
 1

1. Introduction
Power consumption in battery operated portable devices is

nowadays a major concern. Such systems generally contain
many I/O device components, ranging from digital and analog
to electro-mechanical and electro-chemical. For these systems,
the major energy dissipation is coming from these I/O devices.
Dynamic power management (DPM) refers to a set of
strategies that achieves efficient power consumption by the
selective shut-off or slow-down of I/O components that are
idle or underutilized [1]. Such technique has proven to be a
particularly effective way of reducing power dissipation at the
system level [2]. An effective DPM policy should minimize
power consumption while maintaining performance
degradation within an acceptable level. The DPM methods
proposed in the literature can be broadly classified into three
categories: heuristic, stochastic, and learning based methods.

Heuristic methods attempt to predict the length of the next
idle time based on the computation history, and then shut the
device down if the predicted idle period length justifies the
cost. More precisely, a decision to sleep will be made if the
prediction indicates that the idle period is longer than the
break-even time Tbe. Among these methods, Srivastava et al.
[3] use a regression function to predict the idle period length,
while Hwang et al. [4] propose an exponential-weighting
average function for predicting the idle period length. Such
techniques are simple and easy to implement, and have been
adopted in many commercial products. However, they perform
well only when the requests are highly correlated and do not

1 * Corresponding author. Tel.: +216 98923252.
 E-mail addresses: maryam.triki@gmail.com (M. Triki).

take performance constraints into account, and thus, can
hardly achieve a desirable trade-off between performance and
energy dissipation. The stochastic approaches can take into
account both power and performance and are able to derive
provably optimal DPM policies, by modeling the request
arrival times and device service times as stationary stochastic
processes such as Markov Decision Processes (MDP) [5], [6],
[7]. The essential shortcoming of these methods is the need of
exact knowledge of the MDP state transition probability
function. However, the workload of a complex system is
usually changing with time and hard for accurate prediction
[8]. The workload variation has a significant impact on the
system performance and power consumption. Thus, a robust
power management technique must consider the uncertainty
and variability that emanate from the environment, hardware
and application characteristics [9] and must be able to interact
with the environment to obtain information which can be
processed to produce optimal policies.

In this sense, several previous works use machine learning
for adaptive policy optimization. Compared to heuristic
policies, machine learning-based methods such as
reinforcement learning (RL) can simultaneously consider
power and performance, and perform well under various
workload conditions when the system model is not known a
priori . In [10], an online policy selection algorithm is
proposed, which generates offline a set of DPM policies to
choose from. Tan et al. in [11] propose to use an enhanced Q-
learning algorithm for system-level DPM. The Q-learning
based DPM learns a policy online by trying to learn the best-
suited action for each system state based on the reward or
penalty received. However, this work is based on a discrete-

Hierarchical Power Management of a System with Autonomously Power-Managed
Components Using Reinforcement Learning

M. Triki a,*,1, Y. Wang b, A. C. Ammari a, c, M. Pedram b

a
Carthage University, MMA Laboratory, Institut National des Sciences Appliquées et de Technologie, Centre Urbain Nord, B.P. 676, Tunis, Cedex 1080, Tunisia

b
Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA

c
Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, P.O. Box 21589, Jeddah 21589, Saudi Arabia

ABSTRACT
This paper presents a hierarchical dynamic power management (DPM) framework based on reinforcement learning (RL) technique, which
aims at power savings in a computer system with multiple I/O devices running a number of heterogeneous applications. The proposed
framework interacts with the CPU scheduler to perform effective application-level scheduling, thereby enabling further power savings.
Moreover, it considers non-stationary workloads and differentiates between the service request generation rates of various software
application. The online adaptive DPM technique consists of two layers: component-level local power manager and system–level global power
manager. The component-level PM policy is pre-specified and fixed whereas the system-level PM employs temporal difference learning on
semi-Markov decision process as the model-free RL technique, and it is specifically optimized for a heterogeneous application pool.
Experiments show that the proposed approach considerably enhances power savings while maintaining good performance levels. In
comparison with other reference systems, the proposed RL-based DPM approach, further enhances power savings, performs well under
various workloads, can simultaneously consider power and performance, and achieves wide and deep power-performance tradeoff curves.
Experiments conducted with multiple service providers confirm that up to 63% maximum energy saving per service provider can be achieved.

Keywords: power management, reinforcement learning, temporal difference learning, semi-Markov decision process.

 2

time model of the stochastic process, and thus has large
decision making overhead. Wang et al. in [12] extend this
work to allow the power manager working in a continuous-
time and event-driven manner with faster convergence rate, by
exploiting the TD(λ) learning framework for semi-MDP
(SMDP) [13].

All of the above-mentioned DPM researches have focused
on developing local component-level policies. However, a
number of built-in power-management techniques have been
already incorporated into various standards and protocols.
These techniques cannot be modified because they ensure the
correct functionality of the device running the corresponding
protocol. In this sense, we consider such a device as an
autonomously power-managed component. Even beyond
protocol considerations, vendors may already have their
appropriate power management methods specifically designed
for their products and directly integrated into device drivers.

 Based on the above considerations, we define the problem
of hierarchical power management (HPM) for an energy
managed computer (EMC) system with autonomously power-
managed components. A few research results have been
reported to resolve the HPM problem of a computer with self
power-managed components. Reference [14] uses a similar
system setup as this paper and derives offline the optimal
policies using Continuous-Time Markov Decision process
model of the system. In this approach, the request inter-arrival
times and system service times are modelled as stationary
processes that satisfy exponential probability distributions,
which is not always realistic. Reference [15] proposes a
hierarchical adaptive DPM, where the term “hierarchical”
refers to the manner in which the authors formulate the DPM
policy optimization as a problem of seeking an optimal rule
that switches policies among a set of pre-computed ones.

