
 Stochastic Dynamic Thermal Management:
A Markovian Decision-based Approach

Hwisung Jung, Massoud Pedram
Department of Electrical Engineering, University of Southern California

{hwijung, pedram}@usc.edu

Abstract
This paper proposes a stochastic dynamic thermal management
(DTM) technique in high-performance VLSI system with
especial attention to the uncertainty in temperature observation.
More specifically, we propose a stochastic thermal management
framework to improve the accuracy of decision making in DTM,
which performs dynamic voltage and frequency scaling to
minimize total power dissipation and on-chip temperature. A
key characteristic of the framework is that thermal states are
controlled by stochastic processes, i.e., partially observable
semi-Markov decision processes. Collaborative optimization is
considered with mathematical programming formulations to
reduce operating temperature by using multi-objective design
optimization methods. Experimental results with 32bit
embedded RISC processor demonstrate the effectiveness of the
technique and show that the proposed algorithm ensures
thermal safety under performance constraints.

1. Introduction
"Smaller and faster" are the chief demands driving today's
electronic designs because they generally mean higher
performance. However, they also translate into high power
densities, higher operating temperatures and lower circuit
reliability. Furthermore, local hot spots, which have much higher
temperatures compared to the average die temperature, are
becoming more prevalent in VLSI circuits.

With component packages becoming more compact and
having smaller physical profiles, it is no longer sufficient to
merely add "a bigger fan" as a downstream fix for thermal
problems. Because heat flow must be planned and thermal
resistances minimized, thermal management is best
accomplished when it is incorporated starting at the beginning of
the design cycle. In addition, although worst-case heating
conditions seldom arise in a circuit during its lifetime, when they
do arise, they can cause significant problems, ranging from
circuit transient timing errors to complete catastrophic burnout.
A package designed for the worst case is excessive. Any
applications that generate heat should engage an alternative,
runtime thermal-management technique (dynamic thermal
management or DTM). Since typical high-power applications
still operate 20% or more below the worst case [1], this can lead
to dramatic savings. This is the philosophy behind the thermal
design of the Intel Pentium 4.

As evidenced in the recent literature [2][3][4][5], increasing
interest has focused on dynamic thermal management. The work
presented in [2] studies the architectural-level thermal model,
HotSpot, and management based on an equivalent circuit models

that corresponds to micro-architecture blocks. The trigger
mechanism used to cool the microprocessor’s temperature with
DTM has been derived in [3] by using Wattch. Predictive DTM
[4], which exploits certain properties of multimedia applications,
is an example of online strategies for thermal management. In
reference [5], authors have tackled the performance optimization
problem for disk drives by studying the inter-relationship
between capacity, performance, and thermal characteristics of
disk drives. A good summary of research that combines thermal
management techniques and potential risks is given in [6].

Although most of the previous works on DTM has
concentrated on thermal modeling and simulation at circuit, gate,
and architecture levels, less attention has been paid to thermal
management at system level. Furthermore, these DTM
techniques, which depend on the use of temperature sensors, can
hardly observe the peak power dissipation and resulting peak
temperature due to the non-uniform power density across a chip.
Thus, important aspects contributing to the advancement of
thermal-managed system design is the abilities to fully model
and characterize the thermal behavior of the system. In particular,
since temperature variation across a chip can result in significant
uncertainty in temperature observation, improving the accuracy
of decision making in thermal management by modeling and
assessing the uncertainty is an important step to guarantee the
quality of the consumer electronics.

It is believed that prompt regulation of on-chip temperature
by DTM must be combined with dynamic voltage and frequency
scaling (DVFS), which has proven to be an effective technique
for reducing total power consumption [7], to ensure higher
thermal safety of the chips. In literature, several works [8][9]
have been proposed on combining DVFS and dynamic power
management based on stochastic processes. However, to the best
of our knowledge, no proposed research work is conducted on
combining DTM and DVFS techniques in stochastic modeling
with the uncertainty in temperature observation. This is
specifically the contribution of the present paper.

In this paper, we propose a stochastic dynamic thermal
management (SDTM) technique to control the temperature of
the system and its power dissipation. we present a systematic
approach for modeling a stochastic thermal management
framework, which is based on i) partially observable Markov
decision process [10] to model the uncertainty in temperature
observation and ii) semi-Markov decision process to model
decision making for DVFS. Markov decision process model
offers a robust theoretical framework which enables one to apply
strong mathematical optimization techniques in order to derive
optimal thermal management policies for thermal-managed
system. Furthermore, multi-objective design optimization

method, which involves the coordination of multiple disciplinary
performance constraints, is used to realize more effective
solution.

