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Abstract 
This paper proposes a stochastic dynamic thermal management 
(DTM) technique in high-performance VLSI system with 
especial attention to the uncertainty in temperature observation. 
More specifically, we propose a stochastic thermal management 
framework to improve the accuracy of decision making in DTM, 
which performs dynamic voltage and frequency scaling to 
minimize total power dissipation and on-chip temperature. A 
key characteristic of the framework is that thermal states are 
controlled by stochastic processes, i.e., partially observable 
semi-Markov decision processes. Collaborative optimization is 
considered with mathematical programming formulations to 
reduce operating temperature by using multi-objective design 
optimization methods. Experimental results with 32bit 
embedded RISC processor demonstrate the effectiveness of the 
technique and show that the proposed algorithm ensures 
thermal safety under performance constraints. 

1. Introduction 
"Smaller and faster" are the chief demands driving today's 
electronic designs because they generally mean higher 
performance. However, they also translate into high power 
densities, higher operating temperatures and lower circuit 
reliability. Furthermore, local hot spots, which have much higher 
temperatures compared to the average die temperature, are 
becoming more prevalent in VLSI circuits.  

With component packages becoming more compact and 
having smaller physical profiles, it is no longer sufficient to 
merely add "a bigger fan" as a downstream fix for thermal 
problems. Because heat flow must be planned and thermal 
resistances minimized, thermal management is best 
accomplished when it is incorporated starting at the beginning of 
the design cycle. In addition, although worst-case heating 
conditions seldom arise in a circuit during its lifetime, when they 
do arise, they can cause significant problems, ranging from 
circuit transient timing errors to complete catastrophic burnout. 
A package designed for the worst case is excessive. Any 
applications that generate heat should engage an alternative, 
runtime thermal-management technique (dynamic thermal 
management or DTM). Since typical high-power applications 
still operate 20% or more below the worst case [1], this can lead 
to dramatic savings. This is the philosophy behind the thermal 
design of the Intel Pentium 4. 

As evidenced in the recent literature [2][3][4][5], increasing 
interest has focused on dynamic thermal management. The work 
presented in [2] studies the architectural-level thermal model, 
HotSpot, and management based on an equivalent circuit models 

that corresponds to micro-architecture blocks. The trigger 
mechanism used to cool the microprocessor’s temperature with 
DTM has been derived in [3] by using Wattch. Predictive DTM 
[4], which exploits certain properties of multimedia applications, 
is an example of online strategies for thermal management. In 
reference [5], authors have tackled the performance optimization 
problem for disk drives by studying the inter-relationship 
between capacity, performance, and thermal characteristics of 
disk drives. A good summary of research that combines thermal 
management techniques and potential risks is given in [6]. 

Although most of the previous works on DTM has 
concentrated on thermal modeling and simulation at circuit, gate, 
and architecture levels, less attention has been paid to thermal 
management at system level. Furthermore, these DTM 
techniques, which depend on the use of temperature sensors, can 
hardly observe the peak power dissipation and resulting peak 
temperature due to the non-uniform power density across a chip. 
Thus, important aspects contributing to the advancement of 
thermal-managed system design is the abilities to fully model 
and characterize the thermal behavior of the system. In particular, 
since temperature variation across a chip can result in significant 
uncertainty in temperature observation, improving the accuracy 
of decision making in thermal management by modeling and 
assessing the uncertainty is an important step to guarantee the 
quality of the consumer electronics. 

It is believed that prompt regulation of on-chip temperature 
by DTM must be combined with dynamic voltage and frequency 
scaling (DVFS), which has proven to be an effective technique 
for reducing total power consumption [7], to ensure higher 
thermal safety of the chips. In literature, several works [8][9] 
have been proposed on combining DVFS and dynamic power 
management based on stochastic processes. However, to the best 
of our knowledge, no proposed research work is conducted on 
combining DTM and DVFS techniques in stochastic modeling 
with the uncertainty in temperature observation. This is 
specifically the contribution of the present paper.  

