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1. Introduction  
Power consumption in battery operated portable devices is 

nowadays a major concern. Such systems generally contain 
many I/O device components, ranging from digital and analog 
to electro-mechanical and electro-chemical. For these systems, 
the major energy dissipation is coming from these I/O devices. 
Dynamic power management (DPM) refers to a set of 
strategies that achieves efficient power consumption by the 
selective shut-off or slow-down of I/O components that are 
idle or underutilized [1]. Such technique has proven to be a 
particularly effective way of reducing power dissipation at the 
system level [2]. An effective DPM policy should minimize 
power consumption while maintaining performance 
degradation within an acceptable level. The DPM methods 
proposed in the literature can be broadly classified into three 
categories: heuristic, stochastic, and learning based methods. 

Heuristic methods attempt to predict the length of the next 
idle time based on the computation history, and then shut the 
device down if the predicted idle period length justifies the 
cost. More precisely, a decision to sleep will be made if the 
prediction indicates that the idle period is longer than the 
break-even time Tbe. Among these methods, Srivastava et al. 
[3] use a regression function to predict the idle period length, 
while Hwang et al. [4] propose an exponential-weighting 
average function for predicting the idle period length. Such 
techniques are simple and easy to implement, and have been 
adopted in many commercial products. However, they perform 
well only when the requests are highly correlated and do not 
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take performance constraints into account, and thus, can 
hardly achieve a desirable trade-off between performance and 
energy dissipation. The stochastic approaches can take into 
account both power and performance and are able to derive 
provably optimal DPM policies, by modeling the request 
arrival times and device service times as stationary stochastic 
processes such as Markov Decision Processes (MDP) [5], [6], 
[7]. The essential shortcoming of these methods is the need of 
exact knowledge of the MDP state transition probability 
function. However, the workload of a complex system is 
usually changing with time and hard for accurate prediction 
[8]. The workload variation has a significant impact on the 
system performance and power consumption. Thus, a robust 
power management technique must consider the uncertainty 
and variability that emanate from the environment, hardware 
and application characteristics [9] and must be able to interact 
with the environment to obtain information which can be 
processed to produce optimal policies.  

In this sense, several previous works use machine learning 
for adaptive policy optimization. Compared to heuristic 
policies, machine learning-based methods such as 
reinforcement learning (RL) can simultaneously consider 
power and performance, and perform well under various 
workload conditions when the system model is not known a 
priori . In [10], an online policy selection algorithm is 
proposed, which generates offline a set of DPM policies to 
choose from. Tan et al. in [11] propose to use an enhanced Q-
learning algorithm for system-level DPM. The Q-learning 
based DPM learns a policy online by trying to learn the best-
suited action for each system state based on the reward or 
penalty received. However, this work is based on a discrete-
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time model of the stochastic process, and thus has large 
decision making overhead. Wang et al. in [12] extend this 
work to allow the power manager working in a continuous-
time and event-driven manner with faster convergence rate, by 
exploiting the TD(λ) learning framework for semi-MDP 
(SMDP) [13].  

All of the above-mentioned DPM researches have focused 
on developing local component-level policies. However, a 
number of built-in power-management techniques have been 
already incorporated into various standards and protocols. 
These techniques cannot be modified because they ensure the 
correct functionality of the device running the corresponding 
protocol. In this sense, we consider such a device as an 
autonomously power-managed component. Even beyond 
protocol considerations, vendors may already have their 
appropriate power management methods specifically designed 
for their products and directly integrated into device drivers. 

 Based on the above considerations, we define the problem 
of hierarchical power management (HPM) for an energy 
managed computer (EMC) system with autonomously power-
managed components. A few research results have been 
reported to resolve the HPM problem of a computer with self 
power-managed components. Reference [14] uses a similar 
system setup as this paper and derives offline the optimal 
policies using Continuous-Time Markov Decision process 
model of the system. In this approach, the request inter-arrival 
times and system service times are modelled as stationary 
processes that satisfy exponential probability distributions, 
which is not always realistic. Reference [15] proposes a 
hierarchical adaptive DPM, where the term “hierarchical” 
refers to the manner in which the authors formulate the DPM 
policy optimization as a problem of seeking an optimal rule 
that switches policies among a set of pre-computed ones. 

 In this paper, we develop a novel online adaptive approach 
for HPM of a computer with autonomously power-managed 
components. The proposed framework extends the basic HPM 
policy presented in [16] to multiple I/O devices and 
heterogeneous applications. The proposed approach consists 
of two layers: local component-level power manager (LPM) 
and global system–level power manager (GPM). The LPM 
policy is pre-specified and fixed whereas, the GPM uses 
temporal difference learning on SMDP as the model-free 
reinforcement learning technique to perform power 
management in a continuous-time and event-driven manner. 
Moreover, the GPM interacts with the CPU scheduler to 
perform effective application-level scheduling, thereby 
enabling even more power savings. This work also extends the 
work of [14] by considering non-stationary workloads. The 
proposed RL approach does not assume the request inter-
arrival times and system service times are modelled as 
stationary processes with exponential probability distributions. 
Thus, the power manager learns the optimal policy under non-
stationary workloads associated with multiple application 
types with different service request generation rates. 
Moreover, the proposed approach simultaneously learns the 
optimal policy for non-stationary workloads and uses that 
policy to control instead of only evaluating one predefined 
policy. In addition, the proposed framework performs precise 
power-latency tradeoff of each application type based on a 
user-defined parameter, whereas reference [14] sets out to 

meet given performance constraints. The proposed framework 
is model-free, performs learning and power management in a 
continuous-time and event-driven manner, has fast 
convergence rate and less reliance on the Markovian property. 