The remainder of this paper is organized as follows. Section
2 provides the brief background on temperature profile
identification. The detail of stochastic thermal management
framework is presented in section 3. Section 4 shows a dynamic
thermal management algorithm. Experimental results and
conclusion are given in section 5 and section 6.

2. Background: Temperature Profile
Identification
Temperature reading can be performed by either external or
internal temperature sensors. External temperature sensors, so-
called thermo couples, suffer a time-delay in the temperature
reading due to the thermal constant from the integrated circuit to
the external sensor. Thus, internal temperature sensors, e.g.,
analog CMOS sensors or ring oscillators, which can be deployed
in large number across a chip, have been widely used in pursuit
of great accuracy in measuring temperature with quick response
time. However, this approach still has clear limitations. For
example, ring oscillator-based thermal sensors have problems in
large area size and low accuracy. Analog CMOS sensors,
although very successful in accuracy and size, are in general
sensitive to noise on power and ground lines. Furthermore,
sensor output is affected by process variation on low
temperature [11]. To compensate for these calibration problems,
we can deploy multiple thermal sensors across a chip, but we
add on the overall power consumption as well as area size. It is
clear that there is a trade-off between efficiency and accuracy in
thermal management due to the large number of heat sources in
a chip. The non-uniform on-chip temperature is realized due to
large temperature variations across a chip, which can be affected
by the different heat diffusion length [2].

execute fetchdecode

busCtl

dAreg

iAreg

dOutreg

incr

mul

shifter

alu

sr

regFile

x (mm)

y (mm)

T
em

pe
ra

tu
re

 [
ºC

]

0

0.1

0.2
0.1

0.2

40

50

60

execute fetchdecode

busCtl

dAreg

iAreg

dOutreg

incr

mul

shifter

alu

sr

regFile

x (mm)

y (mm)

T
em

pe
ra

tu
re

 [
ºC

]

0

0.1

0.2
0.1

0.2

40

50

60

(a) (b)

Figure 1. Temperature profile identification:
(a) floorplan. (b) temperature distribution.

A critical problem in temperature profile identification
induced by temperature variation is as follows: suppose that
CMOS thermal sensors, which have characteristics as explained
above, are implemented along with the processors or functional
blocks in a chip. Due to a) the limitation of sensor deployment
in the chip, e.g., the number, size, and location of the sensors,
and b) non-uniform temperature distribution across a chip, these
sensors may be remote from the hot spots of interest, which
incurs the uncertainty in temperature observation. Figure 1
shows the example of non-uniform temperature distribution

obtained by running gcc (SPECint2000) [12] on a RISC
processor designed by the authors. The values of thermal
parameters were extracted from the commercial data sheet for a
QFP package. The average temperature can be estimated using
the following equation,

/ /()chip a ja s w s c static intT T P P P Pθ= + + + + (1)

where Ta is the ambient temperature (25°C), θja is the thermal
resistivity [°C/W] of the chosen package, and Ps/w is the
switching component of power, Ps/c is the short-circuit power,
Pstatic is the leakage power, and Pint is the internal
charge/discharge power.

3. Thermal Management Framework
We present a theoretical framework to construct a thermal
management process under the temperature uncertainty by
combining the stochastic processes.

3.1 POSMDP Formulation
The uncertainty problem in temperature observation, where a
thermal manager cannot reliably identify the thermal state of the
chip during thermal management, can be solved by modeling
decision making by stochastic processes. Note that a thermal
manager, which observes the overall thermal state and issues
commands (or actions) to control the thermal states of the
system, makes a decision at each event occurrence, called
decision epochs. These actions and thermal states determine the
probability distribution over possible next states. Thus, the
sequence of thermal states of the system can be modeled as a
stochastic process.

We use a semi-Markov decision process (SMDP) to model
the event-driven decision making, but also combine it with a
partially observable Markov decision process (POMDP) to
consider the uncertainty in temperature observation. Notice that
the time spent in a particular state in the SMDP follows an
arbitrary probability distribution, which is a more realistic
assumption than an exponential distribution. A partially
observable semi-Markov decision process (POSMDP) extends
the SMDP model by incorporating an observation model, which
is defined as follows.

