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Interconnect delays play an increasingly
important role in determining the overall
performance of VLSI designs
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Unified
Design
Database

RTL Design
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Simultaneous RTL Design Planning
and Tech. Independent Synthesis

Simultaneous Placement and Tech.
dependent Synthesis

Simultaneous Routing, Buffering,
and Wire Sizing
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= Fanout Optimization

— Berman 89, Singh 90, Touati '90, van
Ginneken ‘90, Vaishnav 93, Kung 98

= Performance-driven Routing
— Rao 92, Boese 93,Cong 93, Vittal 94, Lillis
‘96, Cong 97
= Concurrent fanout optimization and
Steiner tree routing
— Okamato'96

= Distribute a signal to a set of sinks with
known loads and required times so as to
maximize the required time at the root
of the fanout tree

= A logic level operation with little access
to (or use of) routing information

= NP-Complete for the general case
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Sinks: with given required times Sink
and loads Node%

Buffers: with given strengths

= The connection topology NS
must be determined

m LT-Tree Type-1:

— Every buffer is connected to at most one other
buffer

— No buffer has a right sibling

= Sinks with larger required times are placed
further from the root of the tree

= If the sink loads are all equal, there
exists an optimal LT-Tree such that the
sinks with larger required times are
placed further from the root

= The LT-TREE algorithm is based on
dynamic programming; Its complexity is
0o(n2)
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= Route a signal to a set of sinks with
known loads, required times, and
positions so as to maximize the required

time at the driver

= A physical design operation with little
power to change the logical structure of

the circuit
= NP-Complete for the general case

Hanan Sink

Sinks: with given required Point N°de%e

times, loads, and positions -

= Lengths and connection
topology must be
determined

— There exists a RSMT for a terminal set whef-e
all Steiner points are located on the Hanan
grid graph

— In the P-TREE algorithm, the branching factor
at every Steiner point is exactly three
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= For a given sink order, the dynamic
programming-based P-TREE algorithm
computes the set of all RST’s with non-
dominated required time and total
capacitance

= The complexity of the P-TREE algorithm is
O(n3)

Traditional Flow| FANROUT

Fanout Opt.
e.g. LT-TREE

»

Routing
Construction
e.g. P-TREE FANROUT
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Loads and Required
Times of Sinks

Placement &
Strength Placement

of the Driver of Sinks
LUHVA'A

Linear Ordering A Library of
of Sinks Buffers
(TSP, Req., etc)

//////¢ 7

The least

Ordered Sinks @ @ €@ & EB* critical sink

7

h=3 h=4 h=B=6

= Index zstarts from the least critical node
and points to a new sub-problem

= Index A points to an already solved
(routed and buffered) sub-problem
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= At every step of DP, a A Solution Curve

two-D solution curve is
generated for every sub- , def®
problem rooted at some

grid point

= Building and pruning the
solution curves are the
two major operations in
FANROUT (Required Time)?

z=2 h=4
Illustration for z=2 and h=4: ¢) é c) .é.@.
e

\ For every
( Hanan

point (v)

Insert the new solutions
into the zth curve of u
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= Finds the solution with the maximum
required time at the root, subject to the
given sink order and the structure of LT-
Tree and P-Tree

= Does not depend on a particular gate or
wire delay model

= Has polynomial time complexity (albeit it
is high)

z=2 h
Illustre ‘o [ o % Zanc h=4: ) é G-é—ﬁ)—

=4

For eve
solution (y)

\ For every
( Hanan

point (u)

Insert the new solutions
into the z'th curve of ¢
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= FANROUT uses heuristics to achieve a
lower runtime:

— Limit the number of Hanan points to g points
— Allow no more than k fanouts for every buffer

— Use a heuristic implementation of P-TREE
algorithm

z=2 h=4

Illusi o Y Tolii . ar 1 h=4: ® 25 @éﬁ_@_
: 0

For ever
solution (Yy)

Do LFﬂaa:?:v

point (v)

Insert the new solutions
into the zt" curve of v
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= Motivation and Background
= FANROUT Algorithm

-

= SCD Algorithm

= Results and Discussion

= Conclusions

INPUT: Placed sinks and the driver of a net

Conv-1 Conv-II FANROUT

Fanout PTREE FANROUT
Optimization v 2
‘ Buffer

Buffer Insertion
Placement

-

PTREE

OUTPUT: Buffered routing tree
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Required Time

FANROUT/Conv-I
using REQ Ordering
E FANROUT /Conv-II
using REQ Ordering
FANROUT/Conv-I
using TSP Ordering

FANROUT /Conv-II
using TSP Ordering

Number of sinks

Buffer Area

FANROUT/Conv-I

using REQ Ordering
B FANROUT/Conv-II

using REQ Ordering
FANROUT/Conv-I
using TSP Ordering

FANROUT/Conv-II
using TSP Ordering

Number of sinks
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Technology INPUT: Logic optimized circuit

Mapping 7 :
OUTPUT: Placed & routed circuit

Gate
Placement

&

Delay
Calculation

F

Placement 4 Detailed
Update Routing

Post-layout Total Delay

FANROUT/Conv-I
B FANROUT/Conv-II

(=]
]
2]
(O]