The remainder of this paper is organized as follows. We 
provide an overview of reinforcement learning background in 
Section 2. The proposed hierarchical DPM framework 
architecture is presented in Section 3, and its implementation 
details are given in Section 4. Framework improvements 
targeting multiple I/O devices and multiple heterogeneous 
applications are explained in Section 5. The experimental 
results and analysis are presented in Section 6. We conclude 
our findings in Section 7. 

2. Theoretical background 

In this section, we provide a brief introduction of the 
general RL framework and the RL algorithm proposed for the 
GPM, namely, the TD (λ) learning algorithm for SMDP. One 
may refer to [13] for more details. 

Reinforcement Learning is a machine intelligence 
approach based on the learning through experience 
accumulation [17]. The core of the RL technique is the 
interaction between agent and environment in terms of states, 
actions, and rewards [18]. The general RL model -as 
illustrated in Fig.1- consists of an agent, a finite state space �, a 
set of available actions �, and a reward function �: � × � →�. The agent is the learner and decision maker. The 
environment is defined as any sensory information the agent 
receives about. Actions refer to the decision the agent will be 
called to make [19]. State represents the situation the agent 
can find itself in. More precisely, state is the available 
information about the agent’s environment that helps in 
decision making.  

 

 
 

We define a policy � = 
��, ��|� ∈ �, � ∈ �� as the set of 
all possible state-action pairs in the RL framework. At each 
step of interaction with the environment, the agent receives a 
representation of the environment's state �� ∈ �. It selects an 
action  ��  ∈ ����� where ����� denotes the set of possible 
actions available at state ��. As a consequence of the taken 
action, the agent moves to a new state  ���� and receives from 
the environment a reward ���� (a real or natural number) or a 
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Fig. 1.   Agent-environment interaction model. 
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punishment (a negative reward) which indicates the value of 
the state transition. The cumulative rewards affect the agent 
behavior and guide the action policy. The agent’s goal is to 
optimize its behavior based on the received rewards. More 
precisely, the agent keeps a value function ����, ��, for each 
state-action pair ��, �� initially chosen by the designer and 
later, it is updated each time an action is taken and a reward is 
received, based on the following equation. ∀ ��, �� ∈ � × �: 
  ����, ��� =   ����, ��� + � × 

       � ����  +    �        �� !   ������, ��  −    ����, ���#                        (1) 
 
In the above expression, � ∈ �0,1� denotes the learning 

rate; ���� is the reward received at time & and � ∈ �0,1�   is the 
discount factor. The agent chooses the action with the 
maximum estimated value ���, �� for various actions � ∈ � 
next time the state � is visited. 

The value function represents the expected long-term 
reward when starting from state �, choosing action � 
(according to the policy �), and following � thereafter. Thus, 
the agent continuously adjusts its policy so as to maximize the 
total amount of reward received over the long run. For a 
realistic DPM problem, the power manager has no predefined 
policy or knowledge about state transition characteristics that 
are essential for any stochastic DPM approach. Therefore, the 
power manager has to simultaneously learn the optimal policy, 
and use it to make decisions.  In this case, traditional value 
methods cannot be applied. Instead, TD learning methods [20] 
for SMDP2 may be used. Such a method generates an estimate ����, �� for each state-action pair ��, �� at epoch &�, which is 
the estimate of the actual value ����, �� following policy �. 
Suppose that state �� is visited at epoch &�, then at that epoch 
the agent chooses an action either with the maximum 
estimated value �����, �� for various actions � ∈ �, or by 
using other semi-greedy policies [19]. Moreover, the TD 
learning rule updates the estimate ����� , ��� at the next 
epoch &���, based on the chosen action �� and the next 
state ����. Various TD learning algorithm implementations are 
mainly different from one another by their evaluating 
methods. We choose to use the algorithm for SMDP [20] due 
to a joint consideration of effectiveness, robustness and 
convergence rate. More specifically, the value update rule for 
a state-action pair at epoch &��� in the TD(λ) algorithm for 
SMDP is given as follows: 

 ∀ ��, �� ∈ � × �:   ��������, �� = ������, �� + � ×
'�����, �� × ( �)*+,-.

/ ����, ��� 
+ MAX!3 ')/4. ���������, �′� − �������, ���6  (2)  

 

In the above expression, 7� = &��� − &� is the time the 
system remains in state �� ; � ∈ �0,1� denotes the learning 

rate; 8 is the discount factor; 
�)*+,-.

/ ����, ��� is the sample 

discounted reward received in 7� time units; ���������, �′� is 

                                                           
2 Note that the temporal difference learning for SMDP is named because it 

can be proved to converge to the optimal policy if the agent-environment 
interaction system evolves as a stationary SMDP. In fact such learning 
algorithm is robust and has less reliance on the Markovian assumption [19]. 

the estimated value of the state-action pair �����, �′� in which ���� is the actually occurring next state. Moreover, in Eqn. (2) '�����, �� denotes the eligibility of each state-action pair in 
order to facilitate the implementation of the TD(9) algorithm. 
Such eligibility reflects the degree to which the state-action 
pair ��, �� has been chosen in the recent past and it is updated 
as follows: 
 '�����, �� = 9 ')/4.+:'��)����, �� + ;<��, ��, ���, ���=         (3) 

where  ;<��, ��, ��>, �>�= denotes the delta kronecker function. 

