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Abstract1. 
This paper presents a supervised learning based dynamic power 
management (DPM) framework for a multicore processor, where a 
power manager (PM) learns to predict the system performance state 
from some readily available input features (such as the state of 
service queue occupancy and the task arrival rate) and then uses 
this predicted state to look up the optimal power management action 
from a pre-computed policy lookup table. The motivation for 
utilizing supervised learning in the form of a Bayesian classifier is 
to reduce overhead of the PM which has to recurrently determine 
and issue voltage-frequency setting commands to each processor 
core in the system. Experimental results reveal that the proposed 
Bayesian classification based DPM technique ensures system-wide 
energy savings under rapidly and widely varying workloads. 

1. Introduction 
Ongoing advances in CMOS process technologies and VLSI designs 
have resulted in the introduction of multicore processors. There is, 
however, the need to achieve high system-level performance 
without driving up the power dissipation and chip temperature. 
Conventional dynamic power management (DPM) methods have not 
been able to take full advantage of power-saving solutions such as 
dynamic voltage and frequency scaling (DVFS). This is because a 
system-level power management routine, which continuously 
monitors the workloads of multiple processors, analyzes the 
information to make decisions, and  issues DVFS commands to each 
processor, can add computational overhead and/or complicate the 
task scheduling [1]. Furthermore, the ability of a DPM method to 
scale well on a multicore processor by eliminating these overheads 
is becoming a critical requirement [2][3]. 

The problem of determining a power management policy 
exploiting DVFS in a multicore processor or a network-on-chip has 
received a lot of attention. In [4], the authors propose an online 
DVFS technique by utilizing an interface queue to guide the DVFS 
control in multiple clock and voltage domain architecture. 
Analytical models for system-level power management under tight 
performance constraints are presented in [5]. The work in [6] 
presents a voltage island-based power management technique to 
satisfy the required performance in multi-threshold CMOS 
technologies. The authors of [7] implement a power-efficient 
network-on-chip with a packet-switched serial-communication 
infrastructure, while integrating multiple IP cores. Learning-based 
techniques proposed in [8][9] use adaptive control mechanisms to 
select an optimal power management policy for embedded systems. 

Although above-mentioned techniques [4]-[7] perform system-
level dynamic power management or DVFS technique for multicore 
processors, little attention has been paid to improve decision-making 
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strategy which minimizes the system overhead of a power manager 
(PM), i.e., to devise a learning-based power management policy that 
can quickly analyze some easily available input features and 
accurately predict the overall system state, which is subsequently 
used to select the “optimal action”. For example, traditional 
approaches for DPM, based on models of service requestor (SR), 
service provider (SP), and service queue (SQ), work well only in the 
case of that the workload of the system does not change very rapidly. 
Otherwise, the energy and delay overhead of the power mode 
transitions can become quite significant, rendering the DPM strategy 
ineffective. Indeed, adaptive power management techniques [8][9] 
are unsuccessful in reducing the total chip power when the overhead 
of power-mode transitions is not controlled in multicore processors, 
where the PM needs to control each processor individually. 

In this paper, we will address a system-level power management 
problem where a PM continually issues mode transition commands 
to maximally exploit the power-saving opportunities. The overhead 
associated with regular activity of the PM to monitor the workload 
of the system and make decisions about performance mode (voltage 
and frequency level) of different functional blocks in the system 
tends to be high. This paper thus describes a supervised learning 
[10] based DPM framework for a multicore processor, which 
enables the PM to predict the performance state of the system for 
each incoming task by a simple and efficient analysis of some 
readily available input features. Experimental results demonstrate 
the effectiveness of the framework and show that the proposed DPM 
technique ensures system-wide energy savings under rapidly 
varying workloads. 

The remainder of this paper is organized as follows. Section 2 
provides a motivational example. The details of the proposed power 
management framework are given in section 3. Experimental results 
and conclusions are given in section 4 and section 5. 