Number of sinks
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PO ayo otal Area

FANROUT/ Conv-I
= FANROUT/Conv-II

- O O O
N

= Motivation and Background
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= Conclusions
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= Given a mapped and placed circuit with
allowed range of gate sizes, find the
best local displacement and size for
each gate in the circuit so as to
minimize the circuit delay

= In-Place Continuous Gate Sizing

— Fishburn ‘85, Cirit ‘87, Berkelaar '90,
Sapatnekar ‘93, Kung ‘96

= In-Place Discrete Gate Sizing
— Chan '90, Li '93, Coudert '96

= Gate Sizing and Relocation
— Chuang '94
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B
»

d,, =dint ; +rdr ;- (cload; +cnet; )+ rnet; - cload,

where cload, = Y cin,,
gye fanout(g;)

= Gate Sizing Model dinti,j(zj)=a1i,j "L +B1i,j

%
rdriyj(zj)=T*J+ﬁzi,j
]

cin (z)=a3 -z +B3 .
= Wire Load Estimation 27 557 ¥

Cne§ = p - [Chor(xnel;,max -~ Xnel;,min) +Cver(yne§,max e yneg,min)]
rnet =p: [ Rnor()(neg,max ~ Xne§,|11in) + R/er(ynet,max — yne'%,min)]
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= Elmore Delay Model
— non-Convex
— non-linear

d,,=dint (z)+rdr (z)-{(p-C,, (Xnet, ., —Xnet,

j,max J,min)

+p'Cver(ynetj,max_ ynetj,min)+ ZCinj,k(zk)}

gk€ fanout(g;)
+ p { Rhor (Xnetj,max 7z XI’-]etj ,min) * IR/er(ynetj,max 77 ynetj,min)}
ZCi n; (z)

g€ fanout(g;)

Initial Placement = Iteratively select
and Sizing and optimize

gates and their
immediate fanouts
on the A most-
critcal paths

Improvement ?
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= Critical path:C(1)={9,, 9;, 9>, 93}
= Neighbor(1):Ne(1)={9,, 95, 95, 9}

Massoud Pedram, USC
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Repositioning 9 7, 9,
I 9o g, : é gz

s

l Resizing

Resizing &
Repositioning
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= Steps and Methods
— Reposition the cells directly driven by the
cells on the kA most-critical paths
= Use linear programming (LP)
— Size down the cells directly driven by the
cells on the A most-critical paths
= Use geometric programming (GP)
— Simultaneously size and place the cells on
the kA most-critical paths
= Use generalized geometric programming (GGP)

= Linear programming (LP)
minimize  t. .

st. a;za+d ;V(v,v,)e A

a <t Vv, e primary outputs and v; e C(k)

cycle

asyT
a 2T

Vv,e primary outputs and v, g C(k)

critical

Vvl € primary inputs

start
[x. =% |<A, Vv, € Ne(l)

Iy, -y IS4, Vv, € Ne(1)

y:constant, 0<y<1

T : constant, longest path delay before this step

critical
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= Geometric Programming

minimize t

St

cycle

g 2a+d; V(v,v,)e A
aj = tcycle
a <AT

critical
ar=T g

1z -2z <A, Ve Ne(D
A:constant,0< A <1
T..ieq - CONStant, longest path delay beforethisstep

Cl

Vv, e primary outputs and v, € C(K)
Vv, e primary outputs and v, ¢ C(K)

VVj € primary inputs

= Generalized Geometric Programming

minimize t
S.t.

Massoud Pedram, USC

cycle
aza+d; V(v,v,)e A Vv, e CK)
AN
arzT

X —x| <4, Yy eCK
v =¥l <4, VveC(K)
z-2] <4, YeCK

Vv, e primary outputs V, € C(K)

Vv, € primary inputs v, € C(K)
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= Transform the original GGP problem
into a sequence of (convex) GP
problems

= The sequence of optimal solutions to
the GP sequence converges to a point
satisfying the Kuhn-Tucker necessary
conditions for the optimality of GGP

= Large change allowed
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= Small change allowed (1)
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= Motivation and Background
= FANROUT Algorithm

= Results and Discussion

= SCD Algorithm

|

= Conclusions
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= Benchmark Circuit C499
— Critical Path Delay
= Before: 13.91 ns
= In-Place Sizing: 6.89 ns
= SCD: 6.04 ns

= Normalized slack distribution (C499)

— X: ratio of the gate slack compared to the longest path delay
- Y: percentage

Pzzzzzzzzz0000 ) o
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= Motivation and Background
= FANROUT Algorithm

= Results and Discussion

= SCD Algorithm

= Results and Discussion

= FANROUT builds buffered routing trees with
maximum required time at drivers

= The resulting structure is a LT-Tree from the
logical viewpoint and and a P-Tree from the
physical viewpoint

= Future work will focus on derivation of the
initial sink order, using relaxed LT-Tree, and
employing buffered P-Tree structures
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= SCD improves timing by balancing the path
delays, i.e. longer delay paths get shorter at
the expense of shorter delay paths getting
longer

= 15% improvement compared to in-place gate

sizing on average

= Future work will focus on combining other
logic optimization techniques in the placement
loop
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