 In this paper, we develop a novel online adaptive approach
for HPM of a computer with autonomously power-managed
components. The proposed framework extends the basic HPM
policy presented in [16] to multiple I/O devices and
heterogeneous applications. The proposed approach consists
of two layers: local component-level power manager (LPM)
and global system–level power manager (GPM). The LPM
policy is pre-specified and fixed whereas, the GPM uses
temporal difference learning on SMDP as the model-free
reinforcement learning technique to perform power
management in a continuous-time and event-driven manner.
Moreover, the GPM interacts with the CPU scheduler to
perform effective application-level scheduling, thereby
enabling even more power savings. This work also extends the
work of [14] by considering non-stationary workloads. The
proposed RL approach does not assume the request inter-
arrival times and system service times are modelled as
stationary processes with exponential probability distributions.
Thus, the power manager learns the optimal policy under non-
stationary workloads associated with multiple application
types with different service request generation rates.
Moreover, the proposed approach simultaneously learns the
optimal policy for non-stationary workloads and uses that
policy to control instead of only evaluating one predefined
policy. In addition, the proposed framework performs precise
power-latency tradeoff of each application type based on a
user-defined parameter, whereas reference [14] sets out to

meet given performance constraints. The proposed framework
is model-free, performs learning and power management in a
continuous-time and event-driven manner, has fast
convergence rate and less reliance on the Markovian property.

The remainder of this paper is organized as follows. We
provide an overview of reinforcement learning background in
Section 2. The proposed hierarchical DPM framework
architecture is presented in Section 3, and its implementation
details are given in Section 4. Framework improvements
targeting multiple I/O devices and multiple heterogeneous
applications are explained in Section 5. The experimental
results and analysis are presented in Section 6. We conclude
our findings in Section 7.

2. Theoretical background

In this section, we provide a brief introduction of the
general RL framework and the RL algorithm proposed for the
GPM, namely, the TD (λ) learning algorithm for SMDP. One
may refer to [13] for more details.

Reinforcement Learning is a machine intelligence
approach based on the learning through experience
accumulation [17]. The core of the RL technique is the
interaction between agent and environment in terms of states,
actions, and rewards [18]. The general RL model -as
illustrated in Fig.1- consists of an agent, a finite state space �, a
set of available actions �, and a reward function �: � × � →�. The agent is the learner and decision maker. The
environment is defined as any sensory information the agent
receives about. Actions refer to the decision the agent will be
called to make [19]. State represents the situation the agent
can find itself in. More precisely, state is the available
information about the agent’s environment that helps in
decision making.

We define a policy � =
��, ��|� ∈ �, � ∈ �� as the set of
all possible state-action pairs in the RL framework. At each
step of interaction with the environment, the agent receives a
representation of the environment's state �� ∈ �. It selects an
action �� ∈ ����� where ����� denotes the set of possible
actions available at state ��. As a consequence of the taken
action, the agent moves to a new state ���� and receives from
the environment a reward ���� (a real or natural number) or a

Environment
Reward rate

rk rk+1

sk

ak

sk+1

State

Action

Agent

Fig. 1. Agent-environment interaction model.

 3

punishment (a negative reward) which indicates the value of
the state transition. The cumulative rewards affect the agent
behavior and guide the action policy. The agent’s goal is to
optimize its behavior based on the received rewards. More
precisely, the agent keeps a value function ����, ��, for each
state-action pair ��, �� initially chosen by the designer and
later, it is updated each time an action is taken and a reward is
received, based on the following equation. ∀ ��, �� ∈ � × �:
 ����, ��� = ����, ��� + � ×

 � ���� + � �� ! ������, �� − ����, ���# (1)

In the above expression, � ∈ �0,1� denotes the learning

rate; ���� is the reward received at time & and � ∈ �0,1� is the
discount factor. The agent chooses the action with the
maximum estimated value ���, �� for various actions � ∈ �
next time the state � is visited.

The value function represents the expected long-term
reward when starting from state �, choosing action �
(according to the policy �), and following � thereafter. Thus,
the agent continuously adjusts its policy so as to maximize the
total amount of reward received over the long run. For a
realistic DPM problem, the power manager has no predefined
policy or knowledge about state transition characteristics that
are essential for any stochastic DPM approach. Therefore, the
power manager has to simultaneously learn the optimal policy,
and use it to make decisions. In this case, traditional value
methods cannot be applied. Instead, TD learning methods [20]
for SMDP2 may be used. Such a method generates an estimate ����, �� for each state-action pair ��, �� at epoch &�, which is
the estimate of the actual value ����, �� following policy �.
Suppose that state �� is visited at epoch &�, then at that epoch
the agent chooses an action either with the maximum
estimated value �����, �� for various actions � ∈ �, or by
using other semi-greedy policies [19]. Moreover, the TD
learning rule updates the estimate ����� , ��� at the next
epoch &���, based on the chosen action �� and the next
state ����. Various TD learning algorithm implementations are
mainly different from one another by their evaluating
methods. We choose to use the algorithm for SMDP [20] due
to a joint consideration of effectiveness, robustness and
convergence rate. More specifically, the value update rule for
a state-action pair at epoch &��� in the TD(λ) algorithm for
SMDP is given as follows:

 ∀ ��, �� ∈ � × �: ��������, �� = ������, �� + � ×
'�����, �� × (�)*+,-.

/ ����, ���
+ MAX!3 ')/4. ���������, �′� − �������, ���6 (2)

In the above expression, 7� = &��� − &� is the time the
system remains in state �� ; � ∈ �0,1� denotes the learning

rate; 8 is the discount factor;
�)*+,-.

/ ����, ��� is the sample

discounted reward received in 7� time units; ���������, �′� is

2 Note that the temporal difference learning for SMDP is named because it

can be proved to converge to the optimal policy if the agent-environment
interaction system evolves as a stationary SMDP. In fact such learning
algorithm is robust and has less reliance on the Markovian assumption [19].

the estimated value of the state-action pair �����, �′� in which ���� is the actually occurring next state. Moreover, in Eqn. (2) '�����, �� denotes the eligibility of each state-action pair in
order to facilitate the implementation of the TD(9) algorithm.
Such eligibility reflects the degree to which the state-action
pair ��, �� has been chosen in the recent past and it is updated
as follows:
 '�����, �� = 9 ')/4.+:'��)����, �� + ;<��, ��, ���, ���= (3)

where ;<��, ��, ��>, �>�= denotes the delta kronecker function.

