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ABSTRACT

This paper presents a hierarchical dynamic poweragement (DPM) framework based on reinforcemernieg (RL) technique, which
aims at power savings in a computer system withtipiel /O devices running a number of heterogeneapglications. The proposed
framework interacts with the CPU scheduler to penfeeffective application-level scheduling, therebiyabling further power savings.
Moreover, it considers non-stationary workloads and differeaiabetween the service request generation ratesarius software
application. The online adaptive DPM technique &iaof two layers: component-level local power ager and system—level global power
manager. The component-level PM policy is pre-dggtiand fixed whereas the system-level PM empteysporal difference learning on
semi-Markov decision process as the model-free &thrnique, and it is specifically optimized for atdregeneous application pool.
Experiments show that the proposed approach caabilyeenhances power savings while maintaining gpedormance levels. In
comparison with other reference systems, the pegpdel-based DPM approach, further enhances powaéngsa performs well under
various workloads, can simultaneously consider poavel performance, and achieves wide and deep posvsrmance tradeoff curves.
Experiments conducted with multiple service prowsdeonfirm that up to 63% maximum energy savinggeevice provider can be achieved.

Keywords: power management, reinforcement learning, tempbifigrence learning, semi-Markov decision process.

1. Introduction

Power consumption in battery operated portable agsvis
nowadays a major concern. Such systems generatifaico
many I/O device components, ranging from digitad amalog
to electro-mechanical and electro-chemical. Fosdhgystems,
the major energy dissipation is coming from thé€edevices.

take performance constraints into account, and, tlwas
hardly achieve a desirable trade-off between pevéorce and
energy dissipation. The stochastic approaches alam into
account both power and performance and are abtietioe
provably optimal DPM policies, by modeling the regt
arrival times and device service times as statpstochastic
processes such as Markov Decision Processes (MI)HPB],

Dynamic power management (DPM) refers to a set ¢f]. The essential shortcoming of these methodsésneed of

strategies that achieves efficient power consumphby the
selective shut-off or slow-down of /0O componentsttare
idle or underutilized [1]. Such technique has prote be a
particularly effective way of reducing power dissiippn at the
system level [2]. An effective DPM policy should nmithize
power consumption while maintaining
degradation within an acceptable level. The DPM hoes$
proposed in the literature can be broadly classifigo three
categories: heuristic, stochastic, and learningdasethods.
Heuristic methods attempt to predict the lengthheaf next
idle time based on the computation history, anch thleut the
device down if the predicted idle period lengthtifiess the
cost. More precisely, a decision to sleep will badm if the
prediction indicates that the idle period is longean the
break-even timd,.. Among these methods, Srivastava et
[3] use a regression function to predict the idbeiqd length,
while Hwang et al. [4] propose an exponential-wéit
average function for predicting the idle periodddn Such
techniques are simple and easy to implement, amd haen
adopted in many commercial products. However, tregform
well only when the requests are highly correlated do not
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exact knowledge of the MDP state transition proligbi
function. However, the workload of a complex systé&n
usually changing with time and hard for accuratedption
[8]. The workload variation has a significant impan the
system performance and power consumption. Thushast

performanc§ower management technique must consider the @mrt

and variability that emanate from the environméwtrdware
and application characteristics [9] and must be éblinteract
with the environment to obtain information whichnche
processed to produce optimal policies.

In this sense, several previous works use macleaming
for adaptive policy optimization. Compared to hstici
policies, machine learning-based methods such

areinforcement learning (RL) can simultaneously ddeis

power and performance, and perform well under wario
workload conditions when the system model is naivkma
priori. In [10], an online policy selection algorithm is
proposed, which generates offline a set of DPM qbesi to
choose from. Tan et al. in [11] propose to userdraeced Q-
learning algorithm for system-level DPM. The Q-lgag
based DPM learns a policy online by trying to letire best-
suited action for each system state based on thardeor
penalty received. However, this work is based afisarete-

as



time model of the stochastic process, and thus laege meet given performance constraints. The propossadedwork
decision making overhead. Wang et al. in [12] edteénis is model-free, performs learning and power managérmea
work to allow the power manager working in a coatins- continuous-time and event-driven manner, has fast
time and event-driven manner with faster convergeate, by convergence rate and less reliance on the Markqriagperty.
exploiting the TDY) learning framework for semi-MDP  The remainder of this paper is organized as followe
(SMDP) [13]. provide an overview of reinforcement learning baokmd in

All of the above-mentioned DPM researches havededu Section 2. The proposed hierarchical DPM framework
on developing local component-level policies. Hoamva architecture is presented in Section 3, and itdémpntation
number of built-in power-management techniques Hzen details are given in Section 4. Framework improveisie
already incorporated into various standards andopots. targeting multiple 1/O devices and multiple hetemogous
These techniques cannot be modified because theyethe applications are explained in Section 5. The expenital
correct functionality of the device running the responding results and analysis are presented in Section 6cédelude
protocol. In this sense, we consider such a dewgean our findings in Section 7.
autonomously power-managed component. Even beyond
protocol considerations, vendors may already haweirt 2. Theoretical background

appropriate power management methods specificaijgded  |n this section, we provide a brief introduction tfe
for their products and directly integrated into idevdrivers. general RL framework and the RL algorithm propokeche

Based on the above considerations, we definerilelgm GpM, namely, the TDAJ learning algorithm for SMDP. One
of hierarchical power management (HPM) for anergy may refer to [13] for more details.