2. Motivational Example 
Considering conventional DPM approaches in a multicore processor, 
where each processor core is equipped with multiple power-saving 
modes (i.e., different DVFS sets), a system-level PM issues an 
optimal DVFS value to each processor based on the current 
workload by monitoring the flow queue as shown in Figure 1. This 
figure shows an example of multicore processor architecture, so-
called distributed shared-memory multicore processor [11], where 
the dynamic load balancing provides high-throughput and low-
latency data flow for each processor, and the control unit supports 
high-performance and power-efficient cache coherency. Details of 
the processor functionality are omitted to save space. Interested 
readers may refer to [11]. To capture power-saving opportunities 
inside the multicore processor, we consider the power consumption 
of each processor, controlled by the PM with various DVFS sets. 
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Figure 1. Example of multicore processor architecture. 
Assume that when jobs are given to the multicore processor, the 

dynamic load balancing block (i.e., SR) writes the tasks into each 
flow queue (i.e., SQ), while each processor (i.e., SP) reads the tasks 
from its corresponding SQ. The PM monitors the workload of the 
processor by looking at the corresponding SQ in order to assign the 
DVFS value for the processor at each (regular or interrupt-driven) 
event occurrence, called decision epochs. Note that the decision 
epochs of the PM are separated by a time step, where the shorter this 
time step is, the higher the delay and energy dissipation penalties are. 
It is because that the DVFS method based on a voltage regulator and 
a PLL incurs non-negligible power-mode transition delay and 
energy dissipation [12]. Thus, the traditional DPM approach may 
result in sizeable performance penalty as shown in Figure 2(a).  
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Figure 2. DPM approaches with DVFS technique:               

(a) the traditional approach. (b) the proposed approach. 

In this scenario (see Figure 2(a)), where TQ is the queuing time 
(i.e., the time spent by a task in the SQ), and TP is the time interval 
between two consecutive read operations at the SQ by the SP, we 
assume that task ji-1 is running optimally (i.e., achieves the required 
performance level with minimal amount of energy) with DVFS1. 
Similarly, task ji runs optimally under DVFS2, where DVFS1 < 
DVFS2 in terms of voltage and frequency values. Then, the 
procedure for traditional DPM is explained as follows. First, task ji 
arrives to the SQ and waits for time TQ before reaching the SP. 
During TQ, the PM monitors the workload of the SQ and calculates 
the optimal power management command, which takes Tπ time. This 
time increases proportionally with the number of SPs, and is highly 
dependent on the speed of the operating system. After making the 
DVFS selections, the PM enables the voltage regulator or the PLL to 
adjust the supply voltage or operating frequency for the SP, which 
take TTRAN  time (= max (τTRAN, τPLL)), where τTRAN  is the transition 
time of voltage regulator, and τPLL is the PLL lock time. Finally, the 
SP takes TP time to complete task ji. The problems with this 
approach are: i) when the workload changes, each SQ (or controller) 
has to send an interrupt to the PM to request DVFS adjustments for 
the corresponding processor, which significantly increases the 
computational overhead of the PM as the number of processors 

increases, and ii) if the PM monitors every SQ to decide the DVFS 
values at the decision epochs, it has to schedule a series of DVFS 
assignments for every processor since all of tasks are not completed 
at the same time, which adds another scheduling overhead. 

The main contribution of our work is that the incoming tasks are 
labeled with the system state information (power dissipation and 
execution time) and DVFS values are assigned to these tasks before 
they reach the SP. This saves the required time of monitoring the 
workload and generating an interrupt, as shown in Figure 2(b).  

3. Learning-based DPM Framework 
In this section, we present a theoretical framework to construct a 
supervised learning-based dynamic power management framework. 

3.1 Background on Supervised Learning 
Supervised learning [10] is an effective and practical technique for 
discovering relations and extracting knowledge in cases where the 
mathematical model of the problem may be too expensive to 
construct, or not available at all. Alternatively, it may be used to 
derive a self-improving decision-making strategy instead of making 
decisions based on the current perceived state of the system. 
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Figure 3. Concept of supervised learning. 

The goal of the supervised learning is to learn a mapping from x 
∈ X to y ∈ Y, given training sets that consist of input and output 
pairs. Here X = {x1, x2, …, xn} denotes a set of inputs (a.k.a. input 
features), and Y = {y1, y2, …, yn} is a set of outputs (a.k.a. output 
measures). The input feature set contains quantifiable features of the 
system under consideration. The output measure set can be a 
continuous value (called regression) or a class label of the input 
(called classification), which thus results in a numerical or 
categorical measure. If the output measure is numerical (categorical), 
then the learning will become a regression (classification) problem. 