3. Hierarchical DPM framework
This paper focuses on reducing energy consumption of a

uni-processor computer system with built-in component-level
local power managers. Basically, we propose an adaptive
approach that regulates the requests service flow of the
autonomously power-managed components, thereby
effectively reducing component energy consumption.

Timeout3 policies are assumed to be the local power
management policies for the components given their wide
usage. Under these policies, a Local Power Manager (LPM)
directly controls the state transitions of the device. Meanwhile,
the system-level Global Power Manager (GPM) helps the
LPM improve the power efficiency by performing service
flow regulation and application scheduling.
3.1 Service provider model

One of the key components of the DPM framework is the
device providing services to the workload called service
provider (SP).

Fig. 2. Service provider model.

In this work, we consider a SP as shown in Fig. 2. It has

three main states explained below:
• Active state: the SP is fully functional and it is

processing some requests.
• Idle state: the system is still operational, but there

are no service requests to deal with. The transition
between the active and idle states is autonomous,
i.e., as soon as the system completes servicing all
of the waiting requests, it enters the idle state.
Similarly, the system goes from idle to active as
soon as a service request arrives.

• Sleep state: The SP moves to the Sleep state-
where it has reduced power consumption- only

3 Timeout is the duration the SP is kept in its idle state before entering the

sleep state.

Idle

Sleep

Active

from the idle state. The device turns into active as
soon as a service request arrives.

3.2 The global system architecture
The architecture of the proposed hierarchical DPM

framework is presented in Fig. 3. The framework contains
service providers, e.g. two I/O devices.

Fig. 3. Block diagram of a hierarchical DPM structure

The service requesters (SR1, SR2) generat
processed by two types of SP, respectively.
buffered in the service queues (SQ1, SQ2) before
processed.

The proposed architecture decomposes the power
management task into two layers: local
power manager (LPM) and global system
manager (GPM). Each service provider is controlled by a
LPM whose timeout policy is pre-specified and cannot be
changed. The LPM is monitoring the number of waiting
service requests in the component queue (CQ) and
consequently adjusts the state of the service provider.
3.3 The global power manager

At the system-level, the GPM cannot overwrite
policy or directly control the state transiti
provider. Thus, a Service Flow Control
incorporated to control the service request traffic that reaches
the SP. The GPM monitors the SQ and
guide accordingly SFC actions and interact with the CPU
scheduler to perform effective application
further reducing the power consumption.

The main functions of the SFC are detailed as follows:
Fake SR generation: In the case of expecting high activity
the near future, the SFC generates a fake service request
order to wake up the SP and prevent it from entering a deep
sleep state.

SR blocking: To reduce the wake-up frequency
extend its sleep time, the SFC blocks all incoming reques
from entering its component queue. Thus,
remain in the SQ.

SR transfer: To wake up the SP, the SFC continuously moves
the stored requests in the SQ to its component queue.

3.4 Application model
Different applications may be executed o

managed computer system. These applications can however be

4 Fake Service Request is handled in the same way as a

regular SR by the SP, but requires no service

The device turns into active as
soon as a service request arrives.

The architecture of the proposed hierarchical DPM
The framework contains two

. Block diagram of a hierarchical DPM structure [14].

s (SR1, SR2) generate requests to be
processed by two types of SP, respectively. The requests are

service queues (SQ1, SQ2) before being

The proposed architecture decomposes the power
local component-level

system-level power
. Each service provider is controlled by a

specified and cannot be
changed. The LPM is monitoring the number of waiting
service requests in the component queue (CQ) and

adjusts the state of the service provider.

level, the GPM cannot overwrite the LPM
policy or directly control the state transition of a service

Thus, a Service Flow Controller (SFC) is
incorporated to control the service request traffic that reaches

monitors the SQ and employs TD(λ) to
interact with the CPU

scheduler to perform effective application-level scheduling for

The main functions of the SFC are detailed as follows:
In the case of expecting high activity in

tes a fake service request4 in
order to wake up the SP and prevent it from entering a deep

frequency of the SP and
e, the SFC blocks all incoming requests

 the blocked requests

he SFC continuously moves
its component queue.

Different applications may be executed on the energy-
managed computer system. These applications can however be

is handled in the same way as a
regular SR by the SP, but requires no service from the SP.

classified into different types based on their device usage
correlations and workload characteristics
generation rates and the target SPs. A pre
technique is used to obtain statistical information about each
application program. Applications with the same device
dependency list and similar request generation rate are
grouped into one application type. Notice that applications
which are hard to characterize separately may be grouped into
a special class where the request generation rate of that class is
equal to the average rate for all
this type.

For example, as shown in

generates SR1 with a rate of
in state ��!. Similarly, in state

these two SRs become 9�?��� and
application type 1 transits to state @�,!?, which also implies that the average time

type 1 to stay in state ��! is
A:

Fig. 4. Model of application type

In the proposed framework,
instances of service requests are considered
stationary, none of the applications is considered to be critical,
and therefore, all the heterogeneous applications have the
same priority. Moreover, we assume that a
handle one request at a time, and a request can be e
only one device.

4. Reinforcement learning for

In this section, the system architecture is limited to a single
application type executed on
The SR workload characteristics
is controlled by a pre-specified
the optimal policy under non
commands accordingly to the SFC
block or forward the service
queue or to generate a fake request to keep the SP awake
4.1 Policy learning

The goal of the GPM is to reduce power consumption
while maintaining an acceptable performance level.
study, we assume the SP pow
state and we consider the average delay as the performance
metric. The average number of waiting requests in the SQ

r1a

r1b

@

@�,!?

4

classified into different types based on their device usage
workload characteristics, i.e., their SR

generation rates and the target SPs. A pre-characterization
que is used to obtain statistical information about each

application program. Applications with the same device
dependency list and similar request generation rate are
grouped into one application type. Notice that applications

ze separately may be grouped into
a special class where the request generation rate of that class is
equal to the average rate for all the applications belonging to

For example, as shown in Fig. 4, application type 1

 9�!

��� and SR2 with a rate of 9�!

�B�
in state ��?, the generation rates for

and 9�?

