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                                   Abstract 
Real-time embedded systems increasingly rely on dynamic power 
management to balance between power and performance goals. In 
this paper, we present a technique for continuous frequency 
adjustment (CFA) which enables one to adjust the frequency values 
of various functional blocks in the system at very low granularity so 
as to minimize energy while meeting a performance constraint. A 
key feature of the proposed technique is that the workload 
characteristics for functional blocks are effectively captured at 
runtime to generate a frequency value that is continuously adjusted, 
thereby eliminating the delay and energy penalties incurred by 
transitions between power-saving modes. The workload prediction 
is accomplished by solving an initial value problem (IVP). Applying 
CFA to a real-time system in 65nm CMOS technology, we 
demonstrate the effectiveness of the proposed technique by 
reporting 13.6% energy saving under a performance constraint. 

1. Introduction 
As more power-managed functional blocks (FBs) are being built 
to realize power-saving opportunities by utilizing dynamic 
voltage and frequency scaling (DVFS) techniques, the task of 
integrating multiple power management policies in a single 
system is becoming ever more challenging. Furthermore, 
although current CMOS technologies allow an increasing 
number of different clock and voltage domains to be specified 
on the same chip, traditional dynamic power management 
(DPM) methods have not been able to take full advantage of 
DVFS techniques due to intricate trade-offs between the power-
savings and performance constraints. This is because a system-
level power manager (PM) has only limited control over power-
saving techniques due to additional power and delay costs 
incurred during power-mode transitions [1]. In addition, the 
power management routine, most likely residing in the operating 
system, can itself become a heavy duty since it has to 
continually monitor the workload of FBs and send DVFS 
assignment commands to them [2]. 

DVFS-enabling techniques depend not only on the 
configuration of the voltage/frequency control circuits, but also 
on the efficiency of the prediction mechanism used by the PM to 
set the voltage/frequency levels. As shown in [3]-[8], the 
problem of determining a power management policy with DVFS 

techniques at system-level has received a lot of attention. In [3], 
the authors present a frequency management method based on 
variable updated intervals, instead of using a fixed update 
interval, where a frequency scheduling method is based on 
effective deadline mechanism. The analytical models for 
selecting an optimal DVFS under tight performance constraints 
are presented in [4][5]. Reference [6] presents an online DVFS 
technique by utilizing interface queues to guide the DVFS 
control in a multiple clock and voltage domain architecture. A 
voltage island-based power management technique is proposed 
in [7] to meet a performance constraint in multi-threshold 
CMOS technologies. Authors of [8] present an optimization 
technique for power mode transitions under timing constraints. 

Although all of the above techniques perform DVFS based 
on power management policies, little attention has been paid to 
handle variable frequency adjustment and prediction techniques 
by using hardware-control mechanisms, which minimizes the 
computational efforts by the PM. Furthermore, traditional 
approaches for DPM, mainly based on the software-control of 
power-saving techniques, are highly dependent on the speed of 
operating system, which incur non-negligible overhead. Thus, 
minimizing the overhead of power-mode transitions in real-time 
with the hardware-control architecture is an important step to 
guarantee the quality of DPM techniques. This is precisely the 
contribution of the present paper. 

In this paper, we present a power management framework 
for dynamic continuous frequency adjustment which provides 
power-saving opportunities by dynamically and continuously 
adjusting a variable operating frequency. The basic idea of CFA 
is to eliminate the power and delay costs incurred by the power-
mode transitions which involve clock generators (e.g., PLL). 
Predicting a workload of tasks is formulated as an initial value 
problem (IVP) [9], where the frequency is adjusted by the 
proposed dynamic frequency adapter. Note that the IVP 
formulation in the paper determines the workload value of 
future time subsequent to a given time.  

The remainder of this paper is organized as follows. Section 
2 provides a motivational example, while section 3 describes the 
proposed architecture. In section 4, we present the details of the 
workload prediction technique. Experimental results and 
conclusion are given in section 5 and 6. 



2. Motivational Example 
According to conventional DPM approaches [10], where many 
FBs in a system are equipped with multiple power-performance 
states (e.g., sleep, idle, and active modes), a PM sends an 
command, i.e., DFS (Dynamic Frequency Scaling) values, to 
each FB. For example, as shown in Figure 1, where we assume 
each FB has three active states which is controlled by DFS 
values, the service provider (SP) or the service requestor (SR) 
can switch between the different speed-levels, where DFS1 < 
DFS2 < DFS3 in terms of frequency values. The PM monitors 
the current workload of the system by looking into the 
corresponding service queue (SQ) to adjust the DFS value for 
each FB. A transition into or out of a power-performance state 
(i.e., dotted arrows in the figure), however, consumes energy 
and/or incurs delay penalty that may not be negligible.  
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Figure 1. Conventional dynamic power management approach. 