In this paper, we propose a stochastic dynamic thermal 
management (SDTM) technique to control the temperature of 
the system and its power dissipation. we present a systematic 
approach for modeling a stochastic thermal management 
framework, which is based on i) partially observable Markov 
decision process [10] to model the uncertainty in temperature 
observation and ii) semi-Markov decision process to model 
decision making for DVFS. Markov decision process model 
offers a robust theoretical framework which enables one to apply 
strong mathematical optimization techniques in order to derive 
optimal thermal management policies for thermal-managed 
system. Furthermore, multi-objective design optimization 



method, which involves the coordination of multiple disciplinary 
performance constraints, is used to realize more effective 
solution. 

The remainder of this paper is organized as follows. Section 
2 provides the brief background on temperature profile 
identification. The detail of stochastic thermal management 
framework is presented in section 3. Section 4 shows a dynamic 
thermal management algorithm. Experimental results and 
conclusion are given in section 5 and section 6. 

2. Background: Temperature Profile    
Identification 
Temperature reading can be performed by either external or 
internal temperature sensors. External temperature sensors, so-
called thermo couples, suffer a time-delay in the temperature 
reading due to the thermal constant from the integrated circuit to 
the external sensor. Thus, internal temperature sensors, e.g., 
analog CMOS sensors or ring oscillators, which can be deployed 
in large number across a chip, have been widely used in pursuit 
of great accuracy in measuring temperature with quick response 
time. However, this approach still has clear limitations. For 
example, ring oscillator-based thermal sensors have problems in 
large area size and low accuracy. Analog CMOS sensors, 
although very successful in accuracy and size, are in general 
sensitive to noise on power and ground lines. Furthermore, 
sensor output is affected by process variation on low 
temperature [11]. To compensate for these calibration problems, 
we can deploy multiple thermal sensors across a chip, but we 
add on the overall power consumption as well as area size. It is 
clear that there is a trade-off between efficiency and accuracy in 
thermal management due to the large number of heat sources in 
a chip. The non-uniform on-chip temperature is realized due to 
large temperature variations across a chip, which can be affected 
by the different heat diffusion length [2]. 
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(a)                                                       (b) 

Figure 1. Temperature profile identification:                  
(a) floorplan. (b) temperature distribution. 

A critical problem in temperature profile identification 
induced by temperature variation is as follows: suppose that 
CMOS thermal sensors, which have characteristics as explained 
above, are implemented along with the processors or functional 
blocks in a chip. Due to a) the limitation of sensor deployment 
in the chip, e.g., the number, size, and location of the sensors, 
and b) non-uniform temperature distribution across a chip, these 
sensors may be remote from the hot spots of interest, which 
incurs the uncertainty in temperature observation. Figure 1 
shows the example of non-uniform temperature distribution 

obtained by running gcc (SPECint2000) [12] on a RISC 
processor designed by the authors. The values of thermal 
parameters were extracted from the commercial data sheet for a 
QFP package. The average temperature can be estimated using 
the following equation,  

/ /( )chip a ja s w s c static intT T P P P Pθ= + + + +          (1) 

where Ta is the ambient temperature (25°C), θja is the thermal 
resistivity [°C/W] of the chosen package, and Ps/w is the 
switching component of power, Ps/c is the short-circuit power, 
Pstatic is the leakage power, and Pint is the internal 
charge/discharge power.  

3. Thermal Management Framework 
We present a theoretical framework to construct a thermal 
management process under the temperature uncertainty by 
combining the stochastic processes.  

3.1 POSMDP Formulation 
The uncertainty problem in temperature observation, where a 
thermal manager cannot reliably identify the thermal state of the 
chip during thermal management, can be solved by modeling 
decision making by stochastic processes. Note that a thermal 
manager, which observes the overall thermal state and issues 
commands (or actions) to control the thermal states of the 
system, makes a decision at each event occurrence, called 
decision epochs. These actions and thermal states determine the 
probability distribution over possible next states. Thus, the 
sequence of thermal states of the system can be modeled as a 
stochastic process.  