�B�, respectively. In state ��!,
pplication type 1 transits to state ��? with an average rate of

, which also implies that the average time for application
�

:,CD
.

. Model of application type transitions.

In the proposed framework, the exact generating time

instances of service requests are considered to be non-
none of the applications is considered to be critical,

and therefore, all the heterogeneous applications have the
Moreover, we assume that a resource can

handle one request at a time, and a request can be executed by

earning for hierarchical DPM

In this section, the system architecture is limited to a single
on the energy-managed computer.

workload characteristics are non-stationary and the SP
specified LPM policy. The GPM learns

nder non-stationary workloads and issues
accordingly to the SFC to determine whether to

service requests to the local component
fake request to keep the SP awake.

The goal of the GPM is to reduce power consumption
n acceptable performance level. In this

assume the SP power model known for each power
we consider the average delay as the performance

he average number of waiting requests in the SQ is

@�,?!

SR1 : 9�?

���

SR2 : 9�?

�B�

SR1 : 9�!

���

SR2 : 9�!

�B�

 5

used as an estimation of the average delay. This is reasonable
because as outlined in reference [6], the average number of
requests in the SQ is proportional to the average latency for
each request defined as the average waiting time for each
request to be processed. The average waiting time represents
the time between the moment the request is generated and the
moment the SP finishes processing it i.e., it includes queuing
time plus execution time.

In this work, the cost of a taken action in the RL algorithm
is measured by both the instantaneous power consumption and
the caused number of requests buffered in the SQ. The
instantaneous power consumption is estimated by the SP
model based on its power state observation. In this way, the
value function Q(s,a) for each state-action pair (s,a) is a linear
combination of the expected total discounted energy
consumption and latency. Since the total execution time and
number of requests are fixed, the value function is equivalent
to a linear combination of the average discounted power
consumption and average latency per request. The relative
weight between power and latency can be changed to get a
power-latency tradeoff curve. More precisely, upon selection
of action � from a state �, the cost function MN�&��, �; P� is
defined as follows: MN�&��, �; P� = P × Q'R�S ��, �� + �1 − P� × TU� ��, �� (12)
where TU� ��, �� is the consumed power amount; Q'R�S��, ��denotes the caused delay and P is a user defined
parameter enabling for setting a power-delay tradeoff.
4.2 The local power management policy (LPM)

Timeout policy is assumed to be the pre-specified LPM
policy due to its wide usage in many built-in power-
management policies and has been already incorporated into
various standards and protocols. Using such policy, the SP
moves into the sleep state if it remains in its idle state for more
than a specified timeout period. The timeout determines the
tradeoff between the service latency and power dissipation of
the SP. An undesirable degenerate situation is where the SP is
put to sleep too fast, only to be awakened immediately. Thus,
the system would suffer from extra energy consumption and
latency of waking up the SP and bringing it to the active state.
On the other hand, if the timeout is set to be too long and
meanwhile no service requests arrives, the SP has
unnecessarily wasted energy by waiting in the idle state.
4.3 The global power management policy (GPM)

The GPM continuously observes the following parameters
(i) the running application type, (ii) the SP power state: busy,
idle, sleep, etc, (iii) the SQ state: number of waiting requests,
and (iiii) the current application-specific service request
generation rate: high, low, medium, etc. Based on these
observable parameters the GPM makes decision and issues
commands to the SFC in the following four cases:
1. The SP is in the sleep state and the number of requests in

the SQ is less than a given threshold value.
2. The SP is in the sleep state and the number of requests in

the SQ is equal to the given threshold value.
3. The SP is in the idle state and the timeout has not expired

yet.

4. The SP is in the idle state and the timeout has expired.
 Let N denote the threshold value of the number of requests
in the SQ. A list of N values will serve as the action set � for
the GPM in controlling the SFC. The GPM learns to choose
the optimal action � ∈ �, which corresponds to the optimal N
value, by using an RL technique.
The proposed RL framework operates as follows. At each
decision epoch, the GPM finds itself in one of the four
aforesaid conditions; it will issue commands to the SFC to
implement the decision according to the following four cases:

1. The SP is in the sleep state and SQ contains less than N
requests. In this case, the GPM decides to keep the SP
in the sleep state and issues ‘SR blocking’ commands to
SFC to block all the incoming requests from entering
the component queue CQ.

2. The SP is in the sleep state and SQ contains N requests.
In this case, the GPM decides to turn on the SP for
processing requests. It will issue ‘SR transfer’
command to SFC to transfer SRs from the SQ to the
CQ, and the SP will wake up to service the service
requests.

3. The SP is in the idle state and the timeout has not yet
expired:

a. If some request comes during that period of time.
The GPM will issue ‘SR transfer’ command to
SFC to transfer the incoming SRs from the SQ to
the CQ so that the SP goes to the active state for
processing requests according to the LPM
policy.

b. If (i) the timeout is about to expire and (ii) the
GPM predicts a group of N requests to come
within ε amount of time after the timeout
expires, the GPM will decide to prevent the SP
from entering the sleep state. More precisely, the
SFC generates a ‘Fake SR’ and the SP is kept in
the idle state. ε is a small extra-time to extend the
LPM pre-specified timeout value.

4. The SP is in the idle state and the timeout has expired,
then the SP goes to the sleep state according to its LPM
policy.

Details of the proposed RL-based GPM algorithm is
provided in algorithm 1 in Appendix.

4.4 Multiple power-latency tradeoff curves with different

ε values
As stated above, when (i) the SP is in the idle state and the

timeout is about to expire and (ii) if the GPM predicts high
activity within ε amount of time after the timeout expires,
‘Fake SR’ is generated to prevent the SP from entering the
sleep state according to the proposed policy. Actually, such
action makes the SP wait for requests till timeout + ε. This is
somewhat equivalent to establishing a new timeout value
equal to the sum of ε and the original pre-specified timeout in
the LPM. For a fixed ε value, the relative weight between
power and latency can be changed to get a power-latency
tradeoff curve. With different ε values, multiple power-latency
tradeoff curves are obtained. The best-suited ε value is
obtained by trial-and-error experiments to derive the desirable
power-latency tradeoff curve.

