
PMP: Performance-Driven Multilevel Partitioning by Aggregating the Preferred Signal
Directions of I/O Conduits

Chan-seok Hwang and Massoud Pedram

Abstract - In this paper, we present a new performance-driven
multilevel partitioning algorithm, which calculates the timing
gain of a move in the move-based partitioning strategies based
on the aggregation of preferred signal directions. In addition,
we propose a new timing-aware multilevel clustering algorithm
that uses the connection strength of an edge as the primary
objective, and the maximum depth or the maximum hop-count
of any path containing the edge as a tiebreaker for the
clustering step. These ideas are integrated into a general
multilevel partitioning framework, which consists of three
phases: uncoarsening, initial partitioning, and coarsening and
refinement phases. The benchmarks show that, on average, we
can reduce delay by 14.6%, while increasing the cutsize by
1.2% when compared to hMetis[1].

I. Introduction

As the size and complexity of current circuits increase, partitioning
plays an ever more important role in the VLSI design process.
Partitioning affects not only the efficiency of the subsequence
design optimization steps, but also the overall circuit performance.
This is because, with the advances in CMOS process technology,
circuit delay is heavily dominated by the interconnect delay and the
difference between the intra-part (internal) delay and the inter-part
(external) delay increases rapidly.

 Traditional partitioning approaches [1-3] have been quite
successful in reducing cutsize. However, these techniques cannot
adequately control the cut count of timing-critical paths in the
circuit. Recently, timing-driven partitioning approaches [4-11]
have been proposed to simultaneously consider cutsize and the
circuit delay. These works may be classified into two categories
depending on whether they modify the netlist or not. Most of these
reported works modify the netlist, i.e., they use logic replication,
retiming, or buffer insertion techniques to reduce the circuit delay
while minimizing the cutsize [6][7][8][11]. These methods tend to
reduce the circuit delay significantly, compared to cutsize-oriented
methods such as hMetis [1]. However, gate replication used by
these methods and can result in a significant increase in the chip
area. In addition, some of these methods suffer from large cutsize
[8] or large runtime [7][11]. Techniques that do not alter the circuit
netlist, normally give more weight to the edges that lie on the
timing-critical paths in a circuit [9][10]. These techniques require
an a priori classification of signal nets into timing-critical and non-
critical ones based on a timing analysis of the circuit prior to
partitioning. However, these methods suffer from choosing the K-
most critical paths since the performance in terms of cutsize, delay
and runtime heavily depends on the value of K [9]. A number of
researchers [4][5] have used the signal direction as an indicator of
the timing gain function during the move-based partitioning
process. Examples include “backward edges” [4] and “V-shaped
nodes” [5]. These early results motivate the use of signal direction
to guide the performance-driven partitioning process.

 In this paper, we present a new performance-driven multilevel
partitioning algorithm, called PMP, which can minimize circuit
delay efficiently by aggregating the preferred signal directions as
implied by all input-output conduits in the circuits (see Section III
for a formal definition of I/O conduits.) Unlike the previous
approaches [4][5], our timing gain function accounts for the effect
of a cell move on the delay of all input-output conduits that go
through that cell. This enables PMP to compute the timing gain for

each candidate cell to move accurately and efficiently. In addition,
we propose a new timing-aware multilevel clustering algorithm
that uses the connection strength of an edge as the primary
objective, and the maximum depth or the maximum hop-count of
any path containing the edge as a tiebreaker for the matching step.
These ideas have worked remarkably well in combination with a
general multilevel partitioning algorithm such as hMetis [1]. The
benchmark results show that, when compared with hMetis, PMP
reduces the circuit delay by 14.8%, while increasing the cutsize by
only 1.2% on average.

II. Problem Statement

The performance-driven partitioning problem can be stated as
follows. Consider a sequential circuit, represented by a directed
graph G=(V, E). Each node vi ∈ V has a weight δ(vi) which
specifies the intrinsic delay associated with vi. If an edge e is cut,
then d(e)=dext where dext is the delay of an external edge; otherwise,
d(e)= dint where dint is the delay of an internal edge. Let c(π) be the
number of cut edges along a topological path π, and |π| be the
number of nodes on that path. The path delay d(π) can be
calculated as follows [11]:

() () (| | 1 ()) ()i

iv

ext intd d c d c v
π

π π π π δ
∈

= ⋅ + ⋅ − − +∑

 The cycle time for graph G is ΦG = max d(S) where S is a set of
all topological paths in a circuit. Let ΛG denote the cutsize of graph
G. The problem of performance-driven bipartitioning is to find a
partitioning solution (V0|V1) that minimizes a combination of ΦG
and ΛG while satisfying capacity constraints.