We use a semi-Markov decision process (SMDP) to model 
the event-driven decision making, but also combine it with a 
partially observable Markov decision process (POMDP) to 
consider the uncertainty in temperature observation. Notice that 
the time spent in a particular state in the SMDP follows an 
arbitrary probability distribution, which is a more realistic 
assumption than an exponential distribution. A partially 
observable semi-Markov decision process (POSMDP) extends 
the SMDP model by incorporating an observation model, which 
is defined as follows. 

Definition 1: Partially Observable Semi-Markov Decision 
Process. A POSMDP is a tuple (S, A, O, T, R, Z) such that 

1) S is a finite set of states. 
2) A is a finite set of actions. 
3) O is a finite set of observations. 
4) T is a transition probability function. T: S × A → Δ(S) 
5) R is a reward function. R: S × A → ℜ 
6) Z is an observation function. Z: S × A → Δ(Z) 

where Δ(⋅) denotes the set of probability distributions. 

Figure 2 shows the POSMDP framework for the dynamic 
thermal management. At a particular instance in time, a chip 
temperature state is defined as a range of temperatures. The 
ranges are in turn defined by the temperature thresholds from the 
ACPI (Advanced Configuration and Power Interface) 
specification [13]. For example, given a single temperature 
sensor on a chip, and assuming a temperature range of 50 to 
90°C, then we define the chip temperature state at time t to be 
one of three states: s1, s2, or s3 as shown in the figure. The chip 



temperature evolves over time (i.e., the temperature state of the 
chip changes) from time t to t+1. Note that the time units are 
abstractly defined and the task of casting them in absolute time 
units (micro or milli seconds) is achieved by the system 
developer based on the time constants associated with heat 
diffusion among other factors.  
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Figure 2. POSMDP Framework. 

We assume that the thermal management occurs only when 
the system is in its active mode. The thermal manager can 
choose an action from a finite set of actions, i.e., dynamic 
voltage and frequency scaling (DVFS) sets, at decision epochs. 
For example, in Figure 2, the action set includes three possible 
actions corresponding to 1.95V supply and 500 MHz CPU clock 
speed, 1.80V and 350MHz, etc. The distribution of the time 
duration between the decision epochs, which is state and action 
dependent, is given by 

( | , ) ( ) for 0F t s a G t t= ≥                 (2) 

where G(t) is an arbitrary distribution function arising in turn 
from characteristics of workload of the system. In partially 
observable environments, observations are probabilistically 
dependent on the underlying chip temperature. Transition 
probability function determines the probability of a transition 
from thermal state s to thermal state s’ after executing action a, 
i.e., T(s’, a, s) = Prob(st+1 = s’ | at = a, st = s)1. Let pa (s, s’, t) 
denote the probability that as a consequence of choosing action 
a when the system thermal state is s, the state equals s’ after time 
t. Now, we can compute the probability that the system will be 
in thermal state s’ for the next decision epoch after choosing 
action a in state s as 

0
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where γ is a discount factor, 0 ≤  γ < 1. pa (s, s’, t) can be used 
to calculate the expected transition time between decision 
epochs. Considering a cost function, we assume the conventional 
approach whereby the expected cost is a lump-sum cost k(s, a) 
incurred when action a is chosen in state s [10]. An observation 
function, which specifies the relationship between the thermal 
states and observations, can be defined as the probability of 

                                                                 
1 In this paper, subscripts denote state information whereas superscripts 
denote time stamp.  

making observation o’ in s’ after performing a, i.e., Z(o’, s’, a) = 
Prob(ot+1 = o’ | at = a, st+1 = s’). 