 6

4.5 Framework enhancement with learning the optimal ε
The use of multiple ε values enables different power-latency

tradeoff curves. However, instead of manually varying ε to get
the desired value, the GPM policy can be enhanced to make it
automatically learn the best ε value for a given tradeoff
between power and latency. The RL algorithm has then two
action sets: (i) a list of N values that serves as the threshold
value of the number of requests in the SQ and (ii) second list
of ε values. In that case, the GPM learns the best threshold
number of requests to turn on the SP from the sleep to the
active state and also the best ε value to prevent within it the SP
from entering the sleep state. Both N and ε learned values are
obtained for a fixed power-latency tradeoff setting.

A list of N values will still serve as the action set �V. In
addition, a list of ε values will serve as a second action set �W.
The GPM learns to choose the optimal �X = N and � W = ε
values among the action sets �V and �W. In Appendix,
Algorithm 2 provides the details of the modified RL learning
algorithm with a learning ε.

5. Framework enhancement for multi-type application

This section presents improvements of the previous HPM
framework with handling heterogeneous types of user
applications. The GPM has to interact with the CPU scheduler
to perform effective application-level scheduling in addition to
SFC controlling, thereby, enabling the LPM to further
component power optimization.

For this work, we are considering the CPU scheduling only
for non critical applications. Thus, all the applications are
running with the same priority. This assumption is particularly
valid for our target of interactive battery operated portable
devices for which an acceptable average system performance
is generally required for a reduced power consumption

We start this section by introducing the fairness issue CPU
scheduler, and then we demonstrate how application
scheduling can further reduce the system performance.
Implementation details of the enhanced framework are also
presented.

5.1 CPU scheduling considering fairness issue

For a multi-type application framework, a system scheduler

is needed for distributing the CPU among the different
software applications. The CPU system scheduler changes
from Operating System (OS) to OS. For our case, we are
targeting non critical applications and we are considering a
CPU system scheduler that uses a fairness issue to distribute
execution times among various software applications. We use
APPL = {1, 2,…, N} to denote the various application pool.
For the i th (i ∈APPL) type of application, we use CPUTime to
denote the total CPU occupying time of such an application
type starting from time t0 (i.e., the system starting time) until
the current time t. The fairness constraint states that each i th (i
∈APPL) application type cannot, on average, occupy more
than Ci percentage of the total CPU execution time.

In Appendix, Algorithm 3 presents the used system CPU
scheduling algorithm considering the fairness issue among
different types of applications.

 Application scheduling effectiveness
To point out the potential effectiveness of performing

application type scheduling as part of the GPM by the
following motivation example. Let us consider a system in
which there are two types of applications A1 and A2,
generating service requests at rates of one request per time
unit and two requests per time unit, respectively. The SP
wakes up as soon as a request is generated and sleeps when all
requests have been serviced.

Fig. 5. Example of effectiveness of application level scheduling [14].

Two execution sequences have been considered as shown
in Fig. 5. In the first sequence, there is no application
scheduling implemented as a part of the GPM (Fig 5.a). Each
application is alternatively executed for exactly one unit of
time. In the second sequence, the GPM performs application
scheduling as soon as a request of application type A1 is
generated, switching the system to application type A2. We
switch back to A1 when the second request of application type
A2 has been generated and serviced (Fig 5.b). In this case
service requests targeting one SP are “grouped together”
ensuring that the component sleeping time is maximized.
Assuming fixed wakeup and sleep transition times and energy
dissipation values, both the power efficiency and performance
are improved [14]. This motivation example clearly shows that
a well designed GPM application scheduling can maximize
the SP sleep time, and may help further reducing the total
energy consumption.

5.2 The enhanced HPM considering application

scheduling as part of the GPM

For a multi-type application framework running on the top
of the system scheduler, the GPM is enhanced with
application scheduling for some particular situations to
improve the fairness and reduce the SP on/off switches,
thereby, enabling more component power optimizations and
further reduction of the total power consumption. The
application scheduling is based on the global system state, i.e.,
states of the SP and the SQ. The use of global system state
instead of the device state makes scheduling decisions based
on a more precise view of the system and enables the
consideration of any correlation between applications and
devices. Basically, we implemented multiple run queues each
one associated with different application type. Every
application run queue is fed into the appropriate service
provider queue.

 7

 Let N denote the threshold number of waiting requests in
the SQ. The particular situation cases where the GPM decides
to force for an application scheduling are given as follows:
a) The SP is in the sleep state and the current application run

queue contains less than N requests. In this case, and if
another application run queue contains the N waiting
requests, the PM makes application switching, therefore
the SP is waked up to process the requests. Application
scheduling is beneficial for maintaining a good
performance level in this case.
b) The SP is in the idle state and the run queue of the
running application contains no requests before the timeout
expires. The PM may decide to switch to another
application if it predicts the arrival of N requests in its run
queue in the near future.

In Appendix, Algorithm 4 provides the details of the
enhanced RL learning algorithm with application-type
scheduling.

6. Experimental results

In this section, we present the experimental results of the
proposed HPM framework with real traces measured by using
the tcpdump utility in Linux. First, we conduct a set of
experiments with a single SP, i.e., a Wireless Local Area
Network adapter card (WLAN). Then, we consider the case of
a system with two SPs: a hard disk drive (HDD) and a WLAN
card.

6.1 Experimental results on a single service provider

The SP used in the first set of experiments is a WLAN card.
Table 1 lists its power consumption and switching time. Ttr is
the time taken in transitioning to and from the sleep state
while Etr is the energy consumed for waking up the device. Tbe
refers to the break-even time.

TABLE 1
Power and delay characteristics of the considered WLAN card [12].

Psleep Pbusy Pidle Etr Ttr Tbe

0 W* 1.6 W 0.9 W 0.9 J 0.3 s 0.7 s

*The WLAN card is turned off.

We set the timeout value for the LPM to 0.3 Tbe. Under this

policy, the SP starts in the “idle” state. If no service request
comes during the timeout period, the SP enters its “sleep”
state. The action set of the GPM corresponds to the possible
threshold values of waiting requests in the SQ and is defined
by {1, 2, 3, 4 and 5}.