In this paper, each output measure is labeled with a pre-defined 
class (e.g., performance level). The learning is performed on a 
collection of training sets. Thus, training an agent (e.g., a PM) 
involves finding a mapping from input features to output measures 
so as to enable the agent to accurately predict the class of an output 
measure when a new input feature is given. Figure 3 shows the 
concept of supervised learning, where the agent predicts the classes 
of output measures yk when input features xk are given after learning 
with the training sets, where k = 1, …, n. 

Considering algorithms for supervised learning, there are a 
number of methods for classification such as the rule learner, 
decision tree learner, Bayesian classifier, instance-based learner, and 
support vector machine [10]. In our problem setup, we have found 
that the Bayesian classifier is more efficient than other methods 
since it can efficiently classify the output features corresponding to 
a new input feature into a finite number of class labels. The key to 
speed of the classification step is the pre-computation of prior and 
conditional probabilities based on a training step (see below).  

3.2 Learning-based Power Management Framework 
It is useful to describe how the supervised learning can be adapted to 
the power management problem. Figure 4 presents a top level 
structure of the proposed PM which incorporates a Bayesian 
learning framework. The learning framework consists of two phases: 
training phase and classification phase. Essentially, we aim to use 



 

the supervised learning to enable the PM to automatically discover 
the relations between input features and output measures and to 
predict the processor’s performance level (power dissipation and 
execution time per task) by using the classification.  
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Figure 4. Structure of the proposed power manager. 

Key functions implemented inside the PM are as follows: 
- Feature extraction: choose the input feature (i.e., characteristics of 

the tasks, and state of the SQ), 
- Measure extraction: choose the output measure (i.e., the power 

dissipation and execution time of the tasks), 
- Training set generation: assemble the input feature and output 

measure into the training sets, 
- Supervised learning: map the input feature to the output measure 

based on the training sets, and 
- Classification: select the most likely class given the input feature. 

The proposed supervised-learning DPM technique mainly 
comprises of three parts: training, classification, and policy 
generation. The procedures for training, classification and policy 
generation are explained next. 

3.2.1 Input Feature and Output Measure Extraction 
The first step is the training phase which extracts input features 

and output measures, where system knowledge is required to 
produce well-prepared training sets. During the process of feature 
extraction, in the context of the power management problem, the 
PM gathers input features such as the type of tasks (e.g., high-
priority or low-priority), the state of the SQ, and the arrival rate of 
tasks, which affect the performance level of the SP. In addition, the 
PM collects performance-related information (e.g., the system 
power dissipation and the execution time of tasks) as the output 
measures. The class of each output measure, considered as an 
attribute, is as a pre-defined level or range, such as a range of 
system power dissipations or time durations for task execution.  

Table 1 shows an example of training sets which consist of 
selected input feature and output measure pairs. Notice that the 
queue occupancy and the arrival rate of task are assigned attributes 
(i.e., low, med, or high), where low = [0 33%], med = (33% 67%], 
and high = (67% 100%] when applied to the SQ occupancy, and low 
= [0 0.33], med = (0.33 0.67], and high = (0.67 1] when applied to 
the arrival rate. Each output measure is labeled with a specific class 
from the set L. In our problem setup, the class set L is defined as L1 
= {pow1, pow2, pow3} where pow1 < pow2 < pow3, and L2 = {exe1, 
exe2, exe3} where exe1 < exe2 < exe3. Note that each class is defined 
as a range of values, e.g., pow1 = [34mW 41mW], pow2 = (41mW 
47mW], pow3 = (47mW 54mW], exe1 = [14.1ns 21.5ns], exe2 = 
(21.5ns 28.5ns], and exe3 = (28.5ns 35.7ns]. In addition to our input 
features, the power dissipation and execution time may be 
determined by many other factors, including the cache hit/miss ratio, 
cache hierarchy, and so on. However, the extent to which these 
factors impact the performance level of the SP is highly dependent 
on the system architecture or configuration, which is outside the 
scope of the present paper.  

Table 1. Example training set for the DPM problem. 
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The training set size affects the accuracy of classification, i.e., 
variance of the predicted value increases as the training set size is 
reduced, resulting in an increased bias. In this paper, the training set 
size is determined by calculating a conditional probability while 
varying the set size, as described in the experimental results section. 
3.2.2 Training and Classification 
Having obtained the training set, the second step is the classification 
phase, which uses supervised learning to train an accurate classifier. 
The classifier’s goal is to organize a new input feature {x1, x2, …, 
xn} into a finite number of classes l from the set L for each one of 
the output features in the set {y1, y2, …, yn}.  