3.2 Policy Representation 
In a partially observable environment, since a thermal manager 
cannot fully observe the underlying temperature profile of the 
processor, it can make decisions based on the observable system 
history H, where the system history is a sequence of state and 
action pair such as <s0, a0>, <s1, a1>,…, <st, at>, making this 
non-Markovian process. However, by using the belief state 
space B, a properly updated probability distribution over the 
thermal state S, we can convert the original POSMDP into a 
fully observable SMDP, so-called belief state SMDP [14]. The 
belief state for state s is denoted as b(s), and the sum of belief 
states over all state is equal to 1. A properly updated belief state 
b’(s’), after action a and observation o, can be calculated from 
the previous belief state b(s) as follows. 
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In this formula, Prob(s’,o|s, a) represents the probability of the 
system moving to state s’ when a thermal manager observes 
temperature o if the previous state is s and the executed action is 
a, i.e., Prob(s’, o | s, a) = Z(o, s’, a)T(s’, a, s). 

A thermal manager’s goal is to choose a policy that 
minimizes a cost function, C that is defined on the set of system 
history H. Let π : B → A represent a stationary policy that maps 
probability distribution over states to actions. By incorporating 
expectation over actions, the cost of a stationary policy π can be 
determined by using Bellman equation [15] as  
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     (5) 

Simply speaking, a thermal manager must execute the action a 
prescribed by policy π, and then update its probability 
distribution over the system’s thermal states according to (4). 
The optimal action to take at b is obtained by  

*
( ) arg min ( )

a A

Cb b
ππ

∈
=                         (6) 

A standard method of finding the optimal infinite policy π is to 
iterate cost function for SMDP by using a sequence of optimal 
finite cost functions.  

Table 1. Parameter values for a given example. 
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An example of cost iteration for a POSMDP model is given as 
follows. Consider the POSMDP model of a thermal manager 
with three states, S = {s1, s2, s3}, three actions, A = {a1, a2, a3}, 
and three observations, O = {o1, o2, o3}, where parameter values 
are given in Table 1. Assume that the current belief state is [0.3 
0.5 0.2] as shown in Figure 3 (a), where Σs∈Sbs = 1. Then, the 
value of doing action a1 in this belief state is 0.95 (= 0.3*1.5 + 
0.5*1 + 0.2*0) based on (5). Similarly, actions a2 and a3 have 



values 0.5 and 0.8, respectively. Thus, action a2 is chosen. 
Furthermore, since we have a finite number of actions and 
observations, there are a finite number of possible next belief 
states. Figure 3 (b) shows the belief state evolution when we fix 
our first action to be a2. Even though we know the action with 
the certainty, the observation is not known in advance since the 
observations are probabilistic. The reason why there are three 
possible observations for a given action, e.g., a2 = [1.8V / 
350MHz], is depicted in Figure 4 with the following three cases: 
a) the system remains in the active mode with steady workload 
after a2 is chosen, resulting in the same chip temperature. b) The 
system remains in the active mode, but temperature increases 
due to heavy workload after a2 is chosen. c) The system enters 
into the idle mode after a2 is chosen, resulting in low 
temperature. For a given belief state, each observation has a 
certain probability associated with it. Suppose that we compute 
the probability of getting each of the three observations and the 
costs of the resulting belief states when action a2 is chosen such 
as Prob(s1,o1 | s2,a2)=0.2, Prob(s2,o2 | s2,a2)=0.5, Prob(s3,o3 | 
s2,a2)=0.3 and C*(b1)=0.7, C*(b2)=1.2, C*(b3)=0.8. Then, the 
cost of belief state when a system chooses a2 is 1.93, including 
the immediate cost. Thus, given an initial belief state b0, the 
optimal policy can be found by going through the set of all 
useful policy π and finding the one whose cost function is 
minimized with respect to b0. 
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Figure 3. A graphical representation of belief state: (a) 

current belief state. (b) new belief state when a2 is chosen. 
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Figure 4. Example of three possible observations. 

The process of maintaining the belief state is Markovian, 
which means that the belief state SMDP problem can be solved 
by adapting the value iteration algorithm. The detail of the value 
iteration problem for the SMDP, which can be solved in a 
similar manner as in [10], is omitted to save space. 

4. SDTM 
In this section, we present a stochastic dynamic thermal 
management (SDTM) algorithm based on the POSMDP 
framework to control the temperature of the system and its 
power dissipation.  