To assess the effectiveness of the basic HPM framework
without considering neither ε-learning nor application-level
scheduling, we started with the evaluation of its outcome in
reference to only using the fixed LPM timeout policy.
Simulations are based on a single type of application with a
service request trace given by 6-hour combined web surfing,
online chatting and server accessing trace. We perform various
simulations using different ε and power-latency weight values.
More precisely, we evaluate three HPM policies with fixed ε

value set to 0.1 Tbe, 0.6 Tbe and 0.9 Tbe respectively. For each
aforesaid ε value, we vary the relative weight between power
and latency to obtain a new power-latency tradeoff. A low
weight assigned for power, i.e., 0.01 denotes high-constrained
latency system. High power weights are related to low-
constrained latency systems.

Experimental details and results are presented in Table 2.
We in this table report (i) the average SP power consumption
(Watt), (ii) the average latency per request (seconds) and (iii)
the power savings percentage in comparison with the fixed-
timeout policy under the same latency value. One can see that
the basic HPM framework can achieve a wide range of power-
latency tradeoffs. The shorter average latency we have, the
higher power consumption is obtained for all used ε values.
However, when a reduced power consumption is a priority, a
higher tradeoff weight is set for power, i.e., 0.99 and as it is
presented in table 2, the lowest average power values are
obtained for the different ε values. In comparison with the pre-
fixed LPM timeout policy for the same LPM latency value, the
proposed framework achieves up to 24.25% power savings
For low-constrained latency systems, we can achieve up to
72% maximum power savings.

 These results outperform largely reference [14] where only
25 % of maximum power savings has been obtained. In
addition, the proposed framework performs power-latency
tradeoff based on a user-defined parameter, whereas reference
[14] sets out to meet given performance constraints.

TABLE 2
Simulation results of the basic HPM algorithm and baseline policies
on the WLAN card.

 Weight HDD WLAN
card

Power

Latency

0.01

0.99

1.6122

0.8117

1.2831

1.4923

Power

Latency

0.83

0.17

1.3051
1.2660

0.9863
1.7891

Power

Latency

0.99

0.01

0.9863

2.9260

0.7108

3.2608

Power saving compared with
the LPM (with the same
latencies)

 12.42% 13.61%

Maximum Power saving 58.67% 63.17%

To better clarify the outcome of the HPM framework, we

represented in Figure 6 the power- latency tradeoff curves
using: (i) the pre-specified timeout policy and (ii) the basic
framework with two different ε values (0.1 Tbe and 0.6 Tbe).
Using these curves, one can see that similar component power
consumption are obtained at high latency values. However,
under lower latencies and high ε values, the HPM framework
further minimizes the power consumption in reference to
simple LPM timeout.

 8

Fig.6. Power-latency tradeoffs curves of the fixed timeout policy and the
basic framework on the WLAN card with ε = 0.1 Tbe and ε = 0.6 Tbe

To demonstrate the effectiveness of the enhanced RL-based

HPM algorithm with ε-learning compared with the basic HPM
algorithm, we perform a second experiment and provide the
experimental results in Figure 7. We use the same WLAN card
and run the same application type. Fig. 7 shows the power-
latency tradeoff curves achieved by (i) the enhanced
framework with ε-learning and (ii) the basic framework for ε
equal to 0.1 Tbe and ε equal to 0.6 Tbe values. We can see that
the enhanced RL-based HPM algorithm with ε-learning can
achieve much lower power consumption than the basic RL-
based HPM algorithm particularly when the system has tight
latency constraints.

Fig. 7. Effectiveness of the enhanced framework with ε-learning.

For a third set of simulations, we consider the same service

provider and we run two types of applications with two
different service request traces. We use for the first application

type the combined trace of web surfing, online chatting and
server accessing and for the second application a 4-hour
duplicated web surfing trace. First, we run the RL-based HPM
algorithm with ε-learning, using the basic fair scheduler to
distribute execution times among the two applications types.
Then, we run the enhanced RL-based HPM algorithm with
application-type scheduling. The experimental results are
given in Figure 8. This figure illustrates the power-latency
trade-off curves compared with the performance of the fixed-
timeout LPM policy. It is clearly shown that the enhanced RL-
based HPM algorithm with application-type scheduling can
even further enhance performance in a multi-type application
environment. For example, the improved HPM framework
with application scheduling can further minimize the power
consumption by up to 13.4% under the same latency value.

Moreover, one can clearly observe that the proposed HPM
framework achieves further power consumption reduction in
comparison with reference [14] in addition to allowing for the
power and latency trading- offs.

Fig. 8. Power-latency tradeoffs curves of the enhanced framework with

application type scheduling.

6.2 Experimental results on a system with two service
providers

In a second set of experiments, we considered an EMC
system with two service providers: a hard disk drive (HDD)
and the previously used wireless WLAN card. The power and
delay characteristics of the HDD are given in Table 3. Non-
stationary service request workloads are applied to all these
service providers.
TABLE 3
Power and delay characteristics of the hard disk drive [12].

Psleep Pbusy Pidle Etr Ttr

0.13 W 2.15 W 0.9 W 7.0 J 1.6 s

We run two types of applications, with two different service

request traces. We use for the first application type the
combined trace of web surfing, online chatting and server
accessing. This first application type generates service
requests for the WLAN service provider. For the HDD, a
second 4-hour duplicated server accessing workload is used.
We run the enhanced RL-based HPM with application-type

 9

scheduling. The obtained results are presented in Table 4. In
this table, the obtained average power consumption and
average latency are listed for each service provider.

TABLE 4
Simulation results of the RL-HPM on the WLAN card and the HDD.