III. Signal Direction Constraints

In this section, we introduce the notion of a (preferred) signal
direction, and the resulting constraint, which will be used to
optimize circuit delay efficiently at the minimum cost of cutsize.

 Let’s denote the set of primary inputs of a circuit as PI, the set of
primary outputs as PO, and the set of flip-flops as FF.

Definition: We define an input-output (I/O) conduit as the set of
all topological paths from some input node (PI or FF) to some
output node (PO or FF.) An I/O conduit, σ, is simply identified by
the corresponding input (PI or FF) and output (PO or FF).

Notice that the maximum number of I/O conduits in a sequential
circuit netlist is z = (nI+nF)*(nO+nF) where nI, nO and nF denotes
the number of circuit PI’s, PO’s and FF’s, respectively. An I/O
conduit then belongs to one of the following types: PI!PO,
PI!FF, FF!FF, or FF!PO. If we assume that the locations of
PI’s, PO’s and FF’s are fixed in one part or the other, then all I/O
conduits will have a unique signal direction in a given bipartition.
In a bipartition, if signal directions of all I/O conduits are satisfied,
then the bipartition will be optimum in terms of the path delay.

 Figure 1 shows the signal direction constraints between a signal
source node s(e) and a signal target node t(e) for an edge e. An I/O
conduit σ1 from pi1 to po1 comprises of a single topological path
pi1"v1"v2"v3"po1. The minimum achievable cut count of σ1 is
one since pi1 and po1 are located in different parts. The signal
directions of edges of σ1 should be from part M0 to part M1 in order
to obtain this minimum cut count. Let P(vi) denote the part that
node vi is assigned to i.e., P(vi) = 0 if vi is put in M0, otherwise,

P(vi) = 1. Notice that P(vi) of the source node vi of an edge e of σ1
should not be any larger than P(vj) of the target node vj of that
edge. For an I/O conduit σ2, comprising of a single path
pi2"v4"v5"v6"po2, both source and target nodes of edges on σ2

should be put in M0 in order to satisfy the signal direction
constraint of σ2 (the minimum achievable cut count of σ2 is zero).
Based on this discussion, we define signal direction constraints
(SDC’s) for a vertical cut line as follows:

SDC1: if SD(σ)=LL, ∀ ei ∈ σ, P(s(ei)) = P(t(ei)) = 0

SDC2: if SD(σ)=RR, ∀ ei ∈ σ, P(s(ei)) = P(t(ei)) = 1

SDC3: if SD(σ)=LR, ∀ ei ∈ σ, P(s(ei)) ≤ P(t(ei))

SDC4: if SD(σ)=RL, ∀ ei ∈ σ, P(s(ei)) ≥ P(t(ei))

where SD(σ) denotes the signal direction of σ, which is one of LL,
RR, LR or RL. Clearly, LL (RR) implies that both start and end
nodes of the conduit are located in M0 (M1), whereas LR (RL)
means that the start node of the conduit is in M0 (M1) while the end
node of the conduit is in M1 (M0). Based on the above definitions,
each edge on any topological path in an I/O conduit has the same
preferred signal direction. Even though many topological paths of
a conduit pass through an edge, the edge has only one signal
direction constraint (SDC) for the conduit. This is because all
topological paths of a conduit also have the same preferred signal
direction. In general, an edge may belong to many conduits, say n
I/O, in the circuit, each assigning a preferred signal direction to the
edge. Therefore, we need only I/O conduits rather than all
topological paths in a circuit when computing SDC’s of all edges.
Let’s assume that n1 of these conduits are of type LL whereas n2, n3
and n4 are of types RR, LR and RL, respectively. (n=n1+n2+n3+n4.)
Clearly, n is polynomially bounded. Violating these signal
directions cause signal direction violations (SDV’s).

