which are its level-L fanins

Timing Constraints II

Fanout-induced timing constraints

Choose α_1 and α_2 to distribute slack between the

mapping and the placement

Timing-Infeasible Solutions

- Any mapping solution that violates the timing constraints is deemed timing-infeasible
- We exclude timing-infeasible solutions from further consideration

Inferior Solutions

• S_1 is said to be inferior to S_2 iff:

$$m{C}_{\emph{in},1} \geq m{C}_{\emph{in},2}, \ \ au_1 \geq m{ au}_2, \ \ m{R}_{\emph{out},1} \geq m{R}_{\emph{out},2}$$

Dynamic Programming

 Three types of solution curves are used during the dynamic programming step to generate the solution set for each super-cell < A_τ τ>

Solution-Set Interpolation

 The discrete solution set is interpolated to generate the characterization function

 The resulting solution curve captures all fanin & fanout-induced timing constraints

Repositioning Constraints

 For every solution of a super-cell, a repositioning constraint is generated to exploit the remaining slack on side fanins and fanouts

4

Generalized Geometric Programming Problem

minimize t_{cycle}

s.t.
$$a_j \ge a_i + d_{ij}$$
, $\forall SC_i$ and its i^{th} fanin

$$a_j \le t_{cycle}$$
, $\forall primary outputs$

$$a_i \ge 0$$
, \forall primary inputs

$$|\mathbf{x}_i - \hat{\mathbf{x}}_i| \leq \Delta_{ix}, \quad \forall \, \mathbf{SC}_i$$

$$|y_i - \hat{y}_i| \leq \Delta_{iv}, \quad \forall SC_i$$

where
$$d_{ij} = \tau_i + R_i \times (c_{net} + c_{load}) + r_{net} \times c_{load}$$
 for gates

$$d_{ij} = F(C_i, R_i) + R_i \times (c_{net} + c_{load}) + r_{net} \times c_{load}$$
 for SCs

 Δ_{ix} and Δ_{iy} are repositioning constraints

GGP Solution

- Solving the GGP problem:
 - Transform the original GGP problem into a sequence of (convex) GP problems
 - The sequence of optimal solutions to the GP sequence converges to a point satisfying the Kuhn-Tucker necessary conditions for the optimality of GGP

Extensions to Multiple Critical Paths

- PILOT can handle up to k critical paths at the same time
- Consider two cases:
 - Non-intersecting critical paths
 - Intersecting critical paths

Non-intersecting Critical Paths

Enforce fanout-induced timing constraints

Do slack sharing between the two loads

Do slack sharing for arrival-time and load of G

Do slack sharing for arrivaltime and load between the two super-cells

Intersecting Critical Paths

■We have to use a 2k'+1 dimensional solution curve to model the super-cell if k'critical paths intersect at this supercell

Average 29% improvement in terms of delays

Conclusions

- PILOT improves timing by balancing the path delays, i.e. longer delay paths get shorter at the expense of shorter delay paths getting longer
- Typical 30% improvement in delay compared to the sequential map-place flow
- Future work will focus on doing simultaneous placement, mapping and buffer insertion