Specifically, in the Bayesian classifier, the classification task is 
essentially the assignment of the maximum a posteriori (MAP) class 
given the data x = (x1, x2, …, xn) and the prior of class assignments 
to yi by maximizing the posterior probability Prob(yi = l | x1, x2,…, 
xn) of assigning class l to output feature yi given the new evidence x, 
such as 
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(1) 

The denominator Prob(x1, x2, …, xn), which is the marginal 
probability of witnessing the new evidence x under all possible 
hypotheses, is irrelevant for decision making since it is the same for 
every class assignment. Prob(yi = l), which is the prior (pre-
evidence) probability of the hypothesis that the class of yi is l, is 
easily calculated from the training set. Hence, we only need 
Prob(x1,x2,…,xn | yi = l), which is the conditional probability of 
seeing the input feature vector x given that the class of yi is l.  The 
factor 1 2

1 2

( , , , | )
( , , , )

n i

n

Prob x x x y l
Prob x x x

=K

K
represents the impact of the new 

evidence x on the hypothesis that yi=l. If it is likely that the evidence 
will be observed when this hypothesis is true, then this factor will be 
large. Multiplying the prior probability by this factor results in a 
large posterior probability of the hypothesis given the evidence. The 
Bayes' theorem thus measures how much new evidence should alter 
belief in some hypothesis. 

Now, Prob(x1,x2,…,xn | yi = l) may be expanded as Prob(x1 | 
x2,…,xn , yi = l)×Prob(x2, x3,…, xn | yi = l). The second factor above 
can be decomposed in the same way, and so on. Furthermore, 
assuming that all input features are conditionally independent given 
the class, i.e., Prob(x1 | x2, …, xn , yi = l) = Prob(x1 | yi = l). Therefore, 
we obtain: Prob(x1, x2,…, xn | yi = l) = ∏Prob(xj | yi = l), and we 
compute the maximum a posteriori class as follows: 
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An example of how to classify the input features is given next. 
Suppose that we have a set of three input features and a set of two 
output features as shown in Table 1, where {x1, x2, x3} = {task type, 
queue occupancy, arrival rate}, and {y1, y2} = {power dissipation, 
execution time}. We first compute the per-input-feature conditional 
probabilities required for the classification task. For the example 
training set, we have: Prob(x1 = low | y1 = pow1) = Prob(x1 = low | 
y1 = pow2) = 3/4, Prob(x1 = high | y1 = pow1) = Prob(x1 = high | y1 = 
pow2) = 1/4, and Prob(x1 = high | y1 = pow3) = 1. There may be 
some cases where particular input features do not occur together 
with an output measure due to an insufficient number of data points 
in the training set. In this case, a standard way to deal with zero 
conditional probabilities is to eliminate them by smoothing [13],  

( )
( | )

( )

,j

i

i
j i

x

freq x y l
Prob x y l

freq y l n

λ

λ

= +
= =

= +
 (3) 

where λ is a smoothing constant (λ > 0), and nx is the number of 
different attributes of xi that have been observed. For the example 
training set, using equation (3) with λ = 1, we have: Prob(x1 = low | 
y1 = pow3) = Prob(x2 = med | y1 = pow3) = 1/4. We will also need the 
prior probabilities for the various output feature classifications, 
which are calculated from the training set data. In this example, 
Prob(y1 = pow1) = Prob(y1 = pow2) = 4/9, and Prob(y1 = pow3) = 1/9. 
After calculating the conditional and prior probabilities, the PM can 
decide the best power management policy by predicting the MAP 
class for a new input feature vector.  