A. Timing gain function of a move

A bipartition that satisfies all of the SDC’s associated with the I/O
conduits seldom exists for any realistic netlist. Even when such a
solution exists, it tends to have a huge cutsize, which will require
either large routing space overhead or additional metal layers to
complete the design. This in turn is likely to cause violation of
design specifications such as chip size, yield, and manufacturing
cost. Therefore, we must relax the constraints in order to obtain a
smooth tradeoff between the circuit delay and cutsize.

 Our proposed partitioner, PMP, employs an FM heuristic [12] in
the uncoarsening phase, with a modified move gain function
accounting for both the signal directions and the cutsize. To
manage delay as the optimization objective rather than a constraint
to be satisfied, we make use of the violation counts as defined
above. More precisely, we define a timing gain function, TG(vi), to
quantitatively evaluate the desirability of moving vi from M0 to M1.
This gain function is defined as:

0 1() ({ }, { })

: () 0) (: () 1()
i i i

i i i i

TG v TG M v M v

VC v P v VC v P v

− +
= = − =
!

Theorem: Given a partitioning solution V={M0,M1}, the
reduction in the total violation count, TVC, of G(V,E) as a result
of moving some node vi from M0 to M1 is equal to TG(vi).

Proof is straightforward and is omitted to save space. Notice that to
calculate the timing gain for node vi, contributions to delay of all
I/O conduits containing vi should be aggregated. Previous
approaches [4][5] do not consider this point or assume that signal
directions of all I/O conduits are the same [4]. However, this
unidirectional assumption does not hold true for practical
benchmark circuits, especially in a top-down design flow, where,
for example, at least the circuit I/Os are considered as fixed
terminals [12]. The timing gain for a node vi is obtained by
summing the counter of signal direction violation (SDV) of each
edge ei connected to the node vi. The counter of SDV of each edge
ei can be computed using one of the following eight cases.

SDV1: if vi = s(ei) and P(s(ei)) = P(t(ei)) = 0, then

 TG(vi) −= (SDC1-count(ei) + SDC3-count(ei))

SDV2: if vi = s(ei) and P(s(ei)) = P(t(ei)) = 1, then

 TG(vi) −= (SDC2-count(ei) + SDC4-count(ei))

SDV3: if vi = s(ei) and P(s(ei)) > P(t(ei)), then

TG(vi) += (SDC1-count(ei) + SDC3-count(ei))

SDV4: if vi = s(ei) and P(s(ei)) < P(t(ei)), then

TG(vi) += (SDC2-count(ei) + SDC4-count(ei))

SDV5: if vi = t(ei) and P(s(ei)) = P(t(ei)) = 0, then

 TG(vi) −= (SDC1-count(ei) + SDC4-count(ei))

SDV6: if vi = t(ei) and P(s(ei)) = P(t(ei)) = 1, then

 TG(vi) −= (SDC2-count(ei) + SDC3-count(ei))

SDV7: if vi = t(ei) and P(s(ei)) > P(t(ei)), then

TG(vi) += (SDC1-count(ei) + SDC4-count(ei))

SDV8: if vi = t(ei) and P(s(ei)) < P(t(ei)), then

 TG(vi) += (SDC2-count(ei) + SDC3-count(ei))

where SDC-count(ei) represents the count of each type of signal
direction constraint for edge ei, that is, the number of conduits with

 σ1: pi1"v1"v2"v3"po1

 e1(pi1,v1), e2(v1,v2), e3(v2,v3), e4(v3,po1)

 σ2: pi2"v4"v5"v6"po2

e5(pi2,v4), e6(v4,v5), e7(v5,v6), e8(v6,po2)

Signal Direction Constraints:

P(s(ei)) ≤ P(t(ei)), 1≤ i ≤ 4 for �σ1

P(s(ei)) = P(t(ei)) = 0, 5 ≤ i ≤ 8 for �σ2

where P(vi) is a part number (0 or 1) of vi

 Figure 1. Signal direction constraints.

po1

pi1

po2

 M0 M1

pi2

the corresponding signal direction that go through the edge. These
values are pre-computed before we start the FM partitioning
process in order to maintain the polynomial time complexity of the
FM iterations under signal direction constraints. The algorithm for
setting the SDC-count is described in Section IV(D).