3. Hierarchical DPM framework 
This paper focuses on reducing energy consumption of a 

uni-processor computer system with built-in component-level 
local power managers. Basically, we propose an adaptive 
approach that regulates the requests service flow of the 
autonomously power-managed components, thereby 
effectively reducing component energy consumption. 

Timeout3 policies are assumed to be the local power 
management policies for the components given their wide 
usage. Under these policies, a Local Power Manager (LPM) 
directly controls the state transitions of the device. Meanwhile, 
the system-level Global Power Manager (GPM) helps the 
LPM improve the power efficiency by performing service 
flow regulation and application scheduling.  
3.1 Service provider model 

One of the key components of the DPM framework is the 
device providing services to the workload called service 
provider (SP).  

 
Fig. 2. Service provider model. 

 
In this work, we consider a SP as shown in Fig. 2. It has 

three main states explained below: 
• Active state: the SP is fully functional and it is 

processing some requests. 
•  Idle state: the system is still operational, but there 

are no service requests to deal with. The transition 
between the active and idle states is autonomous, 
i.e., as soon as the system completes servicing all 
of the waiting requests, it enters the idle state. 
Similarly, the system goes from idle to active as 
soon as a service request arrives.  

• Sleep state: The SP moves to the Sleep state-
where it has reduced power consumption- only 
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sleep state. 
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from the idle state. The device turns into active as 
soon as a service request arrives.

3.2 The global system architecture 
The architecture of the proposed hierarchical DPM 

framework is presented in Fig. 3. The framework contains
service providers, e.g. two I/O devices.  

Fig.  3.  Block diagram of a hierarchical DPM structure

The service requesters (SR1, SR2) generat
processed by two types of SP, respectively.
buffered in the service queues (SQ1, SQ2) before 
processed.  

The proposed architecture decomposes the power 
management task into two layers: local 
power manager (LPM) and global system
manager (GPM). Each service provider is controlled by a
LPM whose timeout policy is pre-specified and cannot be 
changed. The LPM is monitoring the number of waiting 
service requests in the component queue (CQ) and 
consequently adjusts the state of the service provider.
3.3 The global power manager 

At the system-level, the GPM cannot overwrite 
policy or directly control the state transiti
provider. Thus, a Service Flow Control
incorporated to control the service request traffic that reaches 
the SP. The GPM monitors the SQ and 
guide accordingly SFC actions and interact with the CPU 
scheduler to perform effective application
further reducing the power consumption. 

The main functions of the SFC are detailed as follows:
Fake SR generation: In the case of expecting high activity
the near future, the SFC generates a fake service request
order to wake up the SP and prevent it from entering a deep 
sleep state.  

SR blocking: To reduce the wake-up frequency
extend its sleep time, the SFC blocks all incoming reques
from entering its component queue. Thus, 
remain in the SQ.  

SR transfer:  To wake up the SP, the SFC continuously moves
the stored requests in the SQ to its component queue.

3.4 Application model 
Different applications may be executed o

managed computer system. These applications can however be 

                                                           
4 Fake Service Request is handled in the same way as a 

regular SR by the SP, but requires no service 

The device turns into active as 
soon as a service request arrives. 

The architecture of the proposed hierarchical DPM 
The framework contains two 

 
.  Block diagram of a hierarchical DPM structure [14]. 

s (SR1, SR2) generate requests to be 
processed by two types of SP, respectively. The requests are 

service queues (SQ1, SQ2) before being 

The proposed architecture decomposes the power 
local component-level 

system-level power 
. Each service provider is controlled by a 

specified and cannot be 
changed. The LPM is monitoring the number of waiting 
service requests in the component queue (CQ) and 

adjusts the state of the service provider.  
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policy or directly control the state transition of a service 

Thus, a Service Flow Controller (SFC) is 
incorporated to control the service request traffic that reaches 

monitors the SQ and employs TD(λ)  to 
interact with the CPU 

scheduler to perform effective application-level scheduling for 
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In the case of expecting high activity in 

tes a fake service request4 in 
order to wake up the SP and prevent it from entering a deep 

frequency of the SP and 
e, the SFC blocks all incoming requests 

 the blocked requests 

he SFC continuously moves 
its component queue. 

Different applications may be executed on the energy-
managed computer system. These applications can however be 

is handled in the same way as a 
regular SR by the SP, but requires no service from the SP. 

classified into different types based on their device usage 
correlations and workload characteristics
generation rates and the target SPs. A pre
technique is used to obtain statistical information about each 
application program. Applications with the same device 
dependency list and similar request generation rate are 
grouped into one application type. Notice that applications 
which are hard to characterize separately may be grouped into 
a special class where the request generation rate of that class is 
equal to the average rate for all
this type.  

For example, as shown in 

generates SR1 with a rate of 
in state ��!. Similarly, in state 

these two SRs become 9�?��� and
application type 1 transits to state @�,!?, which also implies that the average time 

type 1 to stay in state ��! is 
A:

Fig.  4.  Model of application type

In the proposed framework, 
instances of service requests are considered
stationary, none of the applications is considered to be critical, 
and therefore, all the heterogeneous applications have the 
same priority. Moreover, we assume that a
handle one request at a time, and a request can be e
only one device.  

 

4. Reinforcement learning for 

In this section, the system architecture is limited to a single 
application type executed on 
The SR workload characteristics
is controlled by a pre-specified 
the optimal policy under non
commands accordingly to the SFC
block or forward the service 
queue or to generate a fake request to keep the SP awake
4.1 Policy learning 

The goal of the GPM is to reduce power consumption 
while maintaining an acceptable performance level. 
study, we assume the SP pow
state and we consider the average delay as the performance 
metric. The average number of waiting requests in the SQ 
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used as an estimation of the average delay. This is reasonable 
because as outlined in reference [6], the average number of 
requests in the SQ is proportional to the average latency for 
each request defined as the average waiting time for each 
request to be processed. The average waiting time represents 
the time between the moment the request is generated and the 
moment the SP finishes processing it i.e., it includes queuing 
time plus execution time.  