 Weight HDD WLAN
card

Power values

Latency values

0.01

0.99

1.6122

0.8117

1.2831

1.4923

Power values

Latency values

0.83

0.17

1.3051
1.2660

0.9863
1.7891

Power values

Latency values

0.99

0.01

0.9863

2.9260

0.7108

3.2608

Power saving under LPM same
latencies

 12.42% 13.61%

Maximum Power saving 58.67% 63.17%

Results in Table 4 confirm that, similar to the case of a

single SP, the Enhanced RL-HPM with application-type
Scheduling achieves considerable energy savings when
applied for different SPs running multiple applications. In
comparison to the fixed timeout-based policy, the developed
RL framework can minimize power consumption by almost
13% per service provider when using the same latencies
obtained using fixed timeout-based policies. For low
constrained latency systems, the maximum of energy savings
attain 63% per service provider with reference to the fixed
timeout-based LPM policy. This considerably improves the
total system energy consumption while maintaining acceptable
performance levels.

Fig. 9. Power-latency tradeoff curves of the learned ε HPM for HDD and

WLAN card.

The power-latency trade-off curves obtained for both the

HDD and the WLAN card are shown in Fig 9. This figure
confirms the results previously obtained for a single service
provider. We can see from this figure that the Enhanced RL-
HPM with application-type Scheduling can considerably

enhance performance for a system with multi-SP and multi-
type applications. Finally, in addition to achieving good power
and latency tradeoffs, the proposed HPM framework achieves,
for the same latencies values, considerable reduction of power
consumption with comparison to the fixed timeout-based LPM
policy.

7. Conclusions

In this paper, a novel online adaptive RL-based HPM

framework is proposed for an energy managed computer
system with autonomously power-managed components. The
proposed framework decomposes the power management
task into two layers: component-level LPM and system-level
GPM. Timeout policy is assumed as the predefined policy
for the LPM. The GPM directly controls the service request
traffic that reaches the power-managed components through
an SFC. The GPM performs power management in a
continuous-time and event-driven manner using temporal
difference learning on SMDP for model-free RL. We choose
to use the TD(λ) algorithm for SMDP due to a joint
consideration of effectiveness, robustness and convergence
rate.

Experiments show that the proposed HPM approach
considerably enhances power savings while maintaining a
good performance level. In comparison with other reference
systems, the proposed RL-based HPM approach performs
well under various workloads, can simultaneously consider
power and performance, and achieves wide and deep power-
performance tradeoff curves.

 For a multi-type application framework, the GPM is
enhanced to interact with the CPU scheduler to perform
effective application-level scheduling, thereby enabling even
more component power savings. We considered application
scheduling only for non-critical applications and we use a
scheduler that allocates execution times fairly among all
types of applications. In comparison to the ‘Fairness Issue’
based scheduler, it is shown that the improved HPM
framework with GPM scheduling can even further enhance
performance in a multi-type application environment. The
improved HPM framework can further reduce up to 13.4% of
power consumption without latency increase. Apart from the
‘fairness Issue’ based CPU scheduler, the Enhanced RL-HPM
with application-type Scheduling can optimally adapt to any
system scheduler for non-critical applications.

 Experiments conducted on an EMC system with multiple
service providers confirm that the proposed HPM framework
performs as well as the EMC system with one service
provider under various workloads. The maximum achievable
energy saving can reach 63% per service provider. This will
considerably improve the overall system energy efficiency
while maintaining acceptable performance levels.

 10

Appendix

Algorithm 1: The RL-Based GPM Algorithm.

Input: the timeout value Z[\� in the LPM, the action set �
(a set of N values), the parameter].

At each decision epoch &�:
Choose an action �, which corresponds to a specific
threshold number of waiting requests in the SQ, from
the action set �.

Let the LPM execute the timeout policy with timeout
value Z[\�.

If the SP is in the idle state:
If some request comes before the timeout period
(with duration of Z[\�) expires:

The LPM turns the SP active for processing
requests until the SP becomes idle again. Then
we have reached decision epoch &���.

Else
The LPM keeps SP idle for Z[\� period of time.

If the GPM predicts the coming of � requests
within] amount of time after timeout expires:

The SFC generates a fake request in order to
prevent the SP from entering the sleep state.

Else
The LPM turns the SP into the sleep state.
Then we reach decision epoch &���.

Else if the SP is in the sleep state:
If SQ contains less than � requests:

Block all incoming requests using the SFC so
that the SP keeps in the sleep state until the SQ
accumulates � requests.

Then we reach decision epoch &���.
Else

Transfer the requests buffered in the SQ to CQ
so that the SP will turn on to process requests
until it becomes idle again.
Then we reach decision epoch &���.

Evaluate the chosen action � using the TD(λ)
technique.

Abbreviations
Dynamic Power Management DPM

Reinforcement Learning RL

Hierarchical Power Management HPM

Energy Managed Component EMC
Local Power Manager LPM

Global Power Manager GPM

Service Provider SP

Service Queue SQ
Component Queue CQ
Service Flow Control SFC

Application Pool APPL

Operating System OS

Algorithm 2: Modified RL based GPM with learning ε

Input: the timeout value Z[\� in the LPM, the action set �
(a set of N values), the action set �̂ (a set of ε values.)

At each decision epoch &�:
Choose an action �, which corresponds to a specific
threshold number of waiting requests in the SQ, from
the action set �.

Choose an action � _ , which corresponds to the near
future time, from the action set �̂.

Let the LPM execute the timeout policy with timeout
value Z[\�.
If the SP is in the idle state:

If some request comes before the timeout period
(with duration of Z[\�) expires:

The LPM turns the SP active for processing
requests until the SP becomes idle again. Then
we have reached decision epoch &���.

Else
The LPM keeps SP idle for Z[\� period of time.

If the GPM predicts the coming of � requests
within � _ amount of time after timeout expires:

The SFC generates a fake request in order to
prevent the SP from entering the sleep state.

Else
The LPM turns the SP into the sleep state.
Then we reach decision epoch &���.

Else if the SP is in the sleep state:
If SQ contains less than � requests:

Block all incoming requests using the SFC so
that the SP keeps in the sleep state until the SQ
accumulates � requests.

Then we reach decision epoch &���.
Else

Transfer the requests buffered in the SQ to CQ
so that the SP will turn on to process requests
until it becomes idle again.
Then we reach decision epoch &���.

Evaluate the chosen action �̀ using the TD(λ)
technique.

Evaluate the chosen action � using the TD(λ) technique.