Definition 1: Partially Observable Semi-Markov Decision
Process. A POSMDP is a tuple (S, A, O, T, R, Z) such that

1) S is a finite set of states.
2) A is a finite set of actions.
3) O is a finite set of observations.
4) T is a transition probability function. T: S × A → Δ(S)
5) R is a reward function. R: S × A → ℜ
6) Z is an observation function. Z: S × A → Δ(Z)

where Δ(⋅) denotes the set of probability distributions.

Figure 2 shows the POSMDP framework for the dynamic
thermal management. At a particular instance in time, a chip
temperature state is defined as a range of temperatures. The
ranges are in turn defined by the temperature thresholds from the
ACPI (Advanced Configuration and Power Interface)
specification [13]. For example, given a single temperature
sensor on a chip, and assuming a temperature range of 50 to
90°C, then we define the chip temperature state at time t to be
one of three states: s1, s2, or s3 as shown in the figure. The chip

temperature evolves over time (i.e., the temperature state of the
chip changes) from time t to t+1. Note that the time units are
abstractly defined and the task of casting them in absolute time
units (micro or milli seconds) is achieved by the system
developer based on the time constants associated with heat
diffusion among other factors.

s1 = [50°C ≤ temp < 65°C]

s2 = [65°C ≤ temp < 75°C]

s3 = [75°C ≤ temp < 90°C]

Statet

a1 = [1.65V / 200MHz]

a2 = [1.80V / 350MHz]

a3 = [1.95V / 500MHz]

Actiont

thermal manager

Time [s]

T
em

p
[º

C
]

Observation

Statet+1

s1 = [50°C ≤ temp < 65°C]

s2 = [65°C ≤ temp < 75°C]

s3 = [75°C ≤ temp < 90°C]

s1 = [50°C ≤ temp < 65°C]

s2 = [65°C ≤ temp < 75°C]

s3 = [75°C ≤ temp < 90°C]

Statet

a1 = [1.65V / 200MHz]

a2 = [1.80V / 350MHz]

a3 = [1.95V / 500MHz]

Actiont

thermal manager

Time [s]

T
em

p
[º

C
]

Observation

Statet+1

s1 = [50°C ≤ temp < 65°C]

s2 = [65°C ≤ temp < 75°C]

s3 = [75°C ≤ temp < 90°C]

Figure 2. POSMDP Framework.

We assume that the thermal management occurs only when
the system is in its active mode. The thermal manager can
choose an action from a finite set of actions, i.e., dynamic
voltage and frequency scaling (DVFS) sets, at decision epochs.
For example, in Figure 2, the action set includes three possible
actions corresponding to 1.95V supply and 500 MHz CPU clock
speed, 1.80V and 350MHz, etc. The distribution of the time
duration between the decision epochs, which is state and action
dependent, is given by

(| ,) () for 0F t s a G t t= ≥ (2)

where G(t) is an arbitrary distribution function arising in turn
from characteristics of workload of the system. In partially
observable environments, observations are probabilistically
dependent on the underlying chip temperature. Transition
probability function determines the probability of a transition
from thermal state s to thermal state s’ after executing action a,
i.e., T(s’, a, s) = Prob(st+1 = s’ | at = a, st = s)1. Let pa (s, s’, t)
denote the probability that as a consequence of choosing action
a when the system thermal state is s, the state equals s’ after time
t. Now, we can compute the probability that the system will be
in thermal state s’ for the next decision epoch after choosing
action a in state s as

0

0

(' | ,) (, ',)

(', ,) (| ,)

t

a

t

Prob s s a p s s t dt

T s a s F t s a dt

γ

γ

∞

∞

=

=

∫
∫

 (3)

where γ is a discount factor, 0 ≤ γ < 1. pa (s, s’, t) can be used
to calculate the expected transition time between decision
epochs. Considering a cost function, we assume the conventional
approach whereby the expected cost is a lump-sum cost k(s, a)
incurred when action a is chosen in state s [10]. An observation
function, which specifies the relationship between the thermal
states and observations, can be defined as the probability of

1 In this paper, subscripts denote state information whereas superscripts
denote time stamp.

making observation o’ in s’ after performing a, i.e., Z(o’, s’, a) =
Prob(ot+1 = o’ | at = a, st+1 = s’).