Let a new input feature (x1 = low, x2 = med, x3 = med), which 
was not in the training set, be presented to the PM, which classifies 
the input feature based on equation (2) as follows. Firstly, for the 
hypothesis y1 = pow1, the posterior probability is: Prob(y1 = 
pow1)⋅Prob(x1 = low, x2 = med, x3 = med | y1 = pow1) = 
(4/9)⋅(3/4)⋅(1/2)⋅(1) = 1/6 because Prob(x1 = low | y1 = pow1) = 3/4, 
Prob(x2 = med | y1 = pow1) = 1/2 and Prob(x3 = med | y1 = pow1) = 1. 
Secondly, for the hypothesis y1 = pow2, the posterior probability is: 
Prob(y1 = pow2)⋅Prob(x1 = low, x2 = med, x3 = med | y1 = pow2) = 
(4/9)⋅(3/4)⋅(1)⋅(1/4) = 1/12 because Prob(x1 = low | y1 = pow2) = 3/4, 
Prob(x2 = med | y1 = pow2) = 1 and Prob(x3 = med | y1 = pow2) = 1/4. 
Lastly, for the hypothesis y1 = pow3, the posterior probability is: 
Prob(y1 = pow3)⋅Prob(x1 = low, x2 = med, x3 = med | y1 = pow3) = 
(1/9)⋅(1/4)⋅(1/4)⋅(1) = 1/144 because Prob(x1 = low | y1 = pow3) = 
1/4, Prob(x2 = med | y1 = pow3) = 1/4 and Prob(x3 = med | y1 = 
pow3) = 1. Consequently, the MAP class of the power dissipation for 
the new input feature vector is pow1. Similarly, computing MAP of 
the execution time results in posterior probabilities of hypotheses y2 
= exe1, y2 = exe2, and y2 = exe3 being 1/24, 2/9, and 1/18. Thus, the 
PM concludes that the MAP class of the execution time is exe2.  

The PM predicts the MAP performance level of the processor 
when a new task arrives in the SQ. The classification based on the 
Bayesian classifier is robust to noisy and/or extraneous input 
features. It is also fast because it only requires a single pass through 
the training data to initialize the prior and conditional probabilities 
while requiring only a few multiplications and comparison to 
determine the MAP performance level of the processor at runtime. 
3.2.3 Stochastic Policy Optimization 
Finding an optimal power management policy in a learning-based 
framework requires an autonomous decision making strategy which 
maps the output classes to actions. The actions commanded by the 
PM change the performance state of the system and lead to 

quantifiable penalties (or rewards). In this paper, we consider the 
case where an action incurs a cost (e.g., energy dissipation), where 
the PM’s goal is to devise a policy for issuing a command that 
minimizes this expected cost.  

Assume that the target processor system has k (power-delay or 
PD for short) states denoted by s1, …, sk, where s1 <…< sk in terms 
of the PD product (PDP) in the respective states. The PM can 
choose an action from a finite set of supply voltage-clock frequency 
(VF) settings A = {a1, …, an}, where a1 <…< an in terms of the VF 
values (notice that a lower V requires a correspondingly lower F for 
the processor while a higher V allows a higher F, hence VF pairs 
may be considered as a single optimization variable in this setup).  

There is a state transition probability for transitioning from state 
s to another state s’ after executing an action a, i.e., T(s’, a, s) = 
Prob(s’ | a, s). Furthermore, we make a common assumption that the 
cost function is additive (the PDP which is the same as energy 
dissipation is clearly additive). Considering the minimization of the 
total energy dissipation as an objective, we define the energy 
dissipation of a system at a given time t as follows. First, assume 
that the predicted classes for the output measures (i.e., power 
dissipation and execution time) are p and d, where p ∈ L1 and d ∈ L2 
as defined in our problem setup. Note that p and d may be 
considered as ranges of power and execution time values, i.e., p = 
[p− p+] and d = [d− d+]. Then, the expected cost of current state, C(s, 
a), where a is the action prescribed by the PM in state s=<p, d>, is 
defined as a specific range such that  

[ ]( , ) ( , ) ( , )C s a p d e s a p d e s a− − + +∈ ⋅ + ⋅ +  (4a) 

where e(s, a) is the expected energy dissipation to transit from state 
s to some next state under action a, which is in turn calculated from  
T(s’, a, s)  and the state transition energy dissipation overhead. The 
above expression means that cost lies between expected minimum 
and maximum costs. To obtain a scalar cost function, we define: 

( , ) ( , )
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p d p d
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We develop a policy generation technique by using well-known 
dynamic programming method making use of principles of 
overlapping subproblems, optimal substructures, and memoization. 
We speak of the minimum cost of a system state as the expected 
infinite discounted sum of cost that the system will accrue if it starts 
in that state and executes the optimal policy [14]. Generally, using π 
as a decision policy, this minimum cost is written as 
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where γ is a discount factor, 0 ≤ γ < 1, and c(t) is the cost at time t.  
In our problem setup, the minimum cost function is unique and 

can be defined 

* *

'

