
Continuous Frequency Adjustment Technique Based on
Dynamic Workload Prediction1

Hwisung Jung and Massoud Pedram

University of Southern California
Department of Electrical Engineering

{hwijung, pedram}@usc.edu

1 This research is supported in part by NSF grant no. 0509564.

 Abstract
Real-time embedded systems increasingly rely on dynamic power
management to balance between power and performance goals. In
this paper, we present a technique for continuous frequency
adjustment (CFA) which enables one to adjust the frequency values
of various functional blocks in the system at very low granularity so
as to minimize energy while meeting a performance constraint. A
key feature of the proposed technique is that the workload
characteristics for functional blocks are effectively captured at
runtime to generate a frequency value that is continuously adjusted,
thereby eliminating the delay and energy penalties incurred by
transitions between power-saving modes. The workload prediction
is accomplished by solving an initial value problem (IVP). Applying
CFA to a real-time system in 65nm CMOS technology, we
demonstrate the effectiveness of the proposed technique by
reporting 13.6% energy saving under a performance constraint.

1. Introduction
As more power-managed functional blocks (FBs) are being built
to realize power-saving opportunities by utilizing dynamic
voltage and frequency scaling (DVFS) techniques, the task of
integrating multiple power management policies in a single
system is becoming ever more challenging. Furthermore,
although current CMOS technologies allow an increasing
number of different clock and voltage domains to be specified
on the same chip, traditional dynamic power management
(DPM) methods have not been able to take full advantage of
DVFS techniques due to intricate trade-offs between the power-
savings and performance constraints. This is because a system-
level power manager (PM) has only limited control over power-
saving techniques due to additional power and delay costs
incurred during power-mode transitions [1]. In addition, the
power management routine, most likely residing in the operating
system, can itself become a heavy duty since it has to
continually monitor the workload of FBs and send DVFS
assignment commands to them [2].

DVFS-enabling techniques depend not only on the
configuration of the voltage/frequency control circuits, but also
on the efficiency of the prediction mechanism used by the PM to
set the voltage/frequency levels. As shown in [3]-[8], the
problem of determining a power management policy with DVFS

techniques at system-level has received a lot of attention. In [3],
the authors present a frequency management method based on
variable updated intervals, instead of using a fixed update
interval, where a frequency scheduling method is based on
effective deadline mechanism. The analytical models for
selecting an optimal DVFS under tight performance constraints
are presented in [4][5]. Reference [6] presents an online DVFS
technique by utilizing interface queues to guide the DVFS
control in a multiple clock and voltage domain architecture. A
voltage island-based power management technique is proposed
in [7] to meet a performance constraint in multi-threshold
CMOS technologies. Authors of [8] present an optimization
technique for power mode transitions under timing constraints.

Although all of the above techniques perform DVFS based
on power management policies, little attention has been paid to
handle variable frequency adjustment and prediction techniques
by using hardware-control mechanisms, which minimizes the
computational efforts by the PM. Furthermore, traditional
approaches for DPM, mainly based on the software-control of
power-saving techniques, are highly dependent on the speed of
operating system, which incur non-negligible overhead. Thus,
minimizing the overhead of power-mode transitions in real-time
with the hardware-control architecture is an important step to
guarantee the quality of DPM techniques. This is precisely the
contribution of the present paper.

In this paper, we present a power management framework
for dynamic continuous frequency adjustment which provides
power-saving opportunities by dynamically and continuously
adjusting a variable operating frequency. The basic idea of CFA
is to eliminate the power and delay costs incurred by the power-
mode transitions which involve clock generators (e.g., PLL).
Predicting a workload of tasks is formulated as an initial value
problem (IVP) [9], where the frequency is adjusted by the
proposed dynamic frequency adapter. Note that the IVP
formulation in the paper determines the workload value of
future time subsequent to a given time.

The remainder of this paper is organized as follows. Section
2 provides a motivational example, while section 3 describes the
proposed architecture. In section 4, we present the details of the
workload prediction technique. Experimental results and
conclusion are given in section 5 and 6.