managed comput¢dEMC) system with autonomously power- Reinforcement  Leaming i hi intell
managed components. A few research results have bee 9 IS a machine fntefigence
reported to resolve the HPM problem of a computi¢h self approach . based on the leaming through' experience
power-managed components. Reference [14] uses uarsimgccumqlatmn [17]. The core of ',[he RL tgchnlquethue
system setup as this paper and derives offlineditémal mtgractlon between agent and environment in tesfrgtates,
policies using Continuous-Time Markov Decision mee actions, and rewards [18]. The general RL model -as
model of the system. In this approach, the reguést-arrival  illustrated in Fig.1- consists of an agent, a érstate spacga
times and System service times are modelled amm set of available aCtior}S and a reward functioR:S X 4 —
processes that satisfy exponential probability riistions, R. The agent is the learner and decision maker. The
which is not always realistic. Reference [15] prog® a environment is defined as any sensory informathon agent
hierarchical adaptive DPM, where the term “hieramali receives about. Actions refer to the decision thena will be
refers to the manner in which the authors formutaeeDPM called to make [19]. State represents the situatfi@nagent
policy optimization as a problem of seeking an i rule can find itself in. More precisely, state is theaidable
that switches policies among a set of pre-compaiess. information about the agent’s environment that &elp

In this paper, we develop a novel online adaptivproach decision making.
for HPM of a computer with autonomously power-maethg
components. The proposed framework extends the bt
policy presented in [16] to multiple I/O devices dan
heterogeneous applications. The proposed approaasists Skl
of two layers: local component-level power mana@d?M)
and global system-level power manager (GPM). Th#MLP
policy is pre-specified and fixed whereas, the GRbEs
temporal difference learning on SMDP as the mourks-f
reinforcement learning technique to perform powe
management in a continuous-time and event-drivennera
Moreover, the GPM interacts with the CPU scheduter
perform effective application-level scheduling, retey
enabling even more power savings. This work alderals the ax
work of [14] by considering non-stationary workl@adlrhe
proposed RL approach does not assume the request in
arrival times and system service times are modebsd

" State

Sk

"‘-.:Reward rate

stationary processes with exponential probabilisgributions. Fig. 1. Agent-environment interaction model.
Thus, the power manager learns the optimal poli@en non- _ _
stationary workloads associated with multiple agadibn We define a policyr = {(s,a)|a € 4,s € S} as the set of

types with different service request generationegat all possible state-action pairs in the RL framewokk each
Moreover, the proposed approach simultaneouslynéetine step of interaction with the environment, the ageaeives a
optimal policy for non-stationary workloads and sishat representation of the environment's state S. It selects an
policy to control instead of only evaluating oneegefined action a, € A(s;) whereA(s;) denotes the set of possible
policy. In addition, the proposed framework perferprecise actions available at state As a consequence of the taken
power-latency tradeoff of each application typedshsn a action, the agent moves to a new stgte, and receives from
user-defined parameter, whereas reference [14] agtsto the environment a rewarng, ; (a real or natural number) or a



punishment (a negative reward) which indicatesuilee of the estimated value of the state-action gsjt.,, a”) in which
the state transition. The cumulative rewards afteet agent s, is the actually occurring next state. Moreoverzgn. (2)
behavior and guide the action policy. The agenalds to ¢®(s,a) denotes the eligibility of each state-action pair
optimize its behavior based on the received rewaMisre order to facilitate the implementation of the Rp@lgorithm.
precisely, the agent keeps a value func@8is, a), for each  Such eligibility reflects the degree to which thate-action

state-action paifs,a) initially chosen by the designer andpair (s,a) has been chosen in the recent past and it is egdat
later, it is updated each time an action is takehareward is as follows:

received, based on the following equation. e®(s,a) = 1e Fr-1e®*D(s5,a) + §((s,a), S ar)) ()

Vis,a) ESXA: where 8((s, a), (s, a)) denotes the delta kronecker function.
Q(sp,ap) = Q(sg,ap) +a X
[Tee1 + ¥y maxg QGSer1,@) — QS ap] (1) 3. Hierarchical DPM framework

In the ab . 01) denotes thd . This paper focuses on reducing energy consumptfoa o
n the above expressiom, € (0,1) denotes earning uni-processor computer system with built-in compurevel

rate; 1y, is the reward received at tirmaandye(q,l) is.the local power managers. Basically, we propose an tagap
discount factor The agent chooses the action with the ) ' :

X ) : . approach that regulates the requests service fléwthe
maximum estimated valu@(s,a) for various actionst € A

next time the state s visited. autonomously  power-managed  components, thereby

The value function represents thexpected long-term effeptively redugirlg component energy consumption.
reward when starting from statg choosing actiona Timeout pohag; are assumed to be thg Iocal_.power
(according to the policy), and followingr thereafter. Thus, Management policies for the components given théte
the agent continuously adjusts its policy so am#ximize the Usage. Under these policies, a Local Power Man@igew)
total amount of reward received over the long rEor a directly controls the state transitions of the deviMeanwhile,
realistic DPM problem, the power manager has ndefieed the system-level Global Power Manager (GPM) helps t
policy or knowledge about state transition chanésties that LPM improve the power efficiency by performing sees
are essential for any stochastic DPM approach.éfoee, the flow regulation and application scheduling.
power manager has to simultaneously learn the gpfpolicy, 3.1 Service provider model
and use it to make decisions. In this case, toadit value  One of the key components of the DPM frameworkhis t
methods cannot be applied. Instead, TD learnindnouist[20] device providing services to the workload calledviee
for SMDP* may be used. Such a method generates an estimatevider (SP).