In this work, the cost of a taken action in the RL algorithm 
is measured by both the instantaneous power consumption and 
the caused number of requests buffered in the SQ. The 
instantaneous power consumption is estimated by the SP 
model based on its power state observation. In this way, the 
value function Q(s,a) for each state-action pair (s,a) is a linear 
combination of the expected total discounted energy 
consumption and latency. Since the total execution time and 
number of requests are fixed, the value function is equivalent 
to a linear combination of the average discounted power 
consumption and average latency per request. The relative 
weight between power and latency can be changed to get a 
power-latency tradeoff curve. More precisely, upon selection 
of action � from a state �, the cost function MN�&��, �; P� is 
defined as follows: MN�&��, �; P� = P × Q'R�S ��, �� +                                               �1 − P� × TU� ��, ��                (12) 
where TU� ��, �� is the consumed power amount; Q'R�S��, ��denotes the caused delay and P is a user defined 
parameter enabling for setting a power-delay tradeoff. 
4.2 The local power management policy (LPM) 

Timeout policy is assumed to be the pre-specified LPM 
policy due to its wide usage in many built-in power-
management policies and has been already incorporated into 
various standards and protocols. Using such policy, the SP 
moves into the sleep state if it remains in its idle state for more 
than a specified timeout period. The timeout determines the 
tradeoff between the service latency and power dissipation of 
the SP. An undesirable degenerate situation is where the SP is 
put to sleep too fast, only to be awakened immediately. Thus, 
the system would suffer from extra energy consumption and 
latency of waking up the SP and bringing it to the active state. 
On the other hand, if the timeout is set to be too long and 
meanwhile no service requests arrives, the SP has 
unnecessarily wasted energy by waiting in the idle state. 
4.3 The global power management policy (GPM) 

The GPM continuously observes the following parameters 
(i) the running application type, (ii) the SP power state: busy, 
idle, sleep, etc, (iii) the SQ state: number of waiting requests, 
and (iiii) the current application-specific service request 
generation rate: high, low, medium, etc. Based on these 
observable parameters the GPM makes decision and issues 
commands to the SFC in the following four cases:  
1. The SP is in the sleep state and the number of requests in 

the SQ is less than a given threshold value.  
2. The SP is in the sleep state and the number of requests in 

the SQ is equal to the given threshold value.  
3. The SP is in the idle state and the timeout has not expired 

yet.  

4. The SP is in the idle state and the timeout has expired. 
   Let N denote the threshold value of the number of requests 
in the SQ. A list of N values will serve as the action set � for 
the GPM in controlling the SFC. The GPM learns to choose 
the optimal action � ∈ �, which corresponds to the optimal N 
value, by using an RL technique.   
The proposed RL framework operates as follows. At each 
decision epoch, the GPM finds itself in one of the four 
aforesaid conditions; it will issue commands to the SFC to 
implement the decision according to the following four cases:  

1. The SP is in the sleep state and SQ contains less than N 
requests. In this case, the GPM decides to keep the SP 
in the sleep state and issues ‘SR blocking’ commands to 
SFC to block all the incoming requests from entering 
the component queue CQ. 

2. The SP is in the sleep state and SQ contains N requests. 
In this case, the GPM decides to turn on the SP for 
processing requests. It will issue ‘SR transfer’ 
command to SFC to transfer SRs from the SQ to the 
CQ, and the SP will wake up to service the service 
requests. 

3. The SP is in the idle state and the timeout has not yet 
expired: 

a. If some request comes during that period of time. 
The GPM will issue ‘SR transfer’ command to 
SFC to transfer the incoming SRs from the SQ to 
the CQ so that the SP goes to the active state for 
processing requests according to the LPM 
policy. 

b. If (i) the timeout is about to expire and (ii) the 
GPM predicts a group of N requests to come 
within ε amount of time after the timeout 
expires, the GPM will decide to prevent the SP 
from entering the sleep state. More precisely, the 
SFC generates a ‘Fake SR’ and the SP is kept in 
the idle state. ε is a small extra-time to extend the 
LPM pre-specified timeout value. 

4. The SP is in the idle state and the timeout has expired, 
then the SP goes to the sleep state according to its LPM 
policy. 
 

Details of the proposed RL-based GPM algorithm is 
provided in algorithm 1 in Appendix. 

 
4.4 Multiple power-latency tradeoff curves with different  

ε values 
As stated above, when (i) the SP is in the idle state and the 

timeout is about to expire and (ii) if the GPM predicts high 
activity within ε amount of time after the timeout expires, 
‘Fake SR’  is generated to prevent the SP from entering the 
sleep state according to the proposed policy. Actually, such 
action makes the SP wait for requests till timeout + ε. This is 
somewhat equivalent to establishing a new timeout value 
equal to the sum of ε and the original pre-specified timeout in 
the LPM. For a fixed ε value, the relative weight between 
power and latency can be changed to get a power-latency 
tradeoff curve. With different ε values, multiple power-latency 
tradeoff curves are obtained. The best-suited ε value is 
obtained by trial-and-error experiments to derive the desirable 
power-latency tradeoff curve.  
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4.5 Framework enhancement with learning the optimal  ε 
The use of multiple ε values enables different power-latency 

tradeoff curves. However, instead of manually varying ε to get 
the desired value, the GPM policy can be enhanced to make it 
automatically learn the best ε value for a given tradeoff 
between power and latency. The RL algorithm has then two 
action sets: (i) a list of N values that serves as the threshold 
value of the number of requests in the SQ and (ii) second list 
of ε values. In that case, the GPM learns the best threshold 
number of requests to   turn on the SP from the sleep to the 
active state and also the best ε value to prevent within it the SP 
from entering the sleep state. Both N and ε learned values are 
obtained for a fixed power-latency tradeoff setting.  