 We explain the timing gain calculation with the help of an
example in Figure 2. Consider moving node v3 from M0 to M1.
There are six I/O conduits that go through v3, and there are four
edges connected to this node (see figure for specification of
conduits and edges). Before v3 is moved, edges e2 and e4 do not
satisfy SDC2 of conduits σ4 and σ6, respectively. This is because
SD(σ4)=SD(σ6)=RR but the source and target nodes of these two
edges are not in M1. The number of SDC violations is thus four.
After v3 is moved, SDC2 is satisfied for both e2 and e4 while edges
e1 and e3 do not satisfy SDC1 of conduit σ1. This means that by
moving v3, we are able to reduce the cut counts of conduits σ4 and
σ6 by two each, while the cut count of conduit σ1 is increased by
two. As a result, the total number of SDC violations are reduced by
two, i.e., the timing gain for the v3-move is two, TG(v3) = 2.
Previous methods [4][5] do not calculate the timing gain of this
move correctly. More precisely, using “backward edges” of
reference [4] does not result in correct calculation of the timing
gain for the reason that there is no reduction of the “backward
edges” after the v3-move when the topological ordering is from M0
to M1. Furthermore, since the v3-move results in another
configuration of “V-shaped nodes” for σ1, reference [5] would set
the timing gain of this move to zero. In conclusion, to globally
reduce the total cut count of all I/O conduits, the timing gain
should be calculated as is proposed in our present work.

IV. The PMP Algorithm

In this section, we describe our proposed Performance-driven
Multilevel Partitioning (PMP) algorithm. Similar to the hMetis
flow [12], PMP consists of three phases: Phase 1 - Timing-aware
clustering for the coarsening phase; Phase 2 - Initial partitioning
phase; Phase 3 - Performance-driven bipartitioning for the
uncoarsening phase.

A. Clustering considering timing criticality

We use the Heavy Edge Matching (HEM) algorithm of [12] in
order to find a maximal matching in the net list graph. The
clustering phase greatly influences the quality of the final
partitioning solution in terms of both delay and cutsize. In order to
improve the delay, the clustering algorithm should consider the
timing criticality of the edge as well as its connectivity strength.
However, our experimental results have taught us that the
connectivity is a more important consideration at this stage and
that delay should be used only as a tiebreaker when two or more
candidate edges have equal weights. We define terminology
needed to quantify the timing criticality of edges. Path depth is
defined as the number of intermediate nodes in a path (excluding
PI’s, PO’s and FF’s).

Definition: The Maximum Depth of any Path of an edge (referred
to as the MDP of an edge) is defined as the maximum of the logical
depth of any path that goes through that edge.

 PMP uses the MDP of edges as a tiebreaker when selecting an
unmatched adjacent node uj of vi. In particular, consider that there
are m matching candidates u1,…,um. Suppose the first k of these
matches have the same edge weight, which is higher than any other

edge weight. Among the remaining candidate matches that have
tied based on the HEM selection criterion, u1,…,uk, PMP chooses
the one whose corresponding edge to vi has the highest MDP
value.

Figure 3 shows an example of how the MDP is used as a tiebreaker
when we are searching for a match to node v1. The MDP for each
edge is represented in parenthesis. There are three adjacent nodes
v2, v3 and v4 to v1 in this example. Among them, v2 and v4 survive
as match candidates after the HEM’s edge weight criterion is
applied. Finally, v2 is selected by PMP for the match of v1 since e2
connecting v1 and v2 has higher MDP value compared to e4
connecting v1 and v4.

 σ1: pi1"v1"v3"v4"po1, σ2: pi1"v1"v3"v5"po2
 σ3: pi2"v2"v3"v4"po1, σ4: pi2"v2"v3"v5"po2
 σ5: pi3"v2"v3"v4"po1, σ6: pi3"v2"v3"v5"po2
 SDC1-count(e1) = 1, SDC3-count(e1) = 1, SDC2-count(e2) = 2,
 SDC4-count(e2) = 2, SDC1-count(e3) = 1, SDC4-count(e3) = 2,
 SDC2-count(e4) = 2, SDC3-count(e4) = 1

 VC(V3:P(v3)=0) = 4 // SDC violations before the v3 move
 ⇒ SDC2 violated for e2 and e4, and others are all satisfied.
 VC(V3:P(v3)=1) = 2 // SDC violations after the v3 move
 ⇒ SDC1 violated for e1 and e3, and others are all satisfied.