Q¥(s,a) for each state-action pdis, a) at epoch,, which is
the estimate of the actual val@& (s, a) following policyr.
Suppose that statg is visited at epocly,, then at that epoch

the agent chooses an action either with the maximum ‘ @
estimated valueQ¥(s,, a) for various actionsz € 4, or by
using other semi-greedy policies [19]. Moreovere thD

learning rule updates the estima@®(s,,a,) at the next

epocht,,,, based on the chosen actiap and the next

states ;. Various TD learning algorithm implementations are

mainly different from one another by their evalogti

methods. We choose to use the algorithm for SMOR @2e

to a joint consideration of effectiveness, robussneand Fig. 2. Service provider model.

convergence rate. More specifically, the value tpdale for ) ] o

a state-action pair at epoeh,, in the TD¢.) algorithm for In this work, we consider a SP as shown in Figlt vas

SMDP is given as follows: three main states explained below:
e Active state: the SP is fully functional and it is
V(s,a) €SxA: Q¥ V(s,a) = QW (s,a) + a x processing some requests.
1-e~Fk « Idle state: the system is still operational, but there
e®(s,a) x B 7(Si @) 2) are no service requests to deal with. The tramsitio
+ MAX,, e P QW) (51,4, a") — QW (s, ap) between the active and idle states is autonomous,
i.e., as soon as the system completes servicing all
In the above expression;, = t,.; —t, is the time the of the waiting requests, it enters the idle state.
system remains in statg, ; a € (0,1) denotes thdearning Similarly, the system goes froidle to active as
o . 1-e~ BTk . sSoon as a service request arrives.
rate; B is thediscount factor r(s,, ai) is the sample . Sleepstate: The SP moves to tigleep state-
discounted reward received i time units; Q% (si.y,a") is where it has reduced power consumption- only

2 Note that the temporal difference learning for SMi® named because it
can be proved to converge to the optimal policgh# agent-environment
interaction system evolves as a stationary SMDPfakit such learning 3 Timeout is the duration the SP is kept in its istiate before entering the
algorithm is robust and has less reliance on thekMgan assumption [19]. sleep state.




from the idle stateThe device turns into active
sS0o0n as a service request arri
3.2 Theglobal system architecture
The architecture of the proposed hierarchical C
framework is presented in Fig. Bhe framework contait two
service providers, e.g. two I/O devices.

Application
sR1 < () —» SR

~ -
control co nirol

Fig. 3 Block diagram of a hierarchical DPM struct [14].

The service requestel(SR1, SR2) genee requests to be
processed by two types of SP, respecti The requests are
buffered in theservice queues (SQ1, SQ2) befcbeing
processed.

The proposed architecture decomposes the p
management task into two layerkcal component-level
power manager (LPM) and globatysten-level power
manager (GPM) Each service provider is controlled b
LPM whose timeout policy is prepecified and cannot t
changed. The LPM is monitoring the number of wai
service requests in the component queue (CQ)
consequenthadjusts the state of the service provi
3.3 Theglobal power manager

At the systenlevel, the GPM cannot overwrithe LPM
policy or directly control the state tranon of a service
provider. Thus, a Service Flow Contler (SFC) is
incorporated to control the service request trafii@at reache
the SP. The GPMnonitors the SQ anemploys TD{) to
guide accordingly SFC actions amgteract with the CPLl
scheduler to perform effective applicat-level scheduling for
further reducing the power consumption.

The main functions of the SFC are detailed as Vit
Fake SR generatiorin the case of expecting high acti\ in
the near future, the SFC genema fake service requ’ in
order to wake up the SP and prevent it from ergesardeef
sleep state.

SR blocking:To reduce the wake-uppequenc' of the SP and
extend its sleep tigy the SFC blocks all incoming reqts
from entering its component queue. Thihg blocked requests
remain in the SQ.

SR transfer: To wake up the SPhé SFC continuously mov
the stored requests in the SQttocomponent quet

3.4 Application model
Different applications may be executen the energy-
managed computer system. These applications caavewe

* Fake Service Reques& handled in the same way a:
regular SR by the SP, but requires no serfrom the SP.

classified into different types based on their devisage
correlations andworkload characteristic, i.e., their SR
generation rates and the target SPs. A-characterization
techngue is used to obtain statistical information abeath
application program. Applications with the same ide
dependency list and similar request generation ate
grouped into one application type. Notice that mapions
which are hard to characteei separately may be grouped i
a special class where the request generation fétatoclass i
equal to the average rate for the applications belonging to
this type.

For example, as shown iFig. 4, application type 1

generates SR1 with a rate ﬁﬁl) and SR2 with a rate oﬂﬁ)
in stater;,. Similarly, in statery,, the generation rates for

these two SRs becomé&]) anc 1), respectively. In state,,,
application type 1 transits to stery;, with an average rate of

V1 ap, Which also implies that the average tifor application
type 1 to stay in statg,, is -
Vi,ab

a Vl,ba

@
SR1: /11&)
SR2: A%

Vl,ab
. 9@
SRl.Al(b)
.42
Sr2: A%

Fig. 4 Model of application tyf transitions.

In the proposed frameworkthe exact generating time
instances of service requests are consic to be non-
stationarynone of the applications is considered to be @it
and therefore, all the heterogeneous applicaticange hthe
same priority. Moreover, we assume thal resource can
handle one request at a time, and a request cexecuted by
only one device.

4. Reinforcement learning for hierarchical DPM

In this section, the system architecture is limitech single
application type executedn the energy-managed computer.
The SRworkload characteristirare non-stationary and the SP
is controlled by a prepecifiedLPM policy. The GPM learns
the optimal policy nder nor-stationary workloads and issues
commandsaccordingly to the SF to determine whether to
block or forward theservicerequests to the local component
queue or to generatdake request to keep the SP aw.