A list of N values will still serve as the action set �V. In 
addition, a list of ε values will serve as a second action set �W. 
The GPM learns to choose the optimal �X = N and � W =  ε 
values among the action sets �V and �W.  In Appendix,  
Algorithm 2 provides the details of the modified RL learning 
algorithm with a learning ε. 

 

5. Framework enhancement for multi-type application 

This section presents improvements of the previous HPM 
framework with handling heterogeneous types of user 
applications. The GPM has to interact with the CPU scheduler 
to perform effective application-level scheduling in addition to 
SFC controlling, thereby, enabling the LPM to further 
component power optimization.  

For this work, we are considering the CPU scheduling only 
for non critical applications. Thus, all the applications are 
running with the same priority. This assumption is particularly 
valid for our target of interactive battery operated portable 
devices for which an acceptable average system performance 
is generally required for a reduced power consumption 

We start this section by introducing the fairness issue CPU 
scheduler, and then we demonstrate how application 
scheduling can further reduce the system performance. 
Implementation details of the enhanced framework are also 
presented. 

 
5.1   CPU scheduling considering fairness issue 

 
For a multi-type application framework, a system scheduler 

is needed for distributing the CPU among the different 
software applications. The CPU system scheduler changes 
from Operating System (OS) to OS. For our case, we are 
targeting non critical applications and we are considering a 
CPU system scheduler that uses a fairness issue to distribute 
execution times among various software applications. We use 
APPL = {1, 2,…, N} to denote the various application pool. 
For the i th (i ∈APPL) type of application, we use CPUTime to 
denote the total CPU occupying time of such an application 
type starting from time t0 (i.e., the system starting time) until 
the current time t. The fairness constraint states that each i th (i 
∈APPL)   application type cannot, on average, occupy more 
than Ci percentage of the total CPU execution time. 

In Appendix, Algorithm 3 presents the used system CPU 
scheduling algorithm considering the fairness issue among 
different types of applications. 

 Application scheduling effectiveness   
To point out the potential effectiveness of performing 

application type scheduling as part of the GPM by the 
following motivation example.  Let us consider a system in 
which there are two types of applications A1 and A2, 
generating service requests at rates of one request per time 
unit and two requests per time unit, respectively. The SP 
wakes up as soon as a request is generated and sleeps when all 
requests have been serviced.  

 
Fig. 5. Example of effectiveness of application level scheduling [14]. 
 

Two execution sequences have been considered as shown 
in Fig. 5. In the first sequence, there is no application 
scheduling implemented as a part of the GPM (Fig 5.a). Each 
application is alternatively executed for exactly one unit of 
time. In the second sequence, the GPM performs application 
scheduling as soon as a request of application type A1 is 
generated, switching the system to application type A2. We 
switch back to A1 when the second request of application type 
A2 has been generated and serviced (Fig 5.b). In this case 
service requests targeting one SP are “grouped together” 
ensuring that the component sleeping time is maximized. 
Assuming fixed wakeup and sleep transition times and energy 
dissipation values, both the power efficiency and performance 
are improved [14]. This motivation example clearly shows that 
a well designed GPM application scheduling can maximize 
the SP sleep time, and may help further reducing the total 
energy consumption. 

 
5.2 The enhanced HPM considering application 

scheduling as part of the GPM 
 

For a multi-type application framework running on the top 
of the system scheduler, the GPM  is enhanced with 
application scheduling for some particular situations to 
improve the fairness and reduce the SP on/off switches, 
thereby, enabling more component power optimizations and 
further reduction of the total power consumption. The 
application scheduling is based on the global system state, i.e., 
states of the SP and the SQ. The use of global system state 
instead of the device state makes scheduling decisions based 
on a more precise view of the system and enables the 
consideration of any correlation between applications and 
devices. Basically, we implemented multiple run queues each 
one associated with different application type. Every 
application run queue is fed into the appropriate service 
provider queue. 
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 Let N denote the threshold number of waiting requests in 
the SQ. The particular situation cases where the GPM decides 
to force for an application scheduling are given as follows:  
a)  The SP is in the sleep state and the current application run 

queue contains less than N requests. In this case, and if 
another application run queue contains the N waiting 
requests, the PM makes application switching, therefore 
the SP is waked up to process the requests. Application 
scheduling is beneficial for maintaining a good 
performance level in this case. 
b) The SP is in the idle state and the run queue of the 
running application contains no requests before the timeout 
expires. The PM may decide to switch to another 
application if it predicts the arrival of N requests in its run 
queue in the near future. 

In Appendix, Algorithm 4 provides the details of the 
enhanced RL learning algorithm with application-type 
scheduling. 

 

6. Experimental results 

In this section, we present the experimental results of the 
proposed HPM framework with real traces measured by using 
the tcpdump utility in Linux. First, we conduct a set of 
experiments with a single SP, i.e., a Wireless Local Area 
Network adapter card (WLAN). Then, we consider the case of 
a system with two SPs: a hard disk drive (HDD) and a WLAN 
card. 