 ∴ TG(v3) = VC(V3:P(v3)=0) − VC(V3:P(v3)=1) = 2

Figure 2. Computation of the timing gain for an example move by
using aggregate signal direction constraints.

pi2

po1

pi1
pi3

po2

e2 e1

e3 e4
v4

v1

v3

v5

v2

 M0 M1

(b) After v3-move

pi2

po1

pi1
pi3

po2

v3

v4

v1 v2

v5

e1

e3

e2

e4

 M0 M1

(a) Before v3-move

Figure3. Clustering with MDP as a tie-breaker

B. Initial partitioning

During the initial partitioning phase, a bisection of the coarsened
hypergraph is computed to minimize cutsize while maintaining that
each part contains roughly half of the node weight of the original
graph. The node weight represents the area of a node. PMP does
not consider delay at this stage because the coarse graph is very
small (we set the threshold value of top-level size < 100) and too
rough to calculate a meaningful timing gain function.

 The initial partitioning solution is then used to decide the
locations of FF’s. Recall that, in a typical top-down design flow,
the locations of the PI’s and PO’s of the circuit are fixed, whereas
the FF’s are floating. For sequential circuits, the locations of FF’s
should be fixed before calculating SDC-counts for all edges. Since
the cutsize of a circuit greatly depends on the FF locations, we
must carefully assign these locations. Therefore, we performed a
number of experiments to assess how much the pre-fixed FF
locations affect the cutsize in a multilevel partitioning scenario. To
save paper space, we briefly mention the experiment results here.
The increase rate of cutsize was kept within 10% on average for the
benchmark circuits (See Table1) when prefixing FF locations
according to the result of the initial partitioning, compared to the
case of not pre-fixing FF locations.

C. Uncoarsening with a new gain function

During the uncoarsening phase, the partitioning solution of the
coarser graph is projected back to the original graph by going
through multiple hierarchies. The hierarchy is constructed during
the coarsening phase. At each level, a bipartition refinement starts
from the projected partition of its upper level as an initial partition.
We use standard FM as a bipartition refinement algorithm. Since
our goal is to smoothly exchange between the delay and cutsize,
we use the following move gain function for moving node vi:

()
() () (1) *100

()
i

i i

TG v
MG v CG v

G
α α

λ

= ⋅ + − ⋅

where CG(vi) represents the standard cutsize gain function. 0≤α≤1
is a weight coefficient, and λ(G) is the average number of I/O
conduits going through any node in a circuit graph G. Note that we
must normalize TG(vi) by λ(G) in order to be able to pick a fixed
weighting coefficient across different benchmark circuits. We
multiply the linear combination of cutsize gain and normalized
timing gain with 100 and then take the ceiling. The idea is to
produce an integer value for the moving gain of a node that can
differentiate between different moves. In our experiments, we used
α=0.87 for best results.

D. Time complexity

The pseudo code of our PMP algorithm is shown in Figure 4. First,
we compute the MDP. After steps 2 and 3 in Figure 4, we know
the preferred signal directions of all I/O conduits because FF’s
have been assigned to a part. In order to maintain the time
complexity of the FM iterations under signal direction constraints
(SDC) in the uncoarsening phase, we pre-compute SDC-counts for
all edges in step 4. We can compute SDC-counts as follows: First,
all transitive PI’s and FF’s for each node vi are calculated and
stored as set Si at that node during the reverse-DFS. Similarly, all
transitive PO’s and FF’s are searched for and stored at set Ti at the
node during the subsequent DFS. As a result, we can determine, Cij,
the set of all conduits that go thru any edge eij between nodes vi
and vj in the circuit graph as the Cartesian product of the sets Si and
Tj. Now, we count the number of conduits of type LL, LR, RL, and
RR in Cij and thereby initialize the corresponding SDC-count for
all edges in the circuit.