3.2 Policy Representation
In a partially observable environment, since a thermal manager
cannot fully observe the underlying temperature profile of the
processor, it can make decisions based on the observable system
history H, where the system history is a sequence of state and
action pair such as <s0, a0>, <s1, a1>,…, <st, at>, making this
non-Markovian process. However, by using the belief state
space B, a properly updated probability distribution over the
thermal state S, we can convert the original POSMDP into a
fully observable SMDP, so-called belief state SMDP [14]. The
belief state for state s is denoted as b(s), and the sum of belief
states over all state is equal to 1. A properly updated belief state
b’(s’), after action a and observation o, can be calculated from
the previous belief state b(s) as follows.

'

(', | ,) ()
'(')

(', | ,) ()

s S

s S s S

Prob

Prob

s o s a b s
b s

s o s a b s

∈

∈ ∈

=
∑

∑ ∑
 (4)

In this formula, Prob(s’,o|s, a) represents the probability of the
system moving to state s’ when a thermal manager observes
temperature o if the previous state is s and the executed action is
a, i.e., Prob(s’, o | s, a) = Z(o, s’, a)T(s’, a, s).

A thermal manager’s goal is to choose a policy that
minimizes a cost function, C that is defined on the set of system
history H. Let π : B → A represent a stationary policy that maps
probability distribution over states to actions. By incorporating
expectation over actions, the cost of a stationary policy π can be
determined by using Bellman equation [15] as

'

() () (,)

(, ',) (', ,) (')

s S

o O s S s S

C

Z T C

b b s k s a

o s a s a s b

π

πγ

∈

∈ ∈ ∈

=

+

∑
∑ ∑ ∑

 (5)

Simply speaking, a thermal manager must execute the action a
prescribed by policy π, and then update its probability
distribution over the system’s thermal states according to (4).
The optimal action to take at b is obtained by

*
() arg min ()

a A

Cb b
ππ

∈
= (6)

A standard method of finding the optimal infinite policy π is to
iterate cost function for SMDP by using a sequence of optimal
finite cost functions.

Table 1. Parameter values for a given example.

[75°C ≤ temp < 90°C]

[65°C ≤ temp < 75°C]

[50°C ≤ temp < 65°C][1.65V / 200MHz]

[1.80V / 350MHz]

[1.95V / 500MHz]

Action

a1

a2

a3

Description
cost

[1.5 1 0]

[k(s1, a) k(s2, a) k(s3, a)]

[1 0 1]

[0 1 1.5]

State ,
Observation

s1

s2

s3

Description

o1

o2

o3

,

,

, [75°C ≤ temp < 90°C]

[65°C ≤ temp < 75°C]

[50°C ≤ temp < 65°C][1.65V / 200MHz]

[1.80V / 350MHz]

[1.95V / 500MHz]

Action

a1

a2

a3

Description
cost

[1.5 1 0]

[k(s1, a) k(s2, a) k(s3, a)]

[1 0 1]

[0 1 1.5]

State ,
Observation

s1

s2

s3

Description

o1

o2

o3

,

,

,

An example of cost iteration for a POSMDP model is given as
follows. Consider the POSMDP model of a thermal manager
with three states, S = {s1, s2, s3}, three actions, A = {a1, a2, a3},
and three observations, O = {o1, o2, o3}, where parameter values
are given in Table 1. Assume that the current belief state is [0.3
0.5 0.2] as shown in Figure 3 (a), where Σs∈Sbs = 1. Then, the
value of doing action a1 in this belief state is 0.95 (= 0.3*1.5 +
0.5*1 + 0.2*0) based on (5). Similarly, actions a2 and a3 have