 
6.1  Experimental results on a single service provider 

The SP used in the first set of experiments is a WLAN card. 
Table 1 lists its power consumption and switching time. Ttr is 
the time taken in transitioning to and from the sleep state 
while Etr is the energy consumed for waking up the device. Tbe 
refers to the break-even time.  

 
TABLE 1 
Power and delay characteristics of the considered WLAN card [12]. 
  
Psleep   Pbusy Pidle Etr Ttr Tbe 

0 W* 1.6 W 0.9 W 0.9 J 0.3 s 0.7 s 

*The WLAN card is turned off.     
 
We set the timeout value for the LPM to 0.3 Tbe. Under this 

policy, the SP starts in the “idle” state. If no service request 
comes during the timeout period, the SP enters its “sleep” 
state. The action set of the GPM corresponds to the possible 
threshold values of waiting requests in the SQ and is defined 
by {1, 2, 3, 4 and 5}. 

To assess the effectiveness of the basic HPM framework 
without considering neither ε-learning nor application-level 
scheduling, we started with the evaluation of its outcome in 
reference to only using the fixed LPM timeout policy. 
Simulations are based on a single type of application with a 
service request trace given by 6-hour combined web surfing, 
online chatting and server accessing trace. We perform various 
simulations using different ε and power-latency weight values. 
More precisely, we evaluate three HPM policies with fixed ε 

value set to 0.1 Tbe, 0.6 Tbe and 0.9 Tbe respectively. For each 
aforesaid ε value, we vary the relative weight between power 
and latency to obtain a new power-latency tradeoff. A low 
weight assigned for power, i.e., 0.01 denotes high-constrained 
latency system. High power weights are related to low-
constrained latency systems.  

Experimental details and results are presented in Table 2. 
We in this table report (i) the average SP power consumption 
(Watt), (ii) the average latency per request (seconds) and (iii) 
the power savings percentage in comparison with the fixed-
timeout policy under the same latency value. One can see that 
the basic HPM framework can achieve a wide range of power-
latency tradeoffs. The shorter average latency we have, the 
higher power consumption is obtained for all used  ε values. 
However, when a reduced power consumption is a priority, a 
higher tradeoff weight is set for power, i.e., 0.99 and as it is 
presented in table 2, the lowest average power values are 
obtained for the different ε values. In comparison with the pre-
fixed LPM timeout policy for the same LPM latency value, the 
proposed framework achieves up to 24.25% power savings 
For low-constrained latency systems, we can achieve up to 
72% maximum power savings.   

 These results outperform largely reference [14] where only 
25 % of maximum power savings has been obtained. In 
addition, the proposed framework performs power-latency 
tradeoff based on a user-defined parameter, whereas reference 
[14] sets out to meet given performance constraints.  

 
TABLE 2 
Simulation results of the basic HPM algorithm and baseline policies 
on the WLAN card. 

 Weight HDD  WLAN 
card 

Power 

Latency 

0.01 

0.99 

1.6122 

0.8117 

1.2831 

1.4923 

Power 

Latency 

0.83 

0.17 

1.3051 
1.2660 

0.9863 
1.7891 
 

Power 

Latency 

0.99 

0.01 

0.9863  

2.9260 
 

0.7108 

3.2608 

Power saving compared with 
the LPM (with the same 
latencies) 

 12.42% 13.61% 

Maximum Power saving  58.67% 63.17% 

 
To better clarify the outcome of the HPM framework, we 

represented in Figure 6 the power- latency tradeoff curves 
using: (i) the pre-specified timeout policy and (ii) the basic 
framework with two different ε values  (0.1 Tbe and 0.6 Tbe). 
Using these curves, one can see that similar component power 
consumption are obtained at high latency values. However, 
under lower latencies and high ε values, the HPM framework 
further minimizes the power consumption in reference to 
simple LPM timeout. 
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Fig.6.  Power-latency tradeoffs curves of the fixed timeout policy and the 
basic framework on the WLAN card with ε = 0.1 Tbe and ε = 0.6 Tbe 

 
To demonstrate the effectiveness of the enhanced RL-based 

HPM algorithm with ε-learning compared with the basic HPM 
algorithm, we perform a second experiment and provide the 
experimental results in Figure 7. We use the same WLAN card 
and run the same application type. Fig. 7 shows the power-
latency tradeoff curves achieved by (i) the enhanced 
framework with ε-learning and (ii) the basic framework for ε 
equal to 0.1 Tbe and ε equal to 0.6 Tbe values. We can see that 
the enhanced RL-based HPM algorithm with ε-learning can 
achieve much lower power consumption than the basic RL-
based HPM algorithm particularly when the system has tight 
latency constraints. 
 
 

 
 

 
Fig. 7.  Effectiveness of the enhanced framework with ε-learning. 

 
For a third set of simulations, we consider the same service 

provider and we run two types of applications with two 
different service request traces. We use for the first application 

type the combined trace of web surfing, online chatting and 
server accessing and for the second application a 4-hour 
duplicated web surfing trace. First, we run the RL-based HPM 
algorithm with ε-learning, using the basic fair scheduler to 
distribute execution times among the two applications types. 
Then, we run the enhanced RL-based HPM algorithm with 
application-type scheduling. The experimental results are 
given in Figure 8. This figure illustrates the power-latency 
trade-off curves compared with the performance of the fixed-
timeout LPM policy. It is clearly shown that the enhanced RL-
based HPM algorithm with application-type scheduling can 
even further enhance performance in a multi-type application 
environment. For example, the improved HPM framework 
with application scheduling can further minimize the power 
consumption by up to 13.4% under the same latency value. 