Theorem: The worst-case space complexity for setting the SDC-
counts for all edges is O(|V|⋅⋅⋅⋅ y) whereas the worst-case time
complexity is O(|E|⋅⋅⋅⋅ z) where z=(nI+nF)*(nO+nF) and
y=nI+nF+nO.

PMP (G0(V,E), TB)

1. If (TB== MDP)
 Compute and store the MDP for each edge of G0

 Else
 Compute and store the MHP for each edge of G0

2. Coarsen G0 until the size of the top-level(m) < 100,
 producing Gm, Gm-1, …, G1
3. Do the initial partitioning and fix locations of all FF’s
4. Compute the SDC counter values for all edges in G0
5. For i=1; i < m; i++
 Uncoarsen and refine Gi

6. Output the bipartition <G00, G01> of G0 as the solution

Figure 4. PMP Algorithm

PMMP (G0(V,E)) // example four-way partitioning code

1. <G00, G01> = PMP(G0(V,E), MDP); // first bisection

2. <G000, G001> = PMP(G00(V,E), MHP);

3. <G010, G011> = PMP(G01(V,E), MHP);

Figure 5. The PMMP Algorithm

E. Extension to the multiway partitioning

The Performance-driven, Multilevel, Multiway Partitioning
(PMMP) algorithm is also implemented simply by making iterative
calls to PMP to generate two-way, four-way, and eventually K-way
partitioning solutions. However, PMMP uses a different tie-
breaker during clustering after the first bisection in which MDP is
used for the tie-breaker as described in Section IV(A).

 For the first bipartitioning step, we do not have enough
information to define timing-critical paths in the circuit graph. So
we take the topological depth of a path as an indication of its
timing criticality and use the MDP of edges to prevent the long
paths from being cut several times. On the other hand, in the

e9(4)

e2(4)

e4(3)

e3(4)

e6(4)
e7(4)

e5(3)

e8(3)

v1

v3

v4

pi2

v5

v2

pi3

pi1

po1

succeeding bipartitioning steps, critical paths can be identified
more precisely by counting the existing cut count of the paths.
Therefore, we can use the maximum of hop-count of any path that
goes thru an edge as a measure of timing criticality of that edge (a
hop means an edge that is been cut). In other words if there is a
path that goes thru some edge e and that hop-count of that path is
already high, we do not want to cut the edge e in the current
bipartitioning step since it will likely increase the critical path
delay after the PMP completes its job. PMMP algorithm is
described in Figure 5.

Definition: The Maximum Hop-count of any Path of an edge
(referred to as the MHP of an edge) is defined as the edge length of
the longest path that goes through that edge.

The computation of MHP values can be computed in a similar way
to that of computing SDC-counter as follows. During the reverse-
DFS, the maximum cut count between PI (or FF) to each node vi,
cut-countPI(vi), is calculated. Next, the maximum cut count
between PO (or FF) to each node, vi, cut-countPO(vi), is calculated
via the forward-DFS. Then, the MHP value of edge ei is the sum of
cut countPI(vi) and cut countPO(vj), where vi and vj represent the
source and target node of ei, respectively. Figure 6 shows the
pseudo root node having connections with PI’s and FF’s, and a
pseudo tail node having connections with all PO’s and FF’s. The
total time needed for calculating the MHP values for all edges is
O(|V|+|E|).

Figure 6. Computation of MHP values in polynomial time

V. Experimental Results

The PMP (or PMMP) algorithm was implemented in C++ on a Sun
Ultra Sparc II machine, and tested on ISCAS89 [12] and ITC
benchmarks [12]. The characteristics of the benchmark circuits are
summarized in Table 1. The circuits were optimized by using the
script.rugged in SIS [17]. We obtained these optimized circuits
from authors of [9]. In our experiments, we arbitrarily assigned
locations to the primary inputs and outputs and kept their locations
fixed throughout the experiments.