values 0.5 and 0.8, respectively. Thus, action a2 is chosen.
Furthermore, since we have a finite number of actions and
observations, there are a finite number of possible next belief
states. Figure 3 (b) shows the belief state evolution when we fix
our first action to be a2. Even though we know the action with
the certainty, the observation is not known in advance since the
observations are probabilistic. The reason why there are three
possible observations for a given action, e.g., a2 = [1.8V /
350MHz], is depicted in Figure 4 with the following three cases:
a) the system remains in the active mode with steady workload
after a2 is chosen, resulting in the same chip temperature. b) The
system remains in the active mode, but temperature increases
due to heavy workload after a2 is chosen. c) The system enters
into the idle mode after a2 is chosen, resulting in low
temperature. For a given belief state, each observation has a
certain probability associated with it. Suppose that we compute
the probability of getting each of the three observations and the
costs of the resulting belief states when action a2 is chosen such
as Prob(s1,o1 | s2,a2)=0.2, Prob(s2,o2 | s2,a2)=0.5, Prob(s3,o3 |
s2,a2)=0.3 and C*(b1)=0.7, C*(b2)=1.2, C*(b3)=0.8. Then, the
cost of belief state when a system chooses a2 is 1.93, including
the immediate cost. Thus, given an initial belief state b0, the
optimal policy can be found by going through the set of all
useful policy π and finding the one whose cost function is
minimized with respect to b0.

s1

s2

s3

b1 + b2 + b3 = 1

current belief state
[b1 b2 b3]

o1

o3

s1

s2

s3

o2

s1

s2

s3

b1 + b2 + b3 = 1

current belief state
[b1 b2 b3]

o1

o3

s1

s2

s3

o2

Figure 3. A graphical representation of belief state: (a)

current belief state. (b) new belief state when a2 is chosen.

 a2 = [1.8V / 350MHz]

Time [s]

T
em

p
[º

C
]

Observation

a2 = [1.8V / 350MHz]

Time [s]

T
em

p
[º

C
]

Observation

a2 = [1.8V / 350MHz]

Time [s]

T
em

p
[º

C
]

Observation

a2 = [1.8V / 350MHz]

Time [s]

T
em

p
[º

C
]

Observation

a2 = [1.8V / 350MHz]

Time [s]

T
em

p
[º

C
]

Observation

a2 = [1.8V / 350MHz]

Time [s]

T
em

p
[º

C
]

Observation

Figure 4. Example of three possible observations.

The process of maintaining the belief state is Markovian,
which means that the belief state SMDP problem can be solved
by adapting the value iteration algorithm. The detail of the value
iteration problem for the SMDP, which can be solved in a
similar manner as in [10], is omitted to save space.

4. SDTM
In this section, we present a stochastic dynamic thermal
management (SDTM) algorithm based on the POSMDP
framework to control the temperature of the system and its
power dissipation.

4.1 SDTM Algorithm
Since the number of actions and observations for the POSMDP
is finite, the set of all policies for system history H can be
represented by the set of policy trees as shown in Figure 5 (a).

Assuming No number of observation states, Na choices of actions,
and t-stages policy tree, the size of all possible H-policy tree can
be calculated as

1

0
a

t H t
ot

N
N

= −

=∑
 (7)

The diagram of SDTM is shown in Figure 5 (b), where the states
of the system are divided into three modes. In the active mode,
the system can switch between different speed levels, i.e.,
power-saving states, managed by a thermal manager, resulting in
power minimization. In the diagram, we use an observation
strategy Λ, a set of pair (a, ψ), which is defined as follows.

Definition 2: Observation strategy. In policy tree, an
observation strategy is defined as ψ : O → Λ such that

1) O is a finite set of observations
2) Λ = {(a, ψ) | a ∈ A, ψ ∈ Λo}

where A is a finite set of actions, and Λo is a finite set of all
policy trees.

A particular observation strategy tells the SDTM what action to
perform, and what to do next contingent on an observation
received. Since the observation strategy is stage-dependent, i.e.,
the observation strategy of t stage can be defined in terms of
observation strategy of t-1 stage, a policy tree therefore
corresponds to an observation strategy.

action

on

action action action

o1 o2

action action action

1

0

1
1

H
o

o

t H t
ot

N
N

a a

N
N N

= −
=

−
−=∑

t-stages

system

Dynamic thermal manager

sleep idle

active

calculate
b, C

(a, ψ)

o a

action

on

action action action

o1 o2

action action action

1

0

1
1

H
o

o

t H t
ot

N
N

a a

N
N N

= −
=

−
−=∑

t-stages

system

Dynamic thermal manager

sleep idle

active

calculate
b, C

(a, ψ)

o a

(a) (b)

Figure 5. SDTM: (a) policy tree. (b) the diagram of thermal
management.