2. Motivational Example
According to conventional DPM approaches [10], where many
FBs in a system are equipped with multiple power-performance
states (e.g., sleep, idle, and active modes), a PM sends an
command, i.e., DFS (Dynamic Frequency Scaling) values, to
each FB. For example, as shown in Figure 1, where we assume
each FB has three active states which is controlled by DFS
values, the service provider (SP) or the service requestor (SR)
can switch between the different speed-levels, where DFS1 <
DFS2 < DFS3 in terms of frequency values. The PM monitors
the current workload of the system by looking into the
corresponding service queue (SQ) to adjust the DFS value for
each FB. A transition into or out of a power-performance state
(i.e., dotted arrows in the figure), however, consumes energy
and/or incurs delay penalty that may not be negligible.

Workload
analysis

DFS value

DFS3

sleep standby

active

DFS2DFS1

Service Requestor

Service queue DFS3

sleep standby

active

DFS2DFS1

Service Provider

DFS value

w
or

kl
oa

d

Power Manager
Policy
determination

Workload
analysis

DFS value

DFS3

sleep standby

active

DFS2DFS1

Service Requestor

Service queue DFS3

sleep standby

active

DFS2DFS1

Service Provider

DFS value

w
or

kl
oa

d

Power Manager
Policy
determination

Figure 1. Conventional dynamic power management approach.

Attempting to greedily respond to the workload changes so
as to provide an optimal DVFS value can result in significant
energy and delay overheads associated with mode transitions.
To solve this problem, a software component, which can predict
the required future performance level of the system to prevent
frequent power mode transitions, has been incorporated into the
power managers of [2][3]. Although these prediction methods
help reduce the energy overheads, there are some disadvantages
because i) a software-oriented prediction algorithm increases the
computational overhead of the PM that resides in the driver or
the operating system, and ii) when using a PLL (Phase-Lock
Loop) to effect a frequency change, the FB may be stalled
during the lock time of the PLL. Consequently, use of the PLL
to realize the DFS setting commanded by the PM may result in
sizeable performance penalty [11]. The main contribution of our
work is that we predict the workload level for the next time step
and ramp up (or down) the system frequency in a continuous
manner until the target frequency value is achieved, where there
is never a need for stalling the FB.

3. Power Management Architecture
In this section we present a platform-specific continuous
frequency adjustment (CFA) technique. The target system is
comprised of various software and hardware modules, which
include a power manager (PM), a performance monitoring unit
(PMU), and a dynamic frequency adapter (DFA), as depicted in
Figure 2. Note that the DFA is implemented as a hardware
module to minimize software-oriented computational efforts.

variable
frequency

Power Manager

Workload
prediction

Policy
determination

Performance
Monitor

Dynamic
Frequency
Adapter

software hardware

variable
frequency

Power Manager

Workload
prediction

Policy
determination

Performance
Monitor

Dynamic
Frequency
Adapter

software hardware

Figure 2. The proposed power management architecture.

3.1 Power Manager
The main goal of the PM is to determine and execute a power
management policy (i.e., one that maps workloads to power
state transition commands so as to minimize the system energy
dissipation), based on the information provided by the PMU.
The PM consists of a workload prediction and a policy
determination. In this paper, we focus on the selection of
optimal frequency value and continuous (gradual) change in
system frequency moving from current value to target value.
3.2 Performance monitoring unit
The PMU profiles and analyzes the workload (e.g., the arrival
rate of tasks) characteristics by looking into the SQ. In our
problem setup, the SQ of each FB is represented by the G/M/1
queuing model, whereby the inter-arrival times are arbitrarily
distributed and the service times are exponentially distributed
[12]. Note that the service time behavior of each FB is captured
in the form of the service time distribution for the FB when it is
in the active mode. Similarly, the input request behavior (i.e.,
workload) for each FB is modeled by the request inter-arrival
time distribution at the corresponding input queue. Details of the
G/M/1 queuing model are omitted here to save space. Interested
reader may refer to [12].
3.3 Dynamic Frequency Adapter
When the workload of an FB changes frequently, the task of
deciding what frequency value to assign to the FB becomes
increasingly difficult. Furthermore, the conventional PLL-based
frequency scaling techniques waste energy and delay when they
change the frequency values. To overcome these shortcomings,
we present a workload-aware DFA to generate a continuously
varying frequency for each FB.