4.1 Policy learning

The goal of the GPM is to reduce power consumg
while maintaining a acceptable performance levin this
study, weassume the SP pier model known for each power
state andwve consider the average delay as the perform
metric. The average number of waiting requests in theis



used as an estimation of the average delay. Thisasonable
because as outlined in reference [6], the averageber of
requests in the SQ is proportional to the averagenty for
each request defined as the average waiting timeedgh
request to be processed. The average waiting tapeesents
the time between the moment the request is gemkaaig the
moment the SP finishes processing it i.e., it idekiqueuing
time plus execution time.
In this work, the cost of a taken action in the &gorithm

is measured by both the instantaneous power cortgngnd

the caused number of requests buffered in the Si@ T

instantaneous power consumption is estimated by SRe
model based on its power state observation. Inwiag, the
value functionQ(s,d for each state-action pas,§ is a linear
combination of the expected total
consumption and latency. Since the total executiime and
number of requests are fixed, the value functioagsivalent
to a linear combination of the average discounteaves
consumption and average latency per request. Tlagivee
weight between power and latency can be changegkta
power-latency tradeoff curve. More precisely, upsatection
of actiona from a state s, the cost functiorfost(s, a; u) is
defined as follows:
Cost(s,a; u) = u x delay (s,a) +
(1 —p) xpwr(s,a)

wherepwr (s,a)is the consumed power
delay(s,a)denotes the caused delay anis a user defined
parameter enabling for setting a power-delay trédeo
4.2 Thelocal power management policy (L PM)

Timeout policy is assumed to be the pre-specifiétdML

12)

policy due to its wide usage in many built-in power

management policies and has been already incogabiato

various standards and protocols. Using such policg, SP
moves into the sleep state if it remains in itg istlate for more
than a specified timeout period. The timeout detees)the
tradeoff between the service latency and powelipdiien of

the SP. An undesirable degenerate situation isewvtier SP is
put to sleep too fast, only to be awakened immebjiafhus,

the system would suffer from extra energy consuomptnd

latency of waking up the SP and bringing it to #lttive state.
On the other hand, if the timeout is set to be Iy and

meanwhile no service requests arrives,
unnecessarily wasted energy by waiting in the sti¢e.

4.3 Theglobal power management policy (GPM)

The GPM continuously observes the following parareet
(i) the running application type, (ii) the SP povetate: busy,
idle, sleep, etc, (iii) the SQ state: number oftimgi requests,
and (iiii) the current application-specific serviaequest
generation rate: high, low, medium, etc. Based besd¢
observable parameters the GPM makes decision augsis
commands to the SFC in the following four cases:

1. The SP is in the sleep state and the number ofstg|un
the SQ is less than a given threshold value.

2. The SP is in the sleep state and the number okestg|uin
the SQ is equal to the given threshold value.

3. The SP is in the idle state and the timeout hasrpired
yet.

discounted energy o

amount;

4. The SP is in the idle state and the timeout hagexp

Let N denote the threshold value of the number of regues
in the SQ. A list ofN values will serve as the action gefor
the GPM in controlling the SFC. The GPM learns hoase
the optimal actioru € A, which corresponds to the optinidl
value, by using an RL technique.

The proposed RL framework operates as follows. &the
decision epoch, the GPM finds itself in one of tloar
aforesaid conditions; it will issue commands to ®EC to
implement the decision according to the followingif cases:

1. The SPisin the sleep state and SQ containshasd\t
requests. In this case, the GPM decides to keegkhe
in the sleep state and issu8f‘blockingcommands to
SFC to block all the incoming requests from entgrin
the component queue CQ.

The SP is in the sleep state and SQ confdirequests.

In this case, the GPM decides to turn on the SP for

processing requests. It will issueSR transfer’

command to SFQo transferSRs from the SQ to the

CQ, and the SP will wake up to service the service

requests.

3. The SP is in the idle state and the timeout hasyebt

expired:
a. If some request comes during that period of time.
The GPM will issue SR transfer'command to
SFC to transfer the incoming SRs from the SQ to
the CQ so that the SP goes to the active state for
processing requests according to the LPM
policy.
b. If (i) the timeout is about to expire and (ii) the

GPM predicts a group oN requests to come
within ¢ amount of time after the timeout
expires, the GPM will decide to prevent the SP
from entering the sleep state. More precisely, the
SFC generates &ake SR'and the SP is kept in
the idle states is a small extra-time to extend the
LPM pre-specified timeout value.

4. The SP is in the idle state and the timeout hasrexp

then the SP goes to the sleep state according L&Y

policy.

Details of the proposed RL-based GPM algorithm is
provided in algorithm 1 in Appendix.

the SP has

4.4 Multiple power-latency tradeoff curves with different
¢ values

As stated above, when (i) the SP is in the idleestad the
timeout is about to expire and (ii) if the GPM prd high
activity within & amount of time after the timeout expires,
‘Fake SRis generatedo prevent the SP from entering the
sleep state according to the proposed policy. Algtuauch
action makes the SP wait for requests till timebut This is
somewhat equivalent to establishing a new timeaalties
equal to the sum of and the original pre-specified timeout in
the LPM. For a fixeds value, the relative weight between
power and latency can be changed to get a poweamept
tradeoff curve. With different values, multiple power-latency
tradeoff curves are obtained. The best-suitedralue is
obtained by trial-and-error experiments to derive desirable
power-latency tradeoff curve.