Attempting to greedily respond to the workload changes so 
as to provide an optimal DVFS value can result in significant 
energy and delay overheads associated with mode transitions. 
To solve this problem, a software component, which can predict 
the required future performance level of the system to prevent 
frequent power mode transitions, has been incorporated into the 
power managers of [2][3]. Although these prediction methods 
help reduce the energy overheads, there are some disadvantages 
because i) a software-oriented prediction algorithm increases the 
computational overhead of the PM that resides in the driver or 
the operating system, and ii) when using a PLL (Phase-Lock 
Loop) to effect a frequency change, the FB may be stalled 
during the lock time of the PLL. Consequently, use of the PLL 
to realize the DFS setting commanded by the PM may result in 
sizeable performance penalty [11]. The main contribution of our 
work is that we predict the workload level for the next time step 
and ramp up (or down) the system frequency in a continuous 
manner until the target frequency value is achieved, where there 
is never a need for stalling the FB. 

3. Power Management Architecture 
In this section we present a platform-specific continuous 
frequency adjustment (CFA) technique. The target system is 
comprised of various software and hardware modules, which 
include a power manager (PM), a performance monitoring unit 
(PMU), and a dynamic frequency adapter (DFA), as depicted in 
Figure 2. Note that the DFA is implemented as a hardware 
module to minimize software-oriented computational efforts. 
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Figure 2. The proposed power management architecture. 

3.1 Power Manager 
The main goal of the PM is to determine and execute a power 
management policy (i.e., one that maps workloads to power 
state transition commands so as to minimize the system energy 
dissipation), based on the information provided by the PMU. 
The PM consists of a workload prediction and a policy 
determination. In this paper, we focus on the selection of 
optimal frequency value and continuous (gradual) change in 
system frequency moving from current value to target value.  
3.2 Performance monitoring unit 
The PMU profiles and analyzes the workload (e.g., the arrival 
rate of tasks) characteristics by looking into the SQ. In our 
problem setup, the SQ of each FB is represented by the G/M/1 
queuing model, whereby the inter-arrival times are arbitrarily 
distributed and the service times are exponentially distributed 
[12]. Note that the service time behavior of each FB is captured 
in the form of the service time distribution for the FB when it is 
in the active mode. Similarly, the input request behavior (i.e., 
workload) for each FB is modeled by the request inter-arrival 
time distribution at the corresponding input queue. Details of the 
G/M/1 queuing model are omitted here to save space. Interested 
reader may refer to [12]. 
3.3 Dynamic Frequency Adapter 
When the workload of an FB changes frequently, the task of 
deciding what frequency value to assign to the FB becomes 
increasingly difficult. Furthermore, the conventional PLL-based 
frequency scaling techniques waste energy and delay when they 
change the frequency values. To overcome these shortcomings, 
we present a workload-aware DFA to generate a continuously 
varying frequency for each FB.  

One benefit of using a variable frequency is that the DFA 
enables each FB to remain functional even when its frequency is 
being adjusted, while satisfying the required performance. 
Furthermore, the DFA is able to increase (or decrease) the 
operating frequency value at a slow or fast rate with the help of 
the PMU, depending on how slow or fast the workload is 
changing and what the user-specified preferences are, as 
depicted in Figure 3. 
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Figure 3. Continuously changing the frequency at a slow pace 
(a) or fast pace (b). 



The procedure for continuously adjusting the frequency is 
explained as follows. The PM examines the workload of each 
FB at decision epoch n+1 for the time interval ranging from 
decision epoch n to n+1, and subsequently, sets the frequency 
value of each FB for the next time ranging from n+1 to next 
decision epoch at time n+2 (see the next section for details of 
the frequency prediction algorithm). Note that each time-based 
or interrupt-based event occurrence is called a decision epoch. 
Assume that a mapping table for selecting an optimal operating 
frequency as a function of the workload has been provided. If 
the workload change is fast (slow), the interval during the 
frequency adjustment is performed will be shortened 
(lengthened) to improve DFA responsiveness. In the proposed 
framework, determining which frequency level to use in what 
time interval is implemented in hardware. 

Figure 4 shows the block diagram of the proposed DFA 
which generates a variable frequency by using a pulse width 
modulation technique. The DFA is implemented inside a chip, 
where we effectively manage noise and signal integrity 
problems. Note that we apply this architecture to a specific 
target system (e.g., high-speed networking controller), where the 
operating frequency is rather low (e.g., around 200MHz), yet 
the system provides high throughput.  
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Figure 4. Block diagram of DFA. 