One benefit of using a variable frequency is that the DFA
enables each FB to remain functional even when its frequency is
being adjusted, while satisfying the required performance.
Furthermore, the DFA is able to increase (or decrease) the
operating frequency value at a slow or fast rate with the help of
the PMU, depending on how slow or fast the workload is
changing and what the user-specified preferences are, as
depicted in Figure 3.

clock

clock

Increase frequency at fast rate

Increase frequency at slow rate

target
frequency

Time

Time

(a)

(b)

target
frequency

clock

clock

Increase frequency at fast rate

Increase frequency at slow rate

target
frequency

Time

Time

(a)

(b)

target
frequency

Figure 3. Continuously changing the frequency at a slow pace
(a) or fast pace (b).

The procedure for continuously adjusting the frequency is
explained as follows. The PM examines the workload of each
FB at decision epoch n+1 for the time interval ranging from
decision epoch n to n+1, and subsequently, sets the frequency
value of each FB for the next time ranging from n+1 to next
decision epoch at time n+2 (see the next section for details of
the frequency prediction algorithm). Note that each time-based
or interrupt-based event occurrence is called a decision epoch.
Assume that a mapping table for selecting an optimal operating
frequency as a function of the workload has been provided. If
the workload change is fast (slow), the interval during the
frequency adjustment is performed will be shortened
(lengthened) to improve DFA responsiveness. In the proposed
framework, determining which frequency level to use in what
time interval is implemented in hardware.

Figure 4 shows the block diagram of the proposed DFA
which generates a variable frequency by using a pulse width
modulation technique. The DFA is implemented inside a chip,
where we effectively manage noise and signal integrity
problems. Note that we apply this architecture to a specific
target system (e.g., high-speed networking controller), where the
operating frequency is rather low (e.g., around 200MHz), yet
the system provides high throughput.

 current_rate

Variable
frequency

predict_rate
Workload
comparator

Pulse
width
modulator

Interval
adjuster

Frequency
generatorclk

decision_epoch

reset

Power
manager

Dynamic frequency adaptersoftware

current_rate

Variable
frequency

predict_rate
Workload
comparator

Pulse
width
modulator

Interval
adjuster

Frequency
generatorclk

decision_epoch

reset

Power
manager

Dynamic frequency adaptersoftware

Figure 4. Block diagram of DFA.

4. Workload-Driven Frequency Adjustment
In this section, we present a workload prediction technique
based on the initial value problem (IVP) formulation and a
procedure of dynamic frequency adjustment.

4.1 IVP-based Workload Prediction
Assume that, by utilizing the PMU, a PM is able to monitor the
current workload of the tasks at decision epochs t1, …, tn where
ti+1 = ti+T. Let w(t) denote the workload (i.e., the arrival rate of
tasks) of a target FB at time t and let f be a function providing
the operating frequency for the FB in terms of time and
workload in every interval [ti, ti+1]. Then, an initial value
problem (IVP) may be defined to predict w(t) as follows:

/ (,), ()
i i

w t f t w w t w∂ ∂ = = (1)

where t ∈ [ti, ti + T], and wi denotes the workload at the
beginning of the current interval. The IVP limits the solution by
an initial condition, which determines the value of solution at all
future time t in the current interval. Although f can be any
general function, in practice, we assume a linear function form:
f=aw(t)+b where a and b are appropriately-calculated slope and
offset coefficients.

Since the initial workload value, wi, is provided by the PMU, it
is possible to integrate Eqn. (1) to obtain w(t) in the interval [ti,
ti+1]. The standard solution method for the IVP is to approximate
the solution of the ordinary differential equation (ODE) by
calculating the next value of w, i.e., w(t+h) as the summation of
the present value w(t) plus the product of the size of a time step
h and an estimated slope w’(t) i.e.,

() () '()+ = +w t h w t hw t (2)

where the smaller this time step h is, the more accurate the
results will be. The difference between different ODE solvers is
in how they approximate w’(t) and whether and how they
adaptively adjust h.

Figure 5. Evaluation of various IVP solutions.