Moreover, one can clearly observe that the proposed HPM 
framework achieves further power consumption reduction in 
comparison with reference [14] in addition to allowing for the 
power and latency trading- offs. 

 
Fig. 8.   Power-latency tradeoffs curves of the enhanced framework with 

application type scheduling. 
 

6.2 Experimental results on a system with two service 
providers  

In a second set of experiments, we considered an EMC 
system with two service providers: a hard disk drive (HDD) 
and the previously used wireless WLAN card. The power and 
delay characteristics of the HDD are given in Table 3. Non-
stationary service request workloads are applied to all these 
service providers. 
TABLE 3 
Power and delay characteristics of the hard disk drive [12]. 
 

Psleep   Pbusy Pidle Etr Ttr 

0.13 W 2.15 W 0.9 W 7.0 J 1.6 s 

 
We run two types of applications, with two different service 

request traces. We use for the first application type the 
combined trace of web surfing, online chatting and server 
accessing. This first application type generates service 
requests for the WLAN service provider. For the HDD, a 
second 4-hour duplicated server accessing workload is used. 
We run the enhanced RL-based HPM with application-type 
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scheduling. The obtained results are presented in Table 4. In 
this table, the obtained average power consumption and 
average latency are listed for each service provider. 

 
TABLE 4 
Simulation results of the RL-HPM on the WLAN card and the HDD. 

 Weight HDD  WLAN 
card 

Power values 

Latency values 

0.01 

0.99 

1.6122 

0.8117 

1.2831 

1.4923 

Power values 

Latency values 

0.83 

0.17 

1.3051 
1.2660 

0.9863 
1.7891 

Power values 

Latency values 

0.99 

0.01 

0.9863  

2.9260 

0.7108 

3.2608 

Power saving under LPM same 
latencies 

 12.42% 13.61% 

Maximum Power saving  58.67% 63.17% 

 
Results in Table 4 confirm that, similar to the case of a 

single SP, the Enhanced RL-HPM with application-type 
Scheduling achieves considerable energy savings when 
applied for different SPs running multiple applications. In 
comparison to the fixed timeout-based policy, the developed 
RL framework can minimize power consumption by almost 
13% per service provider when using the same latencies 
obtained using fixed timeout-based policies. For low 
constrained latency systems, the maximum of energy savings 
attain 63% per service provider with reference to the fixed 
timeout-based LPM policy. This considerably improves the 
total system energy consumption while maintaining acceptable 
performance levels. 

 

 
Fig. 9.  Power-latency tradeoff curves of the learned ε HPM for HDD and 

WLAN card. 
 
The power-latency trade-off curves obtained for both the 

HDD and the WLAN card are shown in Fig 9. This figure 
confirms the results previously obtained for a single service 
provider. We can see from this figure that the Enhanced RL-
HPM with application-type Scheduling can considerably 

enhance performance for a system with multi-SP and multi-
type applications. Finally, in addition to achieving good power 
and latency tradeoffs, the proposed HPM framework achieves, 
for the same latencies values, considerable reduction of power 
consumption with comparison to the fixed timeout-based LPM 
policy. 

 
7. Conclusions 

 
In this paper, a novel online adaptive RL-based HPM 

framework is proposed for an energy managed computer 
system with autonomously power-managed components. The 
proposed framework decomposes the power management 
task into two layers: component-level LPM and system-level 
GPM. Timeout policy is assumed as the predefined policy 
for the LPM. The GPM directly controls the service request 
traffic that reaches the power-managed components through 
an SFC. The GPM performs power management in a 
continuous-time and event-driven manner using temporal 
difference learning on SMDP for model-free RL. We choose 
to use the TD(λ) algorithm for SMDP due to a joint 
consideration of effectiveness, robustness and convergence 
rate.  

Experiments show that the proposed HPM approach 
considerably enhances power savings while maintaining a 
good performance level. In comparison with other reference 
systems, the proposed RL-based HPM approach performs 
well under various workloads, can simultaneously consider 
power and performance, and achieves wide and deep power-
performance tradeoff curves. 

 For a multi-type application framework, the GPM is 
enhanced to interact with the CPU scheduler to perform 
effective application-level scheduling, thereby enabling even 
more component power savings. We considered application 
scheduling only for non-critical applications and we use a 
scheduler that allocates execution times fairly among all 
types of applications. In comparison to the ‘Fairness Issue’ 
based scheduler, it is shown that the improved HPM 
framework with GPM scheduling can even further enhance 
performance in a multi-type application environment. The 
improved HPM framework can further reduce up to 13.4% of 
power consumption without latency increase. Apart from the 
‘fairness Issue’ based CPU scheduler, the Enhanced RL-HPM 
with application-type Scheduling can optimally adapt to any 
system scheduler for non-critical applications. 

 Experiments conducted on an EMC system with multiple 
service providers confirm that the proposed HPM framework 
performs as well as the EMC system with one service 
provider under various workloads. The maximum achievable 
energy saving can reach 63% per service provider. This will 
considerably improve the overall system energy efficiency 
while maintaining acceptable performance levels.  
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Appendix 

 

 

 
 
 
 
 
 
 
 
 
 

 
Algorithm 1: The RL-Based GPM Algorithm. 
 
Input: the timeout value Z[\� in the LPM, the action set � 
(a set of N values), the parameter ]. 

At each decision epoch &�: 
Choose an action �, which corresponds to a specific 
threshold number of waiting requests in the SQ, from 
the action set �. 