4.1 SDTM Algorithm 
Since the number of actions and observations for the POSMDP 
is finite, the set of all policies for system history H can be 
represented by the set of policy trees as shown in Figure 5 (a). 

Assuming No number of observation states, Na choices of actions, 
and t-stages policy tree, the size of all possible H-policy tree can 
be calculated as 

1

0
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t H t
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N
N

= −

=∑
                               (7) 

The diagram of SDTM is shown in Figure 5 (b), where the states 
of the system are divided into three modes. In the active mode, 
the system can switch between different speed levels, i.e., 
power-saving states, managed by a thermal manager, resulting in 
power minimization. In the diagram, we use an observation 
strategy Λ, a set of pair (a, ψ), which is defined as follows. 

Definition 2: Observation strategy. In policy tree, an 
observation strategy is defined as ψ : O → Λ such that 

1) O is a finite set of observations 
2) Λ = {(a, ψ) | a ∈ A, ψ ∈ Λo} 

where A is a finite set of actions, and Λo is a finite set of all 
policy trees. 

A particular observation strategy tells the SDTM what action to 
perform, and what to do next contingent on an observation 
received. Since the observation strategy is stage-dependent, i.e., 
the observation strategy of t stage can be defined in terms of 
observation strategy of t-1 stage, a policy tree therefore 
corresponds to an observation strategy. 
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Figure 5. SDTM: (a) policy tree. (b) the diagram of thermal 
management. 

Figure 6 shows the stochastic dynamic thermal management 
algorithm based on an observation strategy. The SDTM 
algorithm with n states takes O(n) and O(n) times for finding an 
optimal action and updating the system history, respectively, 
which results in total O(n2) running time. 
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1: observe temperature o
2:  for i = 1 to n
3:        if (oi = o)
4:                calculate belief state b
5: calculate cost C
6:                do observation strategy ψ
7:                        for j = 1 to n
8:                          if (sj = o)
9:                                 update system history H

10: return a

Algorithm Stochastic Dynamic Thermal Management Algorithm
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5: calculate cost C
6:                do observation strategy ψ
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8:                          if (sj = o)
9:                                 update system history H

10: return a

Algorithm Stochastic Dynamic Thermal Management Algorithm

 

Figure 6. SDTM algorithm. 



4.2 Multi-objective Design Optimization  
A multi-objective design optimization method is used to 
optimize the performance metrics by formulating mathematical 
programming models. 

Considering power metric, we use a joint cost structure such 
that the expected cost rate, i.e., power consumption, is a sum of 
the lump-sum cost k(s, a) and a continuous cost rate c(s’, a, s), 
which is given by 
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cost s a k s a c s a s

pow s Prob s s a ene s s
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where pow(s) is the power consumption of the system in thermal 
state s, ene(s, s’) is the energy required by the system to transit 
from thermal state s to s’, and τ(s, a) is the expected duration of 
the time that the system spent in the state s if action a is chosen. 
Let a sequence of thermal states s0, s1, …, sk denote a processing 
path δ from s0 to sk of length k with the property that p(s0, s1), …, 
p(sk-1, sk) > 0, where p(x, y) is the probability that the system 
moves to state y from state x. For a policy π, we define the 
discounted cost C of a processing path δ of length k as follows. 
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C cost s a

π δ γ
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where ti is the time that the system spent in thermal state si 

before action ai causes a transition to state si+1. Considering the 
expectation with respect to the policy π over the set of 
processing path starting in thermal state s, we can define the 
expected cost of the system, given that the system starts in state s 
by powπ

avg(s) = EXP[Cπ(δ)]. 

The main objective is to minimize the on-chip temperature, 
which is highly dependent on power consumption. The design 
objective is a vector J of performance metrics we are trying to 
minimize or maximize. The design vector a contains action sets, 
i.e., DVFS sets, which impact the design performance. 
Parameter a is the variable that can be controlled and influences 
the multi-component objective functions as shown in Figure 7. 
Note that χ(s, a) is the frequency that the system is in thermal 
state s and action a is issued. 
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Figure 7. Multi-objective design optimization. 