Considering the accuracy and overhead, we have evaluated a
number of methods for solving the IVP, which include the
Euler’s method, the 4th-order Runge-Kutta method, and the 4th-
order Adams predictor-corrector method [9]. In Figure 5, we
assume that w(0) = 0.3 as an initial value. The time step size is
defined as h = T/K, where the time interval [ti, ti + T] is divided
into K equal-length segments. It is clearly seen that the Euler
method, the simplest approach for solving the IVP, shows low
accuracy (i.e., high error) in predicting the workload value,
where the error is defined as the difference between the exact
values and the computed approximates. However, the 4th-order
Runge-Kutta method exhibits low error and consistent stability
in predicting the workload value. The 4th-order Adams
predictor-corrector is also accurate, but has higher
computational complexity.

Figure 6 shows the trade-off between the accuracy and time
step h in terms of performance of workload prediction, where
time (x-axis) is defined in terms of successive time steps. In this
evaluation, the 4th-order Runge-Kutta method is used with an
initial value w(0) = 0.3. The determination of the time step size
is crucial since smaller time step increases the computational
overhead in the software (e.g., operating system). We use
various values for time step size h (= 2, 5, and 10), where T is
fixed, while monitoring the error in predicting the workload
values. The time step of size 2 indicates great accuracy, but
increases computational efforts by the software (due to more
computations in the same interval), whereas step size of 10

exhibits lower computational efforts with lower accuracy. In our
problem setup, we have empirically observed that a time step
size of 5 provides a reasonable trade-off point.

Figure 6. Trade-off between the performance and time step h.

time

1. Compute

W
or

kl
oa

d

h
/ 2h

Decision epochs

3. Predict

()exactw t
(/ 2)+predw t h2. Estimate

()+predw t h

time

1. Compute

W
or

kl
oa

d

h
/ 2h

Decision epochs

3. Predict

()exactw t
(/ 2)+predw t h2. Estimate

()+predw t h

Figure 7. Workload prediction technique based on the midpoint
method and IVP.

To make the workload prediction technique more suitable
for online implementation, an efficient one-step method known
as the midpoint method is utilized to solve the IVP. Specifically,
at time instance t in [ti, ti + T], we predict the workload value for
time t + h, based on the value at time t + h/2, which is obtained
by using the midpoint method, as depicted in Figure 7. First, the
current workload at time t is monitored by the PMU and a
frequency value is read from a pre-characterized workload-
frequency mapping table by the power manager. Note that we
do not want to use the predicted value for time t, which was
previously computed at time t – h, because we can achieve the
exact frequency value at time t. Next, the workload value at time
t + h/2 is estimated by using a moving average method, for
example, if the window size of the moving average calculator is
2, then, wpred(t + h/2) = 1/2·(wexact(t) + wexact(t – h)). This
workload value is subsequently used as the midpoint estimate of
the workload in the upcoming period. In particular, it is used
along with wexact(t) to compute wpred(t + h) by applying the IVP.

The advantage of this prediction method is that we do not
attempt to predict wpred(t + h) directly by using a moving
average method only. Instead, we estimate the workload value
for a nearer time in the future (which should provide higher
accuracy) and use that value to initially estimate the rate of
workload change in the upcoming period, followed by finally

computing wpred(t + h) by solving the IVP.

4.2 Workload-Driven Frequency Adjustment
The decision about the frequency adjustment interval is made
based on the difference between wexact(t) and wpred(t + h). For
example, if wpred(t + h) >> wexact(t), then the DFA will increases
the frequency. Clearly, if wpred(t + h) << wexact(t), then the DFA
will decrease the frequency. On the other hand, the DFA
increases (decreases) the frequency slowly if wpred(t + h) is only
a little larger (smaller) than wexact(t).

Observe the current workload w(t)

Determine the
current optimal
frequency

mapping

Estimate w(t + h/2) by midpoint method

Predict w(t + h) by solving IVP

Workload comparison

limited
power
budget ?

Increase freq. to reach f pred(t + h)
at time t + h

yes

Increase freq. to reach f pred(t + h)
at time t + h/2 no

Performance
Monitor Unit

Dynamic
Power
Manager

Dynamic
Frequency
Adapter

wpred(t + h) > wexact(t)

wpred(t + h) >> wexact(t)

Determine the
next optimal
frequency

mapping

Observe the current workload w(t)

Determine the
current optimal
frequency

mapping

Estimate w(t + h/2) by midpoint method

Predict w(t + h) by solving IVP

Workload comparison

limited
power
budget ?