45 Framework enhancement with learning the optimal ¢

Application scheduling effectiveness

The use of multiple values enables different power-latency To point out the potential effectiveness of perfimgn

tradeoff curves. However, instead of manually vagyi to get
the desired value, the GPM policy can be enhanecedake it
automatically learn the best value for a given tradeoff
between power and latency. The RL algorithm has tia®
action sets: (i) a list oN values that serves as the threshol
value of the number of requests in the SQ andséidond list
of ¢ values. In that case, the GPM learns the besstbte
number of requests to turn on the SP from thepste the
active state and also the besalue to prevent within it the SP
from entering the sleep state. Both N arléarned values are
obtained for a fixed power-latency tradeoff setting

A list of N values will still serve as the action sét In
addition, a list o values will serve as a second actionAet
The GPM learns to choose the optindat N andd = ¢
values among the action sefs and A. In Appendix,
Algorithm 2 provides the details of the modified Rlarning
algorithm with a learning.

5. Framework enhancement for multi-type application
This section presents improvements of the previdB

application type scheduling as part of the GPM b t
following motivation example. Let us consider atgyn in
which there are two types of applications Al and, A2
generating service requests at rates of one requegstime
dinit and two requests per time unit, respectivdljie SP
wakes up as soon as a request is generated apd slben all

requests have been serviced.

Al A2 Al A2

SR trace ’I‘ T T T T ’I‘
time
SP state /ﬂ\ ﬂ\ /m /H\ /ﬂ\ /ﬂ\‘
P
(a) without application scheduling "
L Al " A2 0L Al 1 A2 J‘Al
[ | | | |
SR trace TT T T T T
0 time
SP state MH\ % fﬂ-ﬂ\ M\ -
time

(b) with application scheduling
Fig. 5. Example of effectiveness of applicatiorelescheduling [14].

framework with handling heterogeneous types of user

applications. The GPM has to interact with the Gieteduler
to perform effective application-level schedulimgaiddition to
SFC controlling, thereby, enabling the LPM to ferth
component power optimization.

For this work, we are considering the CPU schedutinly
for non critical applications. Thus, all the applions are
running with the same priority. This assumptiopasticularly
valid for our target of interactive battery opethtgortable
devices for which an acceptable average systenonpeshce
is generally required for a reduced power consumnpti

We start this section by introducing the fairnessie CPU

Two execution sequences have been considered as sho
in Fig. 5. In the first sequence, there is no agpion
scheduling implemented as a part of the GPM (F&j. F£ach
application is alternatively executed for exactlyeounit of
time. In the second sequence, the GPM performsicapipin
scheduling as soon as a request of application #pes
generated, switching the system to application t¥@e We
switch back to A1 when the second request of agtitio type
A2 has been generated and serviced (Fig 5.b). ith dhse
service requests targeting one SP are “groupedthede
ensuring that the component sleeping time is maerhi

scheduler, and then we demonstrate how applicatid}$suming fixed wakeup and sleep transition times emergy
scheduling can further reduce the system performanéilssmanon values, both the power efficiency aedgrmance

Implementation details of the enhanced framewokk @so
presented.

5.1 CPU scheduling considering fairnessissue

For a multi-type application framework, a systerestuler
is needed for distributing the CPU among the déifér
software applications. The CPU system schedulengdmsm
from Operating System (OS) to OS. For our case,awe
targeting non critical applications and we are aigring a
CPU system scheduler that uses a fairness issdisttibute
execution times among various software applicatidie use
APPL = {1, 2,..., N} to denote the various application pool.
For thei™ (i LIAPPL) type of application, we USBPUr;ye to
denote the total CPU occupying time of such aniegfibn
type starting from timéy (i.e., the system starting time) until
the current time. The fairness constraint states that e&dfi
LJAPPL) application type cannot, on average, occupyemo
thanC; percentage of the total CPU execution time.

In Appendix, Algorithm 3 presents the used systeRUC
scheduling algorithm considering the fairness issm@ong
different types of applications.

are improved [14]. This motivation example cleaihpows that
a well designed GPM application scheduling can méze
the SP sleep time, and may help further reducirgy tttal
energy consumption.

52 The enhanced HPM considering
scheduling as part of the GPM

application

For a multi-type application framework running dre ttop
of the system scheduler, the GPM is enhanced with
application scheduling for some particular situagioto
improve the fairness and reduce the SP on/off &efc
thereby, enabling more component power optimizatiand
further reduction of the total power consumptionheT
application scheduling is based on the global systate, i.e.,
states of the SP and the SQ. The use of globatmsystate
instead of the device state makes scheduling desidhased
on a more precise view of the system and enables th
tonsideration of any correlation between applicaticand
devices. Basically, we implemented multiple run upge each
one associated with different application type. rgve
application run queue is fed into the appropriagevise
provider queue.



Let N denote the threshold number of waiting requests walue set to 0.1, 0.6 Tpe and 0.9T, respectively. For each
the SQ. The particular situation cases where thil @écides aforesaids value, we vary the relative weight between power
to force for an application scheduling are giverfciisws: and latency to obtain a new power-latency tradeAfflow
a) The SP is in the sleep state and the currentagijulh run  weight assigned for power, i.e., 0.01 denotes lighstrained

queue contains less thahrequests. In this case, and iflatency system. High power weights are related de-|

another application run queue contains fkewaiting constrained latency systems.

requests, the PM makes application switching, foese E>_<per|_mental details gnd results are presentedaiuie‘_l’Z.

the SP is waked up to process the requests. Afiplica We in th.I.S table report (i) the average SP powersumptl_q_n

scheduling is beneficial for maintaining a goodWat), (ii) the average latency per request (séspand (iii)

performance level in this case. t_he power savings percentage in comparison withfittesl-

b) The SP is in the idle state and the run queue @f ttlmeout policy under the same latency value. Omesege that

. - . . he basic HPM framework can achieve a wide rangeowefer-
running application contains no requests beforditheout latency tradeoffs. The shorter average latency aeehthe

expires. The PM may decide to switch to anoth&figher power consumption is obtained for all usedalues.

application if it predicts the arrival & requests in its run However, when a reduced power consumption is aityi@

queue in the near future. higher tradeoff weight is set for power, i.e., 088 as it is

In Appendix, Algorithm 4 provides the details ofeth presented in table 2, the lowest average poweresahre
enhanced RL learning algorithm with applicationelyp obtained for the differentvalues. In comparison with the pre-
scheduling. fixed LPM timeout policy for the same LPM latencglwe, the
proposed framework achieves up to 24.25% powemgavi
6. Experimental results For Iow-c_onstrained Iaten_cy systems, we can achigveo

) 72% maximum power savings.