Table 1. ISCAS’89 Benchmarks

Circuit #Nets #Nodes #Primary I/O

cordic 1071 881 25

misex3 1335 1349 28

x3 1270 1369 234

c6288 2403 2435 64

s15850 4274 4326 101

frisc 4385 4501 136

elliptic 4600 4714 245

ex1010 4888 4898 20

pdc 4781 4821 56

s38417 7358 7410 134

b21s 15584 15606 56

b22s 23872 23894 56

b17s 39362 39459 136

 Unfortunately, timing-driven partitioning software programs
which do not alter netlist (e.g., [4][5]) were not available to us. At
the same time, the partitioning algorithm of [9] does not support
circuits with any fixed node. Therefore, to compare PMP with
other timing-driven partitioning algorithms, we modified the
algorithm of reference [9], which we will denote as TPA. In this
algorithm, we give more weight to the edges that lie on the timing-
critical paths in a circuit. TPA performs circuit-level static timing
analysis at each partitioning level in order to determine critical
paths and slack. We also compared PMP with hMetis [1].
Therefore, we compared PMP with TPA and hMetis for eight-way
partitioning problem.

 The maximum delay of the benchmark circuits, ΦΦΦΦG, is calculated
based on the delay model presented in [4]. The chip size for each
circuit is assumed to be twice the total area of all nodes in the
circuit. For the 8-way partitioning, we set the area skew to 5%, that
is, each partition can contain between 0.453n and 0.553n vertices,
where n is the number of nodes in the circuit. The VCycle option
was turned on for the hMetis. For PMP, we set α parameter value
to 0.87 (cf. Section IV(C).) Table 2 reports the results of
comparing PMP with hMetis and TPA for the eight-way
partitioning problem. All results in this table represent the average
of 20 different runs for each partitioning algorithm. The cutsize,
ΛΛΛΛG, is calculated as the sum of costs of each net that is cut. In turn,
the cost of a cut net is k-1 if that net has pins in k parts [18].

 Based on the data in Table 2, we conclude that, in terms of the
circuit delay, PMP outperforms hMetis and TPA by an average of
14.6% and 3.8%, respectively. In addition, we can see that
compared to hMetis, PMP increases the cutsize by an average of
1.2%, while, on average, PMP obtained 3.7% lower cutsize
compared to TPA. PMP runtime is on average three times higher
than that of hMetis. Notice that PMP is on average 18.8% faster
than TPA. PMP reduced the circuit delay by 14.6% with a
negligible increase in the cutsize compared to hMetis. As a result,
our experiments show that the move-based bipartitioning algorithm
works remarkably with the gain function of the preferred signal
direction, so that it optimizes circuit delay very efficiently at the
minimum cost of cutsize.

VI. Conclusions

In this paper, we presented a new performance-driven multilevel
partitioning algorithm. Our main contribution is a new and
efficient timing gain function formulation for the move-based
bipartitioning algorithm. In addition, we proposed a simple but
efficient timing-aware clustering algorithm that uses the maximum
logic depth and/or the hop-count of an edge as a tiebreaker. These
new methods fit very nicely within the general framework of a
multilevel partitioning algorithm. Our approach does not alter
netlist causing area increase as previous approaches do.
Consequently, we can reduce a circuit delay very efficiently with at
the minimum cost of cutsize.

…

pseudo root
.
.
.

…

…

…

…

.

.

.

…

…

… pi

cut-countPI(vi) cut-countPO(vi)

pi

pseudo tail

Reference
[1] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, Multilevel

Hypergraph Partitioning: Application in VLSI Domain. In ACM/IEEE
Design Automation Conference, 526-529, 1997.

[2] C. J. Alpert, J. H. Huang and A. B. Kahng, Multilevel Circuit
Partitioning. In ACM/IEEE Design Automation Conference, 530-533,
1997.

[3] J. Cong, H. P. Hi, S. K. Lim, T. Shibuya and D. Xu, Large Scale
Circuit Partitioning with Loose/Stable Net Removal and Signal Flow
Based Clustering. In IEEE International Conference on Computer-
Aided Design, 441-446, 1997.

[4] J. Cong and S.K. Lim, Performance Driven Multiway Partitioning. In
ACM/IEEE Asia South Pacific Design Automation Conference, 441-
446, 2000.

[5] A. B. Kahng and X. Xu, Local Unidirectional Bias for Smooth
Cutsize-Delay Tradeoff in Performance-driven bipartitioning. In
ACM/IEEE International Symposium Physical Design, 81-86, 2003.