Increase freq. to reach f pred(t + h)
at time t + h

yes

Increase freq. to reach f pred(t + h)
at time t + h/2 no

Performance
Monitor Unit

Dynamic
Power
Manager

Dynamic
Frequency
Adapter

wpred(t + h) > wexact(t)

wpred(t + h) >> wexact(t)

Determine the
next optimal
frequency

mapping

Figure 8. The flow of dynamic frequency adjustment method.

Figure 8 shows the flow of dynamic frequency adjustment
technique, where f pred(t + h) is the frequency value obtained
from the predicted workload and the workload-frequency
mapping table for the two cases where wpred(t + h) > or >>
wexact(t),. In this flow, we have omitted the case of wpred(t + h) <
or << wexact(t), which can be handled in a similar way. Note that
when wpred(t + h) = wexact(t), the current frequency value is
maintained. It is worthwhile to mention that the DFA is capable
of handling the throughput and power budget. If there is a target
throughput, for example, the DFA will slowly increase the
frequency up to a target frequency value that results in just-
enough throughput and minimum power dissipation.

4.3 Mapping of Workloads to Optimal Frequency
The entries of the workload-frequency mapping table
correspond to various values of workload (i.e., the arrival rate of

tasks). Figure 9 illustrates the mapping process from workloads
to an optimal operating frequency, assuming that 0.1 ≤ the
arrival rate ≤ 0.9. In this figure, the pre-characterized mapping
table is achieved through extensive offline simulations during
design time, considering performance characteristics of each FB
provided by the user or application, in a similar way as [5][14].
For example, when a power manager predicts the workload for
the near future, an optimal frequency value for the next decision
epoch is selected and provided to the DFA which will
continuously change the operating frequency from its present
value to the target value. Note that mapping from workload to
operating frequencies is achieved by a simple linear function
while considering the maximum and minimum operating
frequencies that can be applied to the FB in question.

 workload
(arrival rate)

[0.2 0.3)

[0.3 0.4)

[0.4 0.5)

[0.5 0.6)

[0.6 0.7)

[0.7 0.8)

pre-characterized
mapping table

operating
frequency (MHz)

120

130

140

160

180

200

Performance
monitor

Power
manager Dynamic

Frequency
Adapter

mapping

workload
(arrival rate)

[0.2 0.3)

[0.3 0.4)

[0.4 0.5)

[0.5 0.6)

[0.6 0.7)

[0.7 0.8)

pre-characterized
mapping table

operating
frequency (MHz)

120

130

140

160

180

200

Performance
monitor

Power
manager Dynamic

Frequency
Adapter

mapping

Figure 9. Mapping of workloads to optimal operating

frequency values for each FB.

5. Experimental Results
In the experimental setup, we applied the proposed CFA
technique to a high-speed network controller (i.e., gigabit
Ethernet controller) which includes IEEE 802.3 PHY/MAC
blocks, RISC processor, direct memory access (DMA) engine,
PCI-E core, etc. as shown in Figure 10. This embedded system
is implemented with TSMC 65nmLP library. To capture power-
saving opportunities by using the proposed technique, we
consider a part of the process of receiving packets inside the
system, which involves Ethernet MAC (EMAC) block and
control block. Note that it will not hurt the quality of the paper
if we concentrate on these blocks (i.e., inside dotted box in
Figure 10) to simplify the experimental setup, since they
sufficiently exhibit the characteristics of the SR, the SP, and the
SQ. Thus, the continuously varying frequency value is applied
to the control block (i.e., the SP) by the hardware-implemented
DFA, where its frequency is optimally adjusted.

PHY

Et
he

rn
et

EMAC

RISC
Core

DMA PCI-E
I/FControl

Memory
Arbiter

PC
I E

xp
re

ss
 B

us

Memory

DFA

PHY

Et
he

rn
et

EMAC

RISC
Core

DMA PCI-E
I/FControl

Memory
Arbiter

PC
I E

xp
re

ss
 B

us

Memory

DFA

Figure 10. Block diagram of simplified Ethernet controller.

The functions performed by these blocks (i.e., EMAC and
control blocks) are explained briefly as follows. The EMAC
receives a data stream from the selected physical layer interface
and performs address checking, CRC calculation, and
CSMA/CD functions [15]. The control block calculates
checksum and parses TCP/IP headers and classifies the frames
based on a set of matching rules. While processing the control
data in the control block, the frame data is temporarily stored in
memory buffers before being sent to local interconnect through
the PCIE interface.