In this section, we present the experimental resoitthe These results outperform largely reference [14gmgtonly
proposed HPM framework with real traces measureddlyy 25 % of maximum power savings has been obtained. In
the tcpdump utility in Linux. First, we conduct a set of addition, the proposed framework performs powesHay
experiments with a single SP, i.e., a Wireless Ldwea tradeoff based on a user-defined parameter, wheeéaxence
Network adapter card (WLAN). Then, we considerd¢hee of [14] sets out to meet given performance constraints
a system with two SPs: a hard disk drive (HDD) ant/LAN
card. TABLE 2

Simulation results of the basic HPM algorithm ardddine policies
on the WLAN card.

6.1 Experimental resultson asingle service provider

Weight HDD WLAN
The SP used in the first set of experiments is dAWlcard. '9

card
Table 1 lists its power consumption and switchiinget T, is
the time taken in transitioning to and from theeplestate =~ POWer 0.01 1.6122 1.2831
while E; is the energy consumed for waking up the deviige. Latency 0.99 0.8117 1.4923
refers to the break-even time. Power 0.83 13051 0.9863
1.2660 1.7891

TABLE 1 Latency 0.17
Power and delay characteristics of the consideredM/card [12].

Power 0.99 0.9863 0.7108
Psleep |:)busy Pidie Eq Ty The Latency 0.01 2.9260 3.2608
0 W 1.6 W 0.9WwW 0.9J 0.3s 0.7s
*The WLAN card is turned off. Power saving compared wit 12.42% 13.61%

the LPM (with the same

We set the timeout value for the LPM to 0,3 Under this latencies)
policy, the SP starts in the “idle” state. If na\8ee request Maximum Power saving 58.67% 63.17%
comes during the timeout period, the SP enterssitep”
state. The action set of the GPM corresponds tgtdssible

threshold values of waiting requests in the SQ iandefined represented in Figure 6 the power- latency tradeafires
by{l,2,3,4and5}. . using: (i) the pre-specified timeout policy and) ine basic

To assess the effectiveness of the basic HPM framew famework with two different values (0.1Tpe and 0.6Ty).
without considering neitheg-learning nor application-level Using these curves, one can see that similar coemqrower
scheduling, we started with the evaluation of itdicome in consumption are obtained at high latency valuesvéver,

reference to only using the fixed LPM timeout pglic ynger lower latencies and highvalues, the HPM framework
Simulations are based on a single type of apptinatiith &  frther minimizes the power consumption in refeeerto
service request trace given by 6-hour combined stefing, simple LPM timeout.

online chatting and server accessing trace. Weparfarious
simulations using differentand power-latency weight values.
More precisely, we evaluate three HPM policies wiked ¢

To better clarify the outcome of the HPM frameworle



—¢— LPM Timeout '
—&— RL HPM- epsilon=0.1 |:
—H&— RL HPM- epsilon=0.6 |;

---------------------------------------

Average Latency per Request
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0.7 08 0.9 1 11 1.2 1.3

Average Power Consumption

14

Fig.6. Power-latency tradeoffs curves of the fiteteout policy and the
basic framework on the WLAN card with= 0.1 Tye ande = 0.6 Tpe

To demonstrate the effectiveness of the enhancetleRed
HPM algorithm withe-learning compared with the basic HPM
algorithm, we perform a second experiment and pethe
experimental results in Figure 7. We use the sarh&Nvcard
and run the same application type. Fig. 7 showsptheer-

latency tradeoff curves achieved by (i) the enhdnce

framework withe-learning and (ii) the basic framework fer
equal to 0.1T,e ande equal to 0.6T, values. We can see that
the enhanced RL-based HPM algorithm witlearning can
achieve much lower power consumption than the bRBsic
based HPM algorithm particularly when the systers tight
latency constraints.

—#— RL HPM- epsilon=0.1
—— RL HPM Learning epsilon
—H&— RL HPM- epsilon=0.6

Average Latency per Request

type the combined trace of web surfing, online tthgtand
server accessing and for the second application-haud
duplicated web surfing trace. First, we run the ised HPM
algorithm with e-learning, using the basic fair scheduler to
distribute execution times among the two applicetitypes.
Then, we run the enhanced RL-based HPM algorithith wi
application-type scheduling. The experimental itsswdre
given in Figure 8. This figure illustrates the pavetency
trade-off curves compared with the performanceheffixed-
timeout LPM policy. It is clearly shown that thehemced RL-
based HPM algorithm with application-type schedylican
even further enhance performance in a multi-typgiegtion
environment. For example, the improved HPM framéwor
with application scheduling can further minimizee thower
consumption by up to 13.4% under the same latealev

Moreover, one can clearly observe that the propddei
framework achieves further power consumption radocin
comparison with reference [14] in addition to aliog/for the
power and latency trading- offs.

—— LPM Timeout
—=— RL HPM Scheduling
—H&— RL HPM- epsilon=0.6

Average Latency Per Request

i i i i i i i j
' 0.7 0.8 0.9 1 1.1
Average Power Consumption
Fig. 8. Power-latency tradeoffs curves of theagmled framework with
application type scheduling.