( ) min ( , ) ( ', , ) ( ')
a s S

s C s a T s a s s s Sγ
∈

⎛ ⎞Ψ = + Ψ ∀ ∈⎜ ⎟
⎝ ⎠

∑  (5b) 

which asserts that the cost of a state s is the expected instantaneous 
cost plus the expected discounted cost of the next state, using the 
best available action. From Bellman’s principle of optimality [15], 
given the optimal cost function, we specify the optimal policy as  

* *

'
( ) arg min ( , ) ( ', , ) ( ')

a s S
s C s a T s a s sπ γ

∈

⎛ ⎞= + Ψ⎜ ⎟
⎝ ⎠

∑  (6) 

Simply stated, the power manager determines the optimal action 
based on Eqn. (6) at each event occurrence (i.e., decision epochs). 
The task of casting the decision epochs to absolute time units is 
achieved by the system developer. Unlike AC line-powered systems, 



 

we focus on battery operated systems that strive to conserve energy 
to extend the battery life,. 

Given C(s, a) and T(s’, a, s), one way to find an optimal policy 
is to find the minimum cost function. It can be determined by an 
iterative algorithm (cf. Figure 5) called value iteration that can be 
shown to converge to the correct *Ψ  values. It is not obvious when 
to stop this algorithm. A key result bounds the performance of the 
current greedy policy as a function of the Bellman residual of the 
current cost function [16]. It states that if the maximum difference 
between two successive cost functions is less than ε, then the cost of 
the greedy policy (i.e., the policy obtained by choosing, in every 
state, the action that minimizes the estimated discounted cost, using 
the current estimate of the cost function) differs from the cost 
function of the optimal policy by no more than 2εγ / (1−γ) at any 
state. This provides a stopping criterion for the algorithm.  

 1:  initialize Ψ(s) arbitrarily
2:      loop until policy good enough 
3:          loop for ∀s ∈ S
4:               loop for ∀a ∈ A
5:                     
6:                          
7: end loop
8:           end loop
9:       end loop
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9:       end loop
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Figure 5. The value iteration algorithm. 

Results of the policy generation are stored in a state-action 
mapping table so that the PM does not need to compute the optimal 
action in each system state at runtime. Instead the optimal action 
generation is reduced to a simple table lookup. In practice, the PM 
examines the input features each time a new task arrives in the SQ, 
estimates the most likely state of the system, and looks up and issues 
the corresponding “optimal” action from the mapping table.  

4. Experimental Results  
We applied the proposed DPM technique to a multicore processor 
which includes a dynamic load balancing (DLB) block and four 
processors (cf. Figure 1). The DLB block, which guarantees in-order 
delivery of tasks, enables tasks from a single network interface to be 
processed in parallel on multiple processors. As a typical 
application, we performed TCP/IP-related tasks (e.g., TCP 
segmentation and checksum offloading [17]) on this processor.  

In the first experiment, we analyzed performance characteristics 
of the processor in terms of the power dissipation and execution 
time. Considering the power number of the processor, we relied on 
detailed gate-level realization of the processor with TSMC 65nmLP 
library to precisely capture the power-saving opportunities. By 
varying the voltage and frequency values during the simulation 
setup, we achieved power and delay numbers with Power Compiler 
[18] for the processor after running the same tasks. We defined a set 
of three actions, i.e., a1 = [1.00V, 150MHz], a2 = [1.08V, 200MHz], 
and a3 = [1.20V, 250MHz] for simplicity.  

We generated a training set by running a set of tasks on the 
processor as follows. First, we considered a scenario whereby the 
processor accepts two types of tasks: low-priority and high-priority, 
where a high-priority task can move ahead of all the low-priority 
tasks waiting in the queue. Next, we defined a set of input features 
{occupancy state of the SQ, arrival rate of task} and output 
measures {power dissipation [mW], execution time [ns]}, similar to 
Table 1. The classes of output measures are defined as: pow1, pow2, 
and pow3 = [34. 41.0], (41.0 47.0], and (47.0 54.0] as well as exe1, 
exe2, and exe3 = [14.1 21.5], (21.5 28.5], and (28.5 35.7]. During the 

training phase, voltage and frequency values are assigned to the 
processor based on simple requirements such as:  
- The processor runs faster when high-priority tasks arrive with 

medium or high arrival rates, 
- The processor runs slower when low-priority tasks arrive with low 

or medium arrival rates. 
Since the training set size affects the classification accuracy, we 
performed simulations to determine an appropriate size by varying 
the set size from 50 to 3000 as shown in Figure 6. We have thus 
empirically determined that a training set size of 1000 is adequate.  