Table 1. Energy dissipation (normalized) and utilization of the
control block.

 Arrival rate of tasks

0.1 0.2 0.3 0.4 0.5 0.8
1000Base-T

Utilization (%)

Energy (normalized) 1.96 2.62 6.674.37 5.04 5.85

0.6 0.7 0.9

8.89 9.86 10.83

9.5 14.2 54.020.6 32.1 41.8 63.2 67.5 73.5

Arrival rate of tasks

0.1 0.2 0.3 0.4 0.5 0.8
1000Base-T

Utilization (%)

Energy (normalized) 1.96 2.62 6.674.37 5.04 5.85

0.6 0.7 0.9

8.89 9.86 10.83

9.5 14.2 54.020.6 32.1 41.8 63.2 67.5 73.5

Figure 11. Power consumption of the service queue.

We first achieve the power and energy dissipation of the service
provider (i.e., control block) and the service queue (i.e., memory)
by using TSMC 65nmLP library, which has 3 optional operating
voltages (e.g., 1.08V, 1.20V, and 1.29V). To calculate accurate
power values for static and dynamic power consumption, we
used SAIF (Switching Activity Interchange File) based on back-
annotated RTL simulation of the system with Power compiler
[16]. To achieve the energy dissipation of the control block,
different workloads (e.g., the arrival rate of traffic) are used to
generate the multiple columns in Table 1, where the dynamic
and static power values are considered. For simulation setup, we
set that the maximum full duplex bandwidth (e.g., 1000Base-T)
is achieved. Note that the overhead of designing the DFA block
inside the system is negligible due to its small number of gate
counts (around 150 standard cells) and power dissipation
(around 2uW including dynamic and static power). Figure 11
shows power consumption of the service queue in terms of the
normalized arrival rate of the traffic. We set the packet size to
64bytes and the service time to 1 (by using the G/M/1 queuing
model) for simplicity. For example, when the arrival rate of the
tasks is 0.29 (normalized), the memory size necessary for
buffering the incoming data is 5.8 times greater than the case of

where the arrival rate is 0.04.
Next, we evaluate the effectiveness of the proposed CFA

technique. We assume that the workload changes dynamically
from 0.1 to 0.9. For comparison purpose, we implemented a
couple of power management policies (denoted by PM1 and
PM2 and described below) as representatives of the
conventional methods, similar to [7][13]. We use three set of
frequency values to simplify the experimental setup (F1 < F2 <
F3 in terms of frequency values).
PM1: Utilize dynamic frequency scaling technique, while

accounting for a 100us power-mode transition overhead;
the frequency assignment policy is as follows.

- Use the lowest F1 value when 0.1 ≤ the arrival rate ≤ 0.3,
i.e., low workload.

- Likewise, use F2 and F3 values when 0.3 < the arrival
rate ≤ 0.6 and 0.6 < the arrival rate ≤ 0.9, respectively.

PM2: The same as PM1 except that a frequency change is
avoided when the same frequency changes occurs
consecutively. More precisely, let Fi denote the value of
frequency at time i.

- Set Fi+1 = Fi, if the predicted Fi+1 value is the same as Fi-1
value.

Figure 12. Evaluation of the proposed CFA technique.