Figure 6 shows the stochastic dynamic thermal management
algorithm based on an observation strategy. The SDTM
algorithm with n states takes O(n) and O(n) times for finding an
optimal action and updating the system history, respectively,
which results in total O(n2) running time.

n: the number of states
input: o

1: observe temperature o
2: for i = 1 to n
3: if (oi = o)
4: calculate belief state b
5: calculate cost C
6: do observation strategy ψ
7: for j = 1 to n
8: if (sj = o)
9: update system history H

10: return a

Algorithm Stochastic Dynamic Thermal Management Algorithm

n: the number of states
input: o

1: observe temperature o
2: for i = 1 to n
3: if (oi = o)
4: calculate belief state b
5: calculate cost C
6: do observation strategy ψ
7: for j = 1 to n
8: if (sj = o)
9: update system history H

10: return a

Algorithm Stochastic Dynamic Thermal Management Algorithm

Figure 6. SDTM algorithm.

4.2 Multi-objective Design Optimization
A multi-objective design optimization method is used to
optimize the performance metrics by formulating mathematical
programming models.

Considering power metric, we use a joint cost structure such
that the expected cost rate, i.e., power consumption, is a sum of
the lump-sum cost k(s, a) and a continuous cost rate c(s’, a, s),
which is given by

(,) (,) (', ,)
1

() (' | ,) (, ')
(,) s S

cost s a k s a c s a s

pow s Prob s s a ene s s
s aτ ∈

= +

= + ∑ (8)

where pow(s) is the power consumption of the system in thermal
state s, ene(s, s’) is the energy required by the system to transit
from thermal state s to s’, and τ(s, a) is the expected duration of
the time that the system spent in the state s if action a is chosen.
Let a sequence of thermal states s0, s1, …, sk denote a processing
path δ from s0 to sk of length k with the property that p(s0, s1), …,
p(sk-1, sk) > 0, where p(x, y) is the probability that the system
moves to state y from state x. For a policy π, we define the
discounted cost C of a processing path δ of length k as follows.

0
() (,)

k

i

it i i
C cost s a

π δ γ
=∑ (9)

where ti is the time that the system spent in thermal state si

before action ai causes a transition to state si+1. Considering the
expectation with respect to the policy π over the set of
processing path starting in thermal state s, we can define the
expected cost of the system, given that the system starts in state s
by powπ

avg(s) = EXP[Cπ(δ)].

The main objective is to minimize the on-chip temperature,
which is highly dependent on power consumption. The design
objective is a vector J of performance metrics we are trying to
minimize or maximize. The design vector a contains action sets,
i.e., DVFS sets, which impact the design performance.
Parameter a is the variable that can be controlled and influences
the multi-component objective functions as shown in Figure 7.
Note that χ(s, a) is the frequency that the system is in thermal
state s and action a is issued.

System Model Optimizer performance

analysis

a

Jsys
{design objective}

a J3J1
J2

subject to

a a

min Energy/operation min () (,)avg
s a

pow s s aπ χ∑∑ max Throughput

'

(,) (',) (' | ,) (,) 00 , (,) (,) 1 ,
a s a s a

Probs a s a s s a s as a s aχ χ χχ τ− ≥= =∑ ∑∑ ∑∑
,all s S a A∈ ∈

System Model Optimizer performance
analysis

a

Jsys
{design objective}

a J3J1
J2

subject to

a a

min Energy/operation min () (,)avg
s a

pow s s aπ χ∑∑ max Throughput

'

(,) (',) (' | ,) (,) 00 , (,) (,) 1 ,
a s a s a

Probs a s a s s a s as a s aχ χ χχ τ− ≥= =∑ ∑∑ ∑∑
,all s S a A∈ ∈

Figure 7. Multi-objective design optimization.

We cannot solve the above optimization problem exactly since
there is strong dependency between the various performance
metrics. The problem, however, can be solved approximately by
using a weighted linear combination of different objectives,
where each objective Ji is multiplied by a strictly positive scalar
weight λi and summed together to form a single-objective
optimization problem. We adopt a solution technique in which

the weights are dynamically adjusted as the optimization
proceeds. For example, for min J1 (energy/operation) and max J3
(throughput), we formulate the problem as

1

1 1 3 3
min () () [()]f a J a J aλ λ −= + (10)

λi ’s are set as /
i i j

w wλ = ∑ , where wi =
1

(/) /(/)
i

U J U J∂ ∂ ∂ ∂ ,

and U is the user-specified utility function, i.e., U = f(J).