Let the LPM execute the timeout policy with timeout 
value Z[\�. 

If the SP is in the idle state: 
If some request comes before the timeout period 
(with duration of Z[\�) expires: 

The LPM turns the SP active for processing 
requests until the SP becomes idle again. Then 
we have reached decision epoch &���. 

Else 
The LPM keeps SP idle for Z[\�  period of time. 

If the GPM predicts the coming of � requests 
within ] amount of time after timeout expires: 

The SFC generates a fake request in order to 
prevent the SP from entering the sleep state. 

Else 
The LPM turns the SP into the sleep state. 
Then we reach decision epoch &���. 

Else if the SP is in the sleep state: 
If SQ contains less than � requests: 

Block all incoming requests using the SFC so 
that the SP keeps in the sleep state until the SQ 
accumulates � requests. 

Then we reach decision epoch &���. 
Else 

Transfer the requests buffered in the SQ to CQ 
so that the SP will turn on to process requests 
until it becomes idle again. 
Then we reach decision epoch &���. 

Evaluate the chosen action � using the TD(λ) 
technique. 

Abbreviations 
Dynamic Power Management DPM 

Reinforcement Learning RL 

Hierarchical Power Management HPM 

Energy Managed Component EMC 
Local Power Manager LPM 

Global Power Manager GPM 

Service Provider SP 

Service Queue SQ 
Component Queue CQ 
Service Flow Control SFC 

Application Pool APPL 

Operating System OS 

 
Algorithm 2: Modified RL based GPM with learning ε 
 
Input: the timeout value Z[\� in the LPM, the action set � 
(a set of N values), the action set  �̂ (a set of ε values.) 

At each decision epoch &�: 
Choose an action �, which corresponds to a specific 
threshold number of waiting requests in the SQ, from 
the action set �. 

Choose an action � _ , which corresponds to the near 
future time, from the action set �̂. 

Let the LPM execute the timeout policy with timeout 
value Z[\�. 
If the SP is in the idle state: 

If some request comes before the timeout period 
(with duration of Z[\�) expires: 

The LPM turns the SP active for processing 
requests until the SP becomes idle again. Then 
we have reached decision epoch &���. 

Else 
The LPM keeps SP idle for Z[\�  period of time. 

If the GPM predicts the coming of � requests 
within � _  amount of time after timeout expires: 

The SFC generates a fake request in order to 
prevent the SP from entering the sleep state. 

Else 
The LPM turns the SP into the sleep state. 
Then we reach decision epoch &���. 

Else if the SP is in the sleep state: 
If SQ contains less than � requests: 

Block all incoming requests using the SFC so 
that the SP keeps in the sleep state until the SQ 
accumulates � requests. 

Then we reach decision epoch &���. 
Else 

Transfer the requests buffered in the SQ to CQ 
so that the SP will turn on to process requests 
until it becomes idle again. 
Then we reach decision epoch &���. 

Evaluate the chosen action �̀ using the TD(λ) 
technique. 

Evaluate the chosen action � using the TD(λ) technique. 
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Algorithm 3: CPU Scheduling using the Fairness Issue 
 
Input: the starting time &a, the percentage constraint Mb 
The running application type is i, c ∈ �dde. 
The SP is in idle. 
Update  Mdfgbh*�c� ∀ c ∈ �dde�c� 
At time t: 

If    
ijklmno�b� 

�)�p  >  Mb   

A. Find application type c′ ∈ �dde with the     

minimum 
ijklmno�b� 

�)�p  value. 

B. Perform application type switch from type i to 
type i’ 

Else 
Continue running the application type i. 
 
End 
 

 

Algorithm 4:  The Enhanced RL-HPM with application-type 
Scheduling. 
 
Input: the timeout value Z[\� in the LPM, the action set � (a 
set of N values), the action set  �̂ (a set of ε values), list of 
application type={i, i',...} 

At each decision epoch &�: 
Choose an action �, which corresponds to a specific 
threshold number of waiting requests in the SQ, from the 
action set �. 

Choose an action � _ , which corresponds to the near future 
time, from the action set �̂. 

Let the LPM execute the timeout policy with timeout 
value Z[\�. 
If the SP is in the idle state: 

If some request comes before the timeout period (with 
duration of Z[\�) expires: 

The LPM turns the SP active for processing 
requests until the SP becomes idle again. Then we 
have reached decision epoch &���. 

Else 
The LPM keeps SP idle for Z[\�  period of time. 

If the GPM predicts the coming of � requests 
within � _  amount of time after timeout expires: 

The SFC generates a fake request in order to 
prevent the SP from entering the sleep state. 

Else If it exists application type i’, such as RQ(i’) 
contains the  a requests  

Perform application type switch from i to i’. 
The LPM turns the SP into the active state for 
processing requests. 

 Else 
The LPM turns the SP into the sleep state. 
Then we reach decision epoch &���. 

Else if the SP is in the sleep state: 
If SQ contains less than � requests: 

If it exists application type i’, such as RQ(i’) 
contains the  a requests  

Perform application type switch from i to i’. 
The LPM turns the SP into the active state for 
processing requests. 

Else 
Block all incoming requests using the SFC so that 
the SP keeps in the sleep state until the RQ(i) 
accumulates � requests. 

Then we reach decision epoch &���. 
Else 

Transfer the requests buffered in the SQ to CQ so 
that the SP will turn on to process requests until it 
becomes idle again. 
Then we reach decision epoch &���. 

Evaluate the chosen action  �̀ using the TD(λ) technique. 
Evaluate the chosen action  � using the TD(λ) technique. 
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