Table 2. Power and energy savings of the CFA.
 No. of decision

epoch

100

5000

500

1000

Workload distribution

Mid High

3126 43

Average Power (mW) Power saving over

PM1 PM2 CFA

Energy saving over

PM1 PM2 PM1 PM2

13.2 11.8 11.4 2.3%12.9% 11.4% 8.8%

161143 196 13.3 11.7 11.5 2.2%13.3% 12.0% 9.4%

306277 417 13.4 11.8 11.5 2.1%13.6% 12.3% 9.5%

15521494 1954 13.4 11.9 11.6 2.1%13.1% 12.1% 9.6%

Low

No. of decision
epoch

100

5000

500

1000

Workload distribution

Mid High

3126 43

Average Power (mW) Power saving over

PM1 PM2 CFA

Energy saving over

PM1 PM2 PM1 PM2

13.2 11.8 11.4 2.3%12.9% 11.4% 8.8%

161143 196 13.3 11.7 11.5 2.2%13.3% 12.0% 9.4%

306277 417 13.4 11.8 11.5 2.1%13.6% 12.3% 9.5%

15521494 1954 13.4 11.9 11.6 2.1%13.1% 12.1% 9.6%

Low

Then, we generate dynamic workloads randomly with 100, 500,
1000, and 5000 numbers of power management decision epochs
and apply both above-mentioned conventional policies and the
proposed power management technique to the control block.
The simulation results in Figure 12, which corresponds to the
case of 100 decision epochs, show that the proposed CFA
technique achieves energy savings compared to the conventional
methods. Results in Table 2, which also reports the
characteristics of the workload distribution (e.g., Low = 0.1 ≤
the arrival rate ≤ 0.3), demonstrate that, compared to the PM1

policy, our approach achieves power and energy savings up to
13.6% and 12.3%, respectively.

6. Conclusion
In this paper, we addressed the problem of power management
techniques in the context of handling dynamic frequency
management, where power-mode transition cost is no longer
negligible in the nano-scaled systems. We proposed a
continuous frequency adjustment technique based on a workload
prediction method, which minimizes the transition cost.
Experimental results with a 65nm design show that the proposed
technique ensures robust energy savings under dynamic
workloads.

References
[1] D. Li, Q. Xie, and P.H. Chou, “Scalable Modeling and Optimization of

Mode Transitions Based on Decoupled Power Management
Architecture,” Proc. of DAC, Jun., 2003.

[2] Y-H. Lu, and G. De Micheli, “Comparing System-Level Power
Management Policies,” IEEE Design & Test of Computers, Vol. 18,
Issue 2, Mar.-Apr., 2001.

[3] M. Najibi, et al., “Dynamic Voltage and Frequency Management
Based on Variable Update Intervals for Frequency Setting,” Proc. of
ICCAD, Nov., 2006.

[4] Y. Cho, N. Chang, C. Chakrabarti, and S. Vrudhula, “High-Level
Power Management of Embedded Systems with Application-Specific
Energy Cost Functions,” Proc. of DAC, Jul., 2006.

[5] P. Rong and M. Pedram, “Power-aware Scheduling and Dynamic
Voltage Setting for Tasks Running on a Hard Real-time System,”
Proc. of ASP-DAC, Jan., 2006.

[6] A. Iyer, and D. Marculescu, “Power Efficiency of Voltage Scaling in
Multiple Clock, Multiple Voltage Cores,” Proc. of ICCAD, Nov. 2002.

[7] Q. Wu, P. Juang, M. Martonosi, and D.W. Clark, “Voltage and
Frequency Control with Adaptive Reaction Time in Multiple-Clock
Domain Processors,” Proc. of 11th Symposium on HPCA, Feb., 2005.

[8] J. Liu, and P.H. Chou, “Optimizing Mode Transition Sequences in Idle
Intervals for Component-Level and System-Level Energy
Minimization,” Proc. of ICCAD, Nov., 2004.

[9] J.R. Dormand, Numerical Methods for Differential Equations: A
Computational Approach, CRC Publisher, Feb., 1996.

[10] L. Benini, and G. De. Micheli, Dynamic Power Management: Design
Techniques and CAD Tools, Kluwer Academic Publishers, 1998.

[11] R. Zhang, and G. La Rue, “Fast Acquisition Clock and Data Recovery
Circuit with Low Jitter,” IEEE Journal of Solid-State Circuits, Vol. 41,
No. 5, May, 2006.

[12] S. M. Ross, Introduction to Probability Models, Academic Press, 8th
edition, Dec., 2002.

[13] P. Choudhary, et al., “Hardware Based Frequency/Voltage Control of
Voltage Frequency Island Systems,” Proc. of CODES, Oct., 2006.

[14] H. Jung, and M. Pedram, “A Unified Framework for System-level
Design: Modeling and Performance Optimization of Scalable
Networking System,” Proc. of ISQED, Mar., 2007.

[15] http://www.ieee802.org/802_tutorials IEEE 802.3 tutorial. Jul., 2005.
[16] http://www.synopsys.com Synopsys Power Compiler Documents.