5. Experimental Results
In the experimental setup, we designed a 32bit embedded RISC
processor in HDL, which has 3-stage pipeline with basic
instruction sets for simplification, and synthesized with 0.18um
technology library. The proposed algorithm is implemented in
Matlab.

In the first experiment, we analyzed the characteristics of the
designed processor in terms of the power dissipation and the
operating temperature by executing SPECint2000 benchmarks
which have instruction distributions as shown in Table 2.

Table 2. Instruction characteristics for SPECint2000.

6765

12726

74942

SPECint
2000

gcc

gap

gzip

of instructions
(in millions)

Total dynamic percentage
0%

load

store

add/sub

and/or

branch
etc.

100%

6765

12726

74942

SPECint
2000

gcc

gap

gzip

of instructions
(in millions)

Total dynamic percentage
0%

load

store

add/sub

and/or

branch
etc.

100%

In order to achieve accurate power value, we obtained SAIF
(Switching Activity Interchange File) [16] by back-annotated
RTL simulation, and then executed the Power Compiler [16] to
analyze the power dissipation distribution as reported in Table 3.
The table shows that certain components of the processor such
as execution units and register units have a significant impact on
the non-uniform power density, which results in hot spot on a
die due to the poor thermal conductivity of silicon.

Table 3. Power dissipation distribution in RISC (no cache).

4.6%

SPECint
2000

gcc

gap

gzip

dA
re

g

dO
ut

re
g

iA
re

g

in
cr

m
ul

sh
ift

er
al

u sr re
g

fe
tc

h

de
co

de

bu
sC

tl

9.2% 15.4% 4.6% 4.5% 3.8% 18.6% 2.3% 15.1% 4.6% 4.6% 8.1%

4.3% 13.1% 15.7% 4.0% 4.2% 3.1% 14.2% 1.7% 14.8% 4.2% 4.2% 12.3%

4.6% 14.4% 13.8% 4.1% 2.3% 2.7% 16.5% 2.2% 15.4% 4.1% 4.1% 11.7%

ex
ec

ut
e

4.6%

4.2%

4.1%

4.6%

SPECint
2000

gcc

gap

gzip

dA
re

g

dO
ut

re
g

iA
re

g

in
cr

m
ul

sh
ift

er
al

u sr re
g

fe
tc

h

de
co

de

bu
sC

tl

9.2% 15.4% 4.6% 4.5% 3.8% 18.6% 2.3% 15.1% 4.6% 4.6% 8.1%

4.3% 13.1% 15.7% 4.0% 4.2% 3.1% 14.2% 1.7% 14.8% 4.2% 4.2% 12.3%

4.6% 14.4% 13.8% 4.1% 2.3% 2.7% 16.5% 2.2% 15.4% 4.1% 4.1% 11.7%

ex
ec

ut
e

4.6%

4.2%

4.1%

end po int

s ta rt po in t

end po int

s ta rt po in t

Figure 8. Trace of belief states in temperature observation.

The second experiment is to demonstrate the effectiveness of
our proposed SDTM algorithm. First, we randomly chose a
sequence of 40 programs which include gcc, gap, and gzip such
as gcc1-gzip2-gap3-gap4-…-gcc39-gcc40, where programi is the i-

th program in the sequence. Then, the sequence of programs is
executed on the RISC processor to calculate the belief states by
using the parameters that are given in Table 1. The trace of the
belief states in temperature observation is depicted in Figure 8.

Simulation results in Figure 9 show the average operating
temperature of the processor. As a comparison, we also
computed the average temperature of processor which runs at 1)
1.95V / 500MHz, 2) 1.8V / 350MHz, and 3) 1.65V / 200MHz.
From the figure, we can see clearly that the processor with the
SDTM is selecting the optimal actions, which in turn result in
low average temperature as shown in Figure 10.

T
em

pe
ra

tu
re

 [º
C

]

P ro g ra m s e q u e n c e s

T
em

pe
ra

tu
re

 [º
C

]

P ro g ra m s e q u e n c e s
Figure 9. Temperature variation for test scenario.