4. Workload-Driven Frequency Adjustment 
In this section, we present a workload prediction technique 
based on the initial value problem (IVP) formulation and a 
procedure of dynamic frequency adjustment. 

4.1 IVP-based Workload Prediction 
Assume that, by utilizing the PMU, a PM is able to monitor the 
current workload of the tasks at decision epochs t1, …, tn where 
ti+1 = ti+T. Let w(t) denote the workload (i.e., the arrival rate of 
tasks) of a target FB at time t and let f be a function providing 
the operating frequency for the FB in terms of time and 
workload in every interval [ti, ti+1]. Then, an initial value 
problem (IVP) may be defined to predict w(t) as follows: 

/ ( , ), ( )
i i

w t f t w w t w∂ ∂ = =  (1) 

where t ∈ [ti, ti + T], and wi denotes the workload at the 
beginning of the current interval. The IVP limits the solution by 
an initial condition, which determines the value of solution at all 
future time t in the current interval. Although f can be any 
general function, in practice, we assume a linear function form:  
f=aw(t)+b where a and b are appropriately-calculated slope and 
offset coefficients.  

Since the initial workload value, wi, is provided by the PMU, it 
is possible to integrate Eqn. (1) to obtain w(t) in the interval  [ti, 
ti+1]. The standard solution method for the IVP is to approximate 
the solution of the ordinary differential equation (ODE) by 
calculating the next value of w, i.e., w(t+h) as the summation of 
the present value w(t) plus the product of the size of a time step 
h and an estimated slope w’(t) i.e.,  

( ) ( ) '( )+ = +w t h w t hw t  (2) 

where the smaller this time step h is, the more accurate the 
results will be. The difference between different ODE solvers is 
in how they approximate w’(t) and whether and how they 
adaptively adjust h. 

 

Figure 5. Evaluation of various IVP solutions. 

Considering the accuracy and overhead, we have evaluated a 
number of methods for solving the IVP, which include the 
Euler’s method, the 4th-order Runge-Kutta method, and the 4th-
order Adams predictor-corrector method [9]. In Figure 5, we 
assume that w(0) = 0.3 as an initial value. The time step size is 
defined as h = T/K, where the time interval [ti, ti + T] is divided 
into K equal-length segments. It is clearly seen that the Euler 
method, the simplest approach for solving the IVP, shows low 
accuracy (i.e., high error) in predicting the workload value, 
where the error is defined as the difference between the exact 
values and the computed approximates. However, the 4th-order 
Runge-Kutta method exhibits low error and consistent stability 
in predicting the workload value. The 4th-order Adams 
predictor-corrector is also accurate, but has higher 
computational complexity. 

Figure 6 shows the trade-off between the accuracy and time 
step h in terms of performance of workload prediction, where 
time (x-axis) is defined in terms of successive time steps. In this 
evaluation, the 4th-order Runge-Kutta method is used with an 
initial value w(0) = 0.3. The determination of the time step size 
is crucial since smaller time step increases the computational 
overhead in the software (e.g., operating system). We use 
various values for time step size h (= 2, 5, and 10), where T is 
fixed, while monitoring the error in predicting the workload 
values. The time step of size 2 indicates great accuracy, but 
increases computational efforts by the software (due to more 
computations in the same interval), whereas step size of 10 



exhibits lower computational efforts with lower accuracy. In our 
problem setup, we have empirically observed that a time step 
size of 5 provides a reasonable trade-off point.  
 

Figure 6. Trade-off between the performance and time step h. 
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Figure 7. Workload prediction technique based on the midpoint 
method and IVP. 

To make the workload prediction technique more suitable 
for online implementation, an efficient one-step method known 
as the midpoint method is utilized to solve the IVP. Specifically, 
at time instance t in [ti, ti + T], we predict the workload value for 
time t + h, based on the value at time t + h/2, which is obtained 
by using the midpoint method, as depicted in Figure 7. First, the 
current workload at time t is monitored by the PMU and a 
frequency value is read from a pre-characterized workload-
frequency mapping table by the power manager. Note that we 
do not want to use the predicted value for time t, which was 
previously computed at time t – h, because we can achieve the 
exact frequency value at time t. Next, the workload value at time 
t + h/2 is estimated by using a moving average method, for 
example, if the window size of the moving average calculator is 
2, then, wpred(t + h/2) = 1/2·(wexact(t) + wexact(t – h)). This 
workload value is subsequently used as the midpoint estimate of 
the workload in the upcoming period. In particular, it is used 
along with wexact(t) to compute wpred(t + h) by applying the IVP.  