[6] J. Cong, S. Lim and C. Wu, Performance Driven Multi-level and
Multiway Partitioning with Retiming. In ACM/IEEE Design
Automation Conference, 274-279, 2000.

[7] J. Cong and C. Wu, Global Clustering-Based Performance Driven
Circuit Partitioning. In ACM/IEEE International Symposium
Physical Design, 149-154, 2002.

[8] J. Cong, H. Li and C. Wu, Simultaneous Circuit Partitioing/Clusterng
with Retiming for Performance Optimization. In ACM/IEEE Design
Automation Conference, 460-465, 1999.

[9] C. Ababei, S. Navaratnasothie, K. Bazargan and G. Karypis, Multi-
objective Circuit Partitioning for Cutsize and Path-Based Delay

Minimization. In IEEE International Conference on Computer-Aided
Design, 181-185, 2002.

[10] C. Ababei and K. Bazargan, Statistical Timing Driven Partitioning
for VLSI Circuits. In Design Automation and Test in Europe, 1109,
2002.

[11] Shihliang Ou and Massoud Pedram, Timing-driven bipartitioning
with replication using iterative quadratic programming. In
ACM/IEEE Asia South Pacific Design Automation Conference, 105-
108, 1999.

[12] C. Fiduccia and R. Mattheyses, A Linear Time Heuristic for
Improving Network Partitions. In ACM/IEEE Design Automation
Conference, 175-181, 1988.

[13] A. E. Caldwell, A. B. Kahng, I. L. Markov, Hypergraph Partitioning
with Fixed Vertices. In ACM/IEEE Design Automation Conference,
355-359, 1999.

[14] G. Karypis and V. Kumar, hMetis 1.5: A Hypergraph Partitioning
Package. Technical report, Department of Computer Science, Univ.
of Minnesota, 1998. Available on the WWW at URL
http:///www.cs.umn.edu/~metis.

[15] ISCAS89 benchmarks. At http://www.cbl.ncsu.edu

[16] ITC benchmarks. At http://www.cad.polito.it/tools/9.html

[17] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P.R. Stephan, R.K. Brayton, A. Sangiovanni-
Vincentelli, ‘SIS: A System for Sequential Circuit Synthesis’,
Technical Report UCB/ERL M92/41, Univ. of California, Berkeley,
May 1992.

[18] L. A. Sanchis, Multiple-way network partitioning. In IEEE Trans.
Computer, vol. 38, pp.62-81, Jan. 1989.

Table 2. Comparison of PMP with hMetis and TPA on 8-way partitioning (ΛG denotes cutsize, ΦG denotes the delay).

hMetis TPA PMP
Benchmark

ΦΦΦΦG ΛΛΛΛG cpu (s) ΦΦΦΦG ΛΛΛΛG cpu (s) ΦΦΦΦG ΛΛΛΛG cpu (s)

cordic 15.0 305.3 0.2 10.7 301.4 0.6 9.9 278.9 0.5

misex3 72.5 760.7 0.2 69.4 763.1 0.8 57.9 764.2 0.6

x3 32.4 368.9 0.2 28.6 386.8 0.5 28.4 342.4 0.5

c6288 52.8 199.2 0.3 52.6 202.6 1.1 51.9 214.3 0.9

s15850 102.4 284.1 0.6 100.1 277.4 1.9 104.9 275.2 1.7

frisc 157.2 1233.3 0.7 159.4 1238.9 2.3 146.2 1183.2 2.1

elliptic 372.1 905.1 0.6 365.9 950.8 2.5 388.9 812.2 2.2

ex1010 410.9 1053 1.2 406.8 1162.7 5.5 399.3 1086.8 5.2

pdc 356.4 1887 0.8 317.3 1931.5 4.2 265.2 1883.2 3.7

s38417 146.1 312.9 0.9 145.4 419.2 4.8 147.6 415.8 3.8

b21s 357.2 806.1 2.8 289.7 888.4 12.8 283.7 900.5 10.3

b22s 472.8 922.9 5.2 363.1 978 23.35 372.3 957.4 15.2

b17s 419.7 1288.7 10.7 397.9 1307.1 32.3 392.3 1316.6 29.4

Average 14.6% -1.2% -68.6% 3.8% 3.7% 18.8% 1 1 1