6.2 Experimental results on a system with two service
providers

In a second set of experiments, we considered al® EM
system with two service providers: a hard disk €r{{iDD)
and the previously used wireless WLAN card. The goand
delay characteristics of the HDD are given in TableNon-
stationary service request workloads are appliedlitahese
service providers.
TABLE 3
Power and delay characteristics of the hard diskedf.2].

F)sleep F)busy F)idle Etr Ttr

I T T S B

0.13W 215W 09W 7.0J 16s

| |
09 1 11 1.2 1.3
Average Power Consumption

Fig. 7. Effectiveness of the enhanced framewotk wlearning.

For a third set of simulations, we consider the saervice
provider and we run two types of applications witho
different service request traces. We use for st dipplication

We runtwo types of applications, with two different seevic
request traces. We use for the first applicatiopetythe
combined trace of web surfing, online chatting aswiver
accessing. This first application type generatesvice
requests for the WLAN service provider. For the HDD
second 4-hour duplicated server accessing workipaded.
We run the enhanced RL-based HPM with applicatjqet



scheduling. The obtained results are presentecabieT4. In enhance performance for a system with multi-SP raitti-
this table, the obtained average power consumptind type applications. Finally, in addition to achieyigood power

average latency are listed for each service provide and latency tradeoffs, the proposed HPM framewehieves,
for the same latencies values, considerable remtucti power
TABLE 4 consumption with comparison to the fixed timeousdsh LPM

Simulation results of the RL-HPM on the WLAN camtighe HDD.  policy.
Weight HDD WLAN

card 7. Conclusions
Power values 0.01 1.6122 1.2831 n thi | i dai RL-b d HPM
n this paper, a novel online adaptive RL-base

Lattaney Elles e QRS Alere framework is proposed for an energy managed compute
Power values 0.83 1.3051 0.9863 system with autonomously power-managed compon&hs.
Latency values 0.17 12660 1.7891 proposed framework decomposes the power management
Power values 099 09863 07108 task into two Iayers_,: cc_)mponent-level LPM and syste_vel

GPM. Timeout policy is assumed as the predefinditypo
Latency values 0.01  2.9260 3.2608 for the LPM. The GPM directly controls the serviegjuest
Power saving under LPM sarr 12.42% 13.61% traffic that reaches the power-managed componéntaigh
latencies an SFC. The GPM performs power management in a
Maximum Power saving 58.67% 63.17% continuous-time and event-driven manner using teaipo

difference learning on SMDP for model-free RL. Wease
to use the TD() algorithm for SMDP due to a joint

Results in Table 4 confirm that, similar to the eas a - - .
. ! ) S consideration of effectiveness, robustness and ergewnce
single SP, the Enhanced RL-HPM with appllcatloretypratel ! W !

Scheduling achieves considerable energy savingsnwhe Experiments show that the proposed HPM approach

applied for different SPs running multiple applioas. In considerabl ; . Lo
. . . . y enhances power savings while maimgira
;(I)_mfpanson tﬁ the f'X?O! t|'meout-based pohcy,t.tlwglbp;:g good performance level. In comparison with othdenence

13% ramework can m|n_|(;n|ze ﬁower QonSl:t:np lon yliﬁ 0systems, the proposed RL-based HPM approach pesform
o Per sefvice provider when using the same I@8NC, o ynder various workloads, can simultaneousinsider

gggtr;g'c:]et;Jslg'lgncﬁxsedstet:rr?seotﬁte;brizeqm Fr)r?llc():fle:ﬁ F.O'WSIO power and performance, and achieves wide and dewprp
! y Sy ’ ximu saying performance tradeoff curves.

attain 63% per service provider with reference lte fixed : C .

. . ; . i For a multi-type application framework, the GPM is

:'(;?;Zu;?;iegnéfhﬂcgﬂls'iﬁ 'I;if:;ﬁ Viﬁﬁ‘g'?ﬂgﬁgﬂ:mp'ﬂ:ﬁi enhanced to interact with the CPU scheduler to operf
Y 9y P oG effective application-level scheduling, thereby ldimay even

performance levels. more component power savings. We considered apiplica
scheduling only for non-critical applications ana wise a

2Ty . . .
; : = RL HPM for WLAN card ; scheduler that allocates execution times fairly agall
: : —&— RL HPM for HDD ; types of applications. In comparison to the ‘Fesséssue’
) DSOS SRS S ¢ LPM Timeout for WLAN card |: based scheduler, it is shown that the improved HPM
; —#— LPM Timeout for HDD framework with GPM scheduling can even further ermea

performance in a multi-type application environmenhe

improved HPM framework can further reduce up to4¥3of

power consumption without latency increase. Apartnf the

‘fairness Issue’ based CPU scheduler, the EnhaRtedPM

with application-type Scheduling can optimally ad&p any

: : : : : : system scheduler for non-critical applications.

L i fremoeee- qmmeees e roeeees proeeeees Foooeeee- 1 Experiments conducted on an EMC system with meltip
: : : : : : : service providers confirm that the proposed HPNniavork

performs as well as the EMC system with one service

provider under various workloads. The maximum acihiide

: . : energy saving can reach 63%r service provider. This will

05 i i i i considerably improve the overall system energyciefficy

08 ! 12 14 16 8 2 while maintaining acceptable performance levels.
Average Power Consumption

Fig. 9. Power-latency tradeoff curves of the leamnHPM for HDD and
WLAN card.