The advantage of this prediction method is that we do not 
attempt to predict wpred(t + h) directly by using a moving 
average method only. Instead, we estimate the workload value 
for a nearer time in the future (which should provide higher 
accuracy) and use that value to initially estimate the rate of 
workload change in the upcoming period, followed by finally 

computing wpred(t + h) by solving the IVP. 

4.2 Workload-Driven Frequency Adjustment 
The decision about the frequency adjustment interval is made 
based on the difference between wexact(t) and wpred(t + h). For 
example, if wpred(t + h) >> wexact(t), then the DFA will increases 
the frequency. Clearly, if wpred(t + h) << wexact(t), then the DFA 
will decrease the frequency. On the other hand, the DFA 
increases (decreases) the frequency slowly if wpred(t + h) is only 
a little larger (smaller) than wexact(t).  
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Figure 8. The flow of dynamic frequency adjustment method. 

Figure 8 shows the flow of dynamic frequency adjustment 
technique, where f pred(t + h) is the frequency value obtained 
from the predicted workload and the workload-frequency 
mapping table for the two cases where wpred(t + h) > or >>  
wexact(t),. In this flow, we have omitted the case of wpred(t + h) < 
or << wexact(t), which can be handled in a similar way. Note that 
when wpred(t + h) = wexact(t), the current frequency value is 
maintained. It is worthwhile to mention that the DFA is capable 
of handling the throughput and power budget. If there is a target 
throughput, for example, the DFA will slowly increase the 
frequency up to a target frequency value that results in just-
enough throughput and minimum power dissipation.  

4.3 Mapping of Workloads to Optimal Frequency 
The entries of the workload-frequency mapping table 
correspond to various values of workload (i.e., the arrival rate of 



tasks). Figure 9 illustrates the mapping process from workloads 
to an optimal operating frequency, assuming that 0.1 ≤ the 
arrival rate ≤ 0.9. In this figure, the pre-characterized mapping 
table is achieved through extensive offline simulations during 
design time, considering performance characteristics of each FB 
provided by the user or application, in a similar way as [5][14]. 
For example, when a power manager predicts the workload for 
the near future, an optimal frequency value for the next decision 
epoch is selected and provided to the DFA which will 
continuously change the operating frequency from its present 
value to the target value. Note that mapping from workload to 
operating frequencies is achieved by a simple linear function 
while considering the maximum and minimum operating 
frequencies that can be applied to the FB in question. 
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Figure 9. Mapping of workloads to optimal operating 

frequency values for each FB. 

5. Experimental Results 
In the experimental setup, we applied the proposed CFA 
technique to a high-speed network controller (i.e., gigabit 
Ethernet controller) which includes IEEE 802.3 PHY/MAC 
blocks, RISC processor, direct memory access (DMA) engine, 
PCI-E core, etc. as shown in Figure 10. This embedded system 
is implemented with TSMC 65nmLP library. To capture power-
saving opportunities by using the proposed technique, we 
consider a part of the process of receiving packets inside the 
system, which involves Ethernet MAC (EMAC) block and 
control block. Note that it will not hurt the quality of the paper 
if we concentrate on these blocks (i.e., inside dotted box in 
Figure 10) to simplify the experimental setup, since they 
sufficiently exhibit the characteristics of the SR, the SP, and the 
SQ. Thus, the continuously varying frequency value is applied 
to the control block (i.e., the SP) by the hardware-implemented 
DFA, where its frequency is optimally adjusted. 
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Figure 10. Block diagram of simplified Ethernet controller. 

The functions performed by these blocks (i.e., EMAC and 
control blocks) are explained briefly as follows. The EMAC 
receives a data stream from the selected physical layer interface 
and performs address checking, CRC calculation, and 
CSMA/CD functions [15]. The control block calculates 
checksum and parses TCP/IP headers and classifies the frames 
based on a set of matching rules. While processing the control 
data in the control block, the frame data is temporarily stored in 
memory buffers before being sent to local interconnect through 
the PCIE interface. 

Table 1. Energy dissipation (normalized) and utilization of the 
control block. 

 Arrival rate of tasks

0.1 0.2 0.3 0.4 0.5 0.8
1000Base-T

Utilization (%)

Energy (normalized) 1.96 2.62 6.674.37 5.04 5.85

0.6 0.7 0.9

8.89 9.86 10.83

9.5 14.2 54.020.6 32.1 41.8 63.2 67.5 73.5
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Figure 11. Power consumption of the service queue. 