 11

Algorithm 3: CPU Scheduling using the Fairness Issue

Input: the starting time &a, the percentage constraint Mb
The running application type is i, c ∈ �dde.
The SP is in idle.
Update Mdfgbh*�c� ∀ c ∈ �dde�c�
At time t:

If
ijklmno�b�

�)�p > Mb

A. Find application type c′ ∈ �dde with the

minimum
ijklmno�b�

�)�p value.

B. Perform application type switch from type i to
type i’

Else
Continue running the application type i.

End

Algorithm 4: The Enhanced RL-HPM with application-type
Scheduling.

Input: the timeout value Z[\� in the LPM, the action set � (a
set of N values), the action set �̂ (a set of ε values), list of
application type={i, i',...}

At each decision epoch &�:
Choose an action �, which corresponds to a specific
threshold number of waiting requests in the SQ, from the
action set �.

Choose an action � _ , which corresponds to the near future
time, from the action set �̂.

Let the LPM execute the timeout policy with timeout
value Z[\�.
If the SP is in the idle state:

If some request comes before the timeout period (with
duration of Z[\�) expires:

The LPM turns the SP active for processing
requests until the SP becomes idle again. Then we
have reached decision epoch &���.

Else
The LPM keeps SP idle for Z[\� period of time.

If the GPM predicts the coming of � requests
within � _ amount of time after timeout expires:

The SFC generates a fake request in order to
prevent the SP from entering the sleep state.

Else If it exists application type i’, such as RQ(i’)
contains the a requests

Perform application type switch from i to i’.
The LPM turns the SP into the active state for
processing requests.

 Else
The LPM turns the SP into the sleep state.
Then we reach decision epoch &���.

Else if the SP is in the sleep state:
If SQ contains less than � requests:

If it exists application type i’, such as RQ(i’)
contains the a requests

Perform application type switch from i to i’.
The LPM turns the SP into the active state for
processing requests.

Else
Block all incoming requests using the SFC so that
the SP keeps in the sleep state until the RQ(i)
accumulates � requests.

Then we reach decision epoch &���.
Else

Transfer the requests buffered in the SQ to CQ so
that the SP will turn on to process requests until it
becomes idle again.
Then we reach decision epoch &���.

Evaluate the chosen action �̀ using the TD(λ) technique.
Evaluate the chosen action � using the TD(λ) technique.

 12

References
[1] U.A. Khan, B. Rinner, A Reinforcement Learning Framework for

Dynamic Power Management of a Portable, Multi-camera Traffic
Monitoring System, Green Computing and Communications
(GreenCom), 2012, pp. 557 – 564.

[2] L. Benini, A. Bogliolo, G. De Micheli, A survey of design
techniques for system level dynamic power management, IEEE
Trans. on VLSI Systems, 2000, Vol. 8, Issue 3, 299-316.

 [3] M. Srivatava, A. Chandrakasan, R. Brodersen, Predictive system
shutdown and other architectural techniques for energy efficient
programmable computation, IEEE Trans. on VLSI, 1996.

[4] C. H. Hwang, A. C. Wu, A predictive system shutdown method
for energy saving of event-driven computation, ICCAD, 1997.

[5] L. Benini, G. Paleologo, A. Bogliolo, G. De Micheli, Policy
optimization for dynamic power management, IEEE Trans. on
CAD, 1999, Vol. 18, 813-833.

[6] Q. Qiu, M. Pedram, Dynamic Power Management Based on
Continuous-Time Markov Decision Processes, DAC, 1999.

[7] T. Simunic, L. Benini, P. Glynn, G. De Micheli, Event-driven
power management, IEEE Trans. on CAD, 2001.

 [8] Y.Siyu, D. Zhu, Y. Wang, M. Pedram, Reinforcement learning

based dynamic power management with a hybrid power

supply, IEEE Computer Design (ICCD), Sept 2012, pp.81-86.

[9] H. Jung, M. Pedram, Dynamic power management under
uncertain information, DATE, Apr. 2007, pp. 1060-1065.

[10] G. Dhiman, T. Simunic Rosing, Dynamic power management
using machine learning, ICCAD, Nov. 2006, pp. 747-754.

[11] Y. Tan, W. Liu, Q. Qiu, Adaptive Power Management Using
Reinforcement Learning, ICCAD, Nov. 2009, pp. 461-467.

[12] Y. Wang, Q. Xie, A.C. Ammari, M. Pedram, Deriving a near-
optimal power management policy using model-free
reinforcement learning and Bayesian classification, DAC, Jun.
2011, pp. 875-878.

[13] S. Bradtke , M. Duff, Reinforcement learning methods for
continuous-time Markov decision problems, in Advances in
Neural Information Processing Systems 7 , MIT Press, 1995, pp.
393-400.

[14] P. Rong, M. Pedram, A Stochastic Framework for Hierarchical
System-Level Power Management in Proc. of Symp. on Low
Power Electronics and Design, Aug. 2005, pp. 269-274.

 [15] Z. Ren, B.H. Krogh, R. Marculescu, Hierarchical adaptive
dynamic power management, IEEE Trans. Computers, Vol. 54,
No. 4, April 2005, pp. 409–420.

[16] M. Triki, Y. Wang, A.C. Ammari, M. Pedram, Dynamic power
management of a computer with self power-managed components
in Int. Workshop on Power and Timing Modeling, Optimization
and Simulation (PATMOS 2012), Newcastle University, 4-6
September 2012.

[17]V.L. Prabha, E.C. Monie, Hardware Architecture of
Reinforcement Learning Scheme for Dynamic Power
Management in Embedded Systems, EURASIP Journal on
Embedded Systems, Vol. 2007.

 [18]A. Paul, C. Bo-Wei, J. Jeong, J. Wang,
Dynamic power management for embedded ubiquitous systems,
International Conference on Orange Technologies (ICOT), 2013,
pp. 67 – 71.

 [19] R. S. Sutton, A. G. Barto, Reinforcement Learning: An
Introduction, MIT Press, Cambridge, MA, 1998.

[20] T. Simunic, S. Boyd, Managing power consumption in networks
on chips, in DATE, 2002.