We cannot solve the above optimization problem exactly since 
there is strong dependency between the various performance 
metrics. The problem, however, can be solved approximately by 
using a weighted linear combination of different objectives, 
where each objective Ji is multiplied by a strictly positive scalar 
weight λi and summed together to form a single-objective 
optimization problem. We adopt a solution technique in which 

the weights are dynamically adjusted as the optimization 
proceeds. For example, for min J1 (energy/operation) and max J3 
(throughput), we formulate the problem as 

1

1 1 3 3
min ( ) ( ) [ ( )]f a J a J aλ λ −= +             (10) 

λi ’s are set as /
i i j

w wλ = ∑ , where wi = 
1

( / ) /( / )
i

U J U J∂ ∂ ∂ ∂ , 

and U is the user-specified utility function, i.e., U = f(J). 

5. Experimental Results 
In the experimental setup, we designed a 32bit embedded RISC 
processor in HDL, which has 3-stage pipeline with basic 
instruction sets for simplification, and synthesized with 0.18um 
technology library. The proposed algorithm is implemented in 
Matlab. 

In the first experiment, we analyzed the characteristics of the 
designed processor in terms of the power dissipation and the 
operating temperature by executing SPECint2000 benchmarks 
which have instruction distributions as shown in Table 2. 

Table 2. Instruction characteristics for SPECint2000. 
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In order to achieve accurate power value, we obtained SAIF 
(Switching Activity Interchange File) [16] by back-annotated 
RTL simulation, and then executed the Power Compiler [16] to 
analyze the power dissipation distribution as reported in Table 3. 
The table shows that certain components of the processor such 
as execution units and register units have a significant impact on 
the non-uniform power density, which results in hot spot on a 
die due to the poor thermal conductivity of silicon. 

Table 3. Power dissipation distribution in RISC (no cache). 
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Figure 8. Trace of belief states in temperature observation. 

The second experiment is to demonstrate the effectiveness of 
our proposed SDTM algorithm. First, we randomly chose a 
sequence of 40 programs which include gcc, gap, and gzip such 
as gcc1-gzip2-gap3-gap4-…-gcc39-gcc40, where programi is the i-



th program in the sequence. Then, the sequence of programs is 
executed on the RISC processor to calculate the belief states by 
using the parameters that are given in Table 1. The trace of the 
belief states in temperature observation is depicted in Figure 8. 

Simulation results in Figure 9 show the average operating 
temperature of the processor. As a comparison, we also 
computed the average temperature of processor which runs at 1) 
1.95V / 500MHz, 2) 1.8V / 350MHz, and 3) 1.65V / 200MHz. 
From the figure, we can see clearly that the processor with the 
SDTM is selecting the optimal actions, which in turn result in 
low average temperature as shown in Figure 10. 
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Figure 9. Temperature variation for test scenario. 
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Figure 10. Average temperature for test scenario. 

Figure 11 shows the values of possible target actions, i.e., 
low action means low supply voltage and low frequency, and 
vice versa, obtained during multi-objective design optimization. 
This figure indicates that the performance metrics are adjusted 
gradually and trade-offs between power consumption and others 
(throughput and energy/operation) become more evident with 
repeated solutions based on the equation (10).  
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Figure 11. Optimization with weighted sum approach 
(normalized). 

Optimization result with average CPI (Clock Per Instruction) = 
1.6, as shown in Table 4, indicates that the SDTM algorithm 

gives low power consumption and operating temperature with 
little performance impact on throughput and energy/operation 
metrics. 

Table 4. Normalized values for optimization results. 
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6. Conclusions 
We proposed a stochastic dynamic thermal management 
technique by providing a stochastic management framework to 
improve the accuracy of decision making under the uncertainty 
in temperature observation. Experimental results with design 
optimization formulations demonstrate the effectiveness of our 
algorithm. 
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