' ' ' ' ' '
' ' ' ' ' '
2 5 _________ FY [, T [ R |, e 1

Average Latency Per Request
(1%

The power-latency trade-off curves obtained forhbtiite
HDD and the WLAN card are shown in Fig 9. This figu
confirms the results previously obtained for a kngervice
provider. We can see from this figure that the Ewmcea RL-
HPM with application-type Scheduling can considgrab



Appendix

Abbreviations

Dynamic Power Management DPM
Reinforcement Learning RL
Hierarchical Power Management HPM
Energy Managed Component EMC
Local Power Manager LPM
Global Power Manager GPM
Service Provider SP
Service Queue SQ
Component Queue CQ
Service Flow Control SFC
Application Pool APPL
Operating System (O]

Algorithm 1: The RL-Based GPM Algorithm.

Input: the timeout valu&,,,; in the LPM, the action set
(a set ofN values), the parameter

At each decision epodh:

Choose an actiom, which corresponds to a specit
threshold number of waiting requests in the SQmf
the action sefl.

Let the LPM execute the timeout policy with timeg
valueT,,;.
If the SP is in the idle state:

If some request comes before the timeout pe
(with duration ofT,,,;) expires:

The LPM turns the SP active for process
requests until the SP becomes idle again. T
we have reached decision epagh; .

Else
The LPM keeps SP idle fdt,,; period of time.

If the GPM predicts the coming af requests
within e amount of time after timeout expires:

prevent the SP from entering the sleep sta
Else

The LPM turns the SP into the sleep stz
Then we reach decision epogh ;.

Elseif the SP is in the sleep state:

If SQ contains less thanrequests:

Block all incoming requests using the SFC
that the SP keeps in the sleep state until the
accumulates requests.

Then we reach decision epogly ;.
Else

Transfer the requests buffered in the SQ to
so that the SP will turn on to process requg
until it becomes idle again.

Then we reach decision epogh ;.
Evaluate the chosen actiom using the TDX)

‘ The SFC generates a fake request in order to

ic

ut

riod

ng
hen

te.

ite.

SO

SQ

CQ

pSts

technique.
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Algorithm 2: Modified RL based GPM with learnirg

Input: the timeout valu&,,; in the LPM, the action set
(a set oiN values), the action sef (a set o values.)

At each decision epoah:

threshold number of waiting requests in the SOmMf
the action sefl.

Choose an actio@, which corresponds to the ne
future time, from the action sdt

Let the LPM execute the timeout policy with timeg
valueT,,;.

If the SP is in the idle state:

If some request comes before the timeout pe
(with duration ofT,,;) expires:

The LPM turns the SP active for process
requests until the SP becomes idle again. T
we have reached decision epagh,.

Else

The LPM keeps SP idle fdt,; period of time.
If the GPM predicts the coming af requests
within @ amount of time after timeout expires:

The SFC generates a fake request in orde
prevent the SP from entering the sleep stal

Else

Then we reach decision epogh ;.

Elseif the SP is in the sleep state:

If SQ contains less thanrequests:

Block all incoming requests using the SFC
that the SP keeps in the sleep state until the
accumulates requests.

Then we reach decision epogh ;.
Else

Transfer the requests buffered in the SQ to
so that the SP will turn on to process requg
until it becomes idle again.

Then we reach decision epogh ;.

Evaluate the chosen actioi using the TDX)
technique.

Evaluate the chosen actiarusing the TDX) technique.

Choose an actiom, which corresponds to a specifi

‘ The LPM turns the SP into the sleep state.

o

ar

riod

ng
hen

2r to
e.

SO

SQ

CQ

sts
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Algorithm 3: CPU Scheduling using the Fairness | ssue

Input: the starting time,, the percentage constraifjt
The running application type isiie APPL.
The SP s inidle.
Update CPUripe () V i € APPL(i)
At time t:
|f CPUTime()) > Ci
t—top

A. Find application type i’ € APPL with the

CPUTime (i)

minimum value.
B. Perform application type switch from type i
type 1’
Else
Continue running the application type i.

End

to

Algorithm 4: The Enhanced RL-HPM with application-type

Scheduling.

Input: the timeout valud,,; in the LPM, the action set (a
set ofN values), the action sel (a set ofe values), list of
application type={i, i',...}

At each decision epoah:

Choose an actiom, which corresponds to a specif
threshold number of waiting requests in the SQnftbe
action se#d.

Choose an actiofi, which corresponds to the near futy
time, from the action set.

Let the LPM execute the timeout policy with timeg
valueT,,;.

If the SP is in the idle state:

If some request comes before the timeout period
duration ofT,,;) expires:

The LPM turns the SP active for process

have reached decision epagh; .

Else

The LPM keeps SP idle fat,,, period of time.

If the GPM predicts the coming af requests

within @ amount of time after timeout expires:
The SFC generates a fake request in orde
prevent the SP from entering the sleep state.

Else If it exists application type i’, such as RQ(

contains thea requests

Perform application type switch fromitoi'.

The LPM turns the SP into the active state

processing requests.

Else

Then we reach decision epoghy ;.
Elseif the SP is in the sleep state:
If SQ contains less thanrequests:
If it exists application type i, such as RQ(
contains thea requests
Perform application type switch fromito i’
The LPM turns the SP into the active state
processing requests.
Else
Block all incoming requests using the SFC so
the SP keeps in the sleep state until the R
accumulates requests.
Then we reach decision epogh ;.
Else
Transfer the requests buffered in the SQ to C(

becomes idle again.

Then we reach decision epagh ;.

Evaluate the chosen actiaghusing the TDX) technique.
Evaluate the chosen actianusing the TDX) technique.

‘The LPM turns the SP into the sleep state.

that the SP will turn on to process requests unti

ic

=

e

ut

with

ng

requests until the SP becomes idle again. Then we

for

for

hat
(1)

SO
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