0 2 0 4 0 6 0 8 0 1 0 0

A ve ra g e te m p e ra tu re [ºC]

1 .9 5 V / 5 0 0 M H z

1 .8 0 V / 3 5 0 M H z

1 .6 5 V / 2 0 0 M H z

S D T M

0 2 0 4 0 6 0 8 0 1 0 0

A ve ra g e te m p e ra tu re [ºC]

1 .9 5 V / 5 0 0 M H z

1 .8 0 V / 3 5 0 M H z

1 .6 5 V / 2 0 0 M H z

S D T M

Figure 10. Average temperature for test scenario.

Figure 11 shows the values of possible target actions, i.e.,
low action means low supply voltage and low frequency, and
vice versa, obtained during multi-objective design optimization.
This figure indicates that the performance metrics are adjusted
gradually and trade-offs between power consumption and others
(throughput and energy/operation) become more evident with
repeated solutions based on the equation (10).

optimal pow er
zone
optimal pow er
zone

Figure 11. Optimization with weighted sum approach
(normalized).

Optimization result with average CPI (Clock Per Instruction) =
1.6, as shown in Table 4, indicates that the SDTM algorithm

gives low power consumption and operating temperature with
little performance impact on throughput and energy/operation
metrics.

Table 4. Normalized values for optimization results.

Average power

Throughput

Energy/operation

1.00

1.95V/500MHz 1.80V/350MHz 1.65V/200MHz SDTM

0.85 0.72 0.75

1.00 0.69 0.40 0.69

1.00 1.23 1.79 1.08

Average power

Throughput

Energy/operation

1.00

1.95V/500MHz 1.80V/350MHz 1.65V/200MHz SDTM

0.85 0.72 0.75

1.00 0.69 0.40 0.69

1.00 1.23 1.79 1.08

6. Conclusions
We proposed a stochastic dynamic thermal management
technique by providing a stochastic management framework to
improve the accuracy of decision making under the uncertainty
in temperature observation. Experimental results with design
optimization formulations demonstrate the effectiveness of our
algorithm.

References
[1] E. Rohou and M. Smith, “Dynamically managing processor

temperature and power,” Proc. of FDDO-2, Nov. 1999.

[2] K. Skadron, M.R. Stan, et al., “Temperature-Aware
Microarchitecture,” Proc. of Int’l Symposium on Computer
Architecture, June 2003.

[3] D. Brooks and M. Martonosi, “Dynamic Thermal Management for
High Performance Microprocessor,” Proc. of HPCA, Jan. 2001.

[4] J.Srinivasan and S.V.Adve, “Predictive Dynamic Thermal
Management for Multimedia Applications,” Proc. of 17th Annual
ACM Int’l Conference on Supercomputing. June 2003.

[5] S. Gurumurthi, et al., “Disk Drive Roadmap from the Thermal
Perspective: A Case for Dynamic Thermal Management,” ACM
SIGARCH Computer Architecture News. Vol.22, Issue 2. May
2005.

[6] P. Dadvar and K. Skadron, “Potential Thermal Security Risks,”
Proc. of 21st IEEE Semi-Therm Symposium, Mar. 2005.

[7] L. Benini and G. De Micheli, Dynamic Power Management:
Design Techniques and CAD Tools, Kluwer Academic Publishers,
1997.

[8] Q. Qiu, Q. Wu, and M. Pedram, “Stochastic Modeling of a Power-
Managed System - Construction and Optimization,” IEEE Trans.
on Computer-Aided Design, Vol. 20, No. 10, Oct. 2001.

[9] T. Simunic and S. Boyd, “Managing Power Consumption in
Networks on Chips,” Proc. of DATE. March 2002.

[10] M.L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley Publisher, New York, 1994.

[11] Y. Cheng, C. Tsai, C. Teng, and S. Kang, Electrothermal Analysis
of VLSI Systems. Kluwer Academic Publishers, 2000.

[12] http://www.spec.org. CPU SPECint2000 documents.

[13] http://www.acpi.info/spec.htm. Advanced Configuration and Power
Interface Specification, Rev. 3.0a. Dec. 2005.

[14] A.R. Cassandra, et al., “Acting Optimally in Partially Observable
Stochastic Domains,” Proc. of 12th Conference on AI, Aug. 1996.

[15] R.E. Bellman, Dynamic Programming. Princeton University Press,
Princeton, 1957.

[16] http://www.synopsys.com. Synopsys Power Compiler Documents.