 

 

Figure 6. Selection of the training set size. 
 

 

Figure 7. Classification for tasks in terms of power dissipation 
and execution time levels. 

The second experiment was designed to demonstrate the 
effectiveness of the proposed learning-based DPM framework. The 
PM first collects the training sets which consist of 1000 input 
feature and output measure pairs. Second, based on the classes of 
the output measures, the PM calculates the required prior and 
conditional probabilities. Next, we randomly generated 100 tasks 
that arrive into the queue of the corresponding processor. Then, the 
classification was performed for each incoming task to determine 
the system state, i.e., power and time (i.e., delay) levels, as shown in 
Figure 7, where the x-axis represents the sequence of tasks (i.e., 
from task 1 to task 100). After predicting the system state, the PM 
looks up the pre-characterized system state to action mapping table 
to obtain the best action to issue. 

Finally, we investigated the energy-efficiency of the proposed 
DPM technique. For comparison purpose, we implement a power 
management policy (denoted by Greedy), as described below. We 



 

use three VF values to simplify the experimental setup (a1 < a2 < a3 
in terms of VF values). 
Greedy: Apply a greedy DPM assignment strategy which 

- Uses the lowest a1 value when 0 < arrival rate of task ≤ 
0.33 (i.e., low workload). 

- Likewise, it uses a2 and a3 when 0.33 < arrival rate of task 
≤ 0.67 and 0.67 < arrival rate of task < 1, respectively. 

Bayesian: Apply the optimal actions, based on the Bayesian 
learning-based DPM method described in this paper.  

Next, we generated a number of tasks by selecting the priority and 
arrival rate of tasks randomly, where 0 < the arrival rate of tasks < 1, 
and applied the above-mentioned DPM policies to the multicore 
processor described earlier. The simulation results in Figure 8, 
which report the (normalized) energy dissipation of each task 
(numbered from 1 to 100) for one processor, show that the proposed 
DPM technique, i.e., Bayesian exhibits sizeable energy savings 
compared to the other techniques. Note that considering the 
performance of the processor, the overhead of performing 
classification in Bayesian is negligible since it does not affect the 
execution time of the processors (i.e., the classification and table 
lookup are performed during the queuing period before the VF 
change). Experimental results in Table 2, which also reports the 
characteristics of the workload distribution for each processor (e.g., 
the Proc1 has 27 high-priority tasks, etc.), demonstrate that, 
compared to the Greedy policy, the Bayesian policy achieves 
system-wide energy savings of up to 28.7% (these are the averages 
on four processors), respectively. 

 

Figure 8. Energy dissipation comparison between a greedy DPM 
and the Bayesian Learning based DPM. 

 

Table 2. Energy savings in the multicore processor. 

 
Processor

Proc3

Proc1

Proc2

Proc4

Number of tasks

High-pri Low-pri Total

Total energy (normalized)

Greedy Bayesian
Energy saving 
Over Greedy

27 23 50 77.8 64.1 17.6%

52 48 100 170.9 113.8 33.4%

67 83 150 258.4 175.7 32.1%

103 97 200 340.9 231.5 32.0%

Processor

Proc3

Proc1

Proc2

Proc4

Number of tasks

High-pri Low-pri Total

Total energy (normalized)

Greedy Bayesian
Energy saving 
Over Greedy

27 23 50 77.8 64.1 17.6%

52 48 100 170.9 113.8 33.4%

67 83 150 258.4 175.7 32.1%

103 97 200 340.9 231.5 32.0%

5. Conclusions 
This paper addressed the problem of dynamic power management, 
where a system-level PM continually intervenes to exploit power-
saving opportunities subject to performance requirements. The 
overhead associated with regular activity of the PM to monitor the 
workload of a system and make decisions about power management 
of different functional blocks in the system tends to undermine the 

overall power savings of the DPM approaches. This paper thus 
described a supervised learning based DPM framework for a 
multicore processor, which enables the PM to predict the 
performance state of the system for each incoming task by a simple 
and efficient analysis of some readily available input features. 
Results demonstrate the effectiveness of the framework. 
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