We first achieve the power and energy dissipation of the service 
provider (i.e., control block) and the service queue (i.e., memory) 
by using TSMC 65nmLP library, which has 3 optional operating 
voltages (e.g., 1.08V, 1.20V, and 1.29V). To calculate accurate 
power values for static and dynamic power consumption, we 
used SAIF (Switching Activity Interchange File) based on back-
annotated RTL simulation of the system with Power compiler 
[16]. To achieve the energy dissipation of the control block, 
different workloads (e.g., the arrival rate of traffic) are used to 
generate the multiple columns in Table 1, where the dynamic 
and static power values are considered. For simulation setup, we 
set that the maximum full duplex bandwidth (e.g., 1000Base-T) 
is achieved. Note that the overhead of designing the DFA block 
inside the system is negligible due to its small number of gate 
counts (around 150 standard cells) and power dissipation 
(around 2uW including dynamic and static power). Figure 11 
shows power consumption of the service queue in terms of the 
normalized arrival rate of the traffic. We set the packet size to 
64bytes and the service time to 1 (by using the G/M/1 queuing 
model) for simplicity. For example, when the arrival rate of the 
tasks is 0.29 (normalized), the memory size necessary for 
buffering the incoming data is 5.8 times greater than the case of 



where the arrival rate is 0.04. 
Next, we evaluate the effectiveness of the proposed CFA 

technique. We assume that the workload changes dynamically 
from 0.1 to 0.9. For comparison purpose, we implemented a 
couple of power management policies (denoted by PM1 and 
PM2 and described below) as representatives of the 
conventional methods, similar to [7][13]. We use three set of 
frequency values to simplify the experimental setup (F1 < F2 < 
F3 in terms of frequency values). 
PM1: Utilize dynamic frequency scaling technique, while 

accounting for a 100us power-mode transition overhead; 
the frequency assignment policy is as follows. 

- Use the lowest F1 value when 0.1 ≤ the arrival rate ≤ 0.3, 
i.e., low workload. 

- Likewise, use F2 and F3 values when 0.3 < the arrival 
rate ≤ 0.6 and 0.6 < the arrival rate ≤ 0.9, respectively. 

PM2: The same as PM1 except that a frequency change is 
avoided when the same frequency changes occurs 
consecutively. More precisely, let Fi denote the value of 
frequency at time i. 

- Set Fi+1 = Fi, if the predicted Fi+1 value is the same as Fi-1 
value.  

 

Figure 12. Evaluation of the proposed CFA technique. 
 

Table 2. Power and energy savings of the CFA. 
 No. of decision

epoch

100

5000

500

1000

Workload distribution

Mid High

3126 43

Average Power (mW) Power saving over

PM1 PM2 CFA

Energy saving over

PM1 PM2 PM1 PM2

13.2 11.8 11.4 2.3%12.9% 11.4% 8.8%

161143 196 13.3 11.7 11.5 2.2%13.3% 12.0% 9.4%

306277 417 13.4 11.8 11.5 2.1%13.6% 12.3% 9.5%

15521494 1954 13.4 11.9 11.6 2.1%13.1% 12.1% 9.6%

Low
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161143 196 13.3 11.7 11.5 2.2%13.3% 12.0% 9.4%

306277 417 13.4 11.8 11.5 2.1%13.6% 12.3% 9.5%

15521494 1954 13.4 11.9 11.6 2.1%13.1% 12.1% 9.6%
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Then, we generate dynamic workloads randomly with 100, 500, 
1000, and 5000 numbers of power management decision epochs 
and apply both above-mentioned conventional policies and the 
proposed power management technique to the control block. 
The simulation results in Figure 12, which corresponds to the 
case of 100 decision epochs, show that the proposed CFA 
technique achieves energy savings compared to the conventional 
methods. Results in Table 2, which also reports the 
characteristics of the workload distribution (e.g., Low = 0.1 ≤ 
the arrival rate ≤ 0.3), demonstrate that, compared to the PM1 

policy, our approach achieves power and energy savings up to 
13.6% and 12.3%, respectively. 

6. Conclusion  
In this paper, we addressed the problem of power management 
techniques in the context of handling dynamic frequency 
management, where power-mode transition cost is no longer 
negligible in the nano-scaled systems. We proposed a 
continuous frequency adjustment technique based on a workload 
prediction method, which minimizes the transition cost. 
Experimental results with a 65nm design show that the proposed 
technique ensures robust energy savings under dynamic 
workloads. 
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