

Improving the Efficiency of Power Management Techniques by
Using Bayesian Classification1

Hwisung Jung and Massoud Pedram
Department of Electrical Engineering, University of Southern California

Los Angeles CA, USA
{hwijung, pedram}@usc.edu

Abstract1.
This paper presents a supervised learning based dynamic power
management (DPM) framework for a multicore processor, where a
power manager (PM) learns to predict the system performance state
from some readily available input features (such as the state of
service queue occupancy and the task arrival rate) and then uses
this predicted state to look up the optimal power management action
from a pre-computed policy lookup table. The motivation for
utilizing supervised learning in the form of a Bayesian classifier is
to reduce overhead of the PM which has to recurrently determine
and issue voltage-frequency setting commands to each processor
core in the system. Experimental results reveal that the proposed
Bayesian classification based DPM technique ensures system-wide
energy savings under rapidly and widely varying workloads.

1. Introduction
Ongoing advances in CMOS process technologies and VLSI designs
have resulted in the introduction of multicore processors. There is,
however, the need to achieve high system-level performance
without driving up the power dissipation and chip temperature.
Conventional dynamic power management (DPM) methods have not
been able to take full advantage of power-saving solutions such as
dynamic voltage and frequency scaling (DVFS). This is because a
system-level power management routine, which continuously
monitors the workloads of multiple processors, analyzes the
information to make decisions, and issues DVFS commands to each
processor, can add computational overhead and/or complicate the
task scheduling [1]. Furthermore, the ability of a DPM method to
scale well on a multicore processor by eliminating these overheads
is becoming a critical requirement [2][3].

The problem of determining a power management policy
exploiting DVFS in a multicore processor or a network-on-chip has
received a lot of attention. In [4], the authors propose an online
DVFS technique by utilizing an interface queue to guide the DVFS
control in multiple clock and voltage domain architecture.
Analytical models for system-level power management under tight
performance constraints are presented in [5]. The work in [6]
presents a voltage island-based power management technique to
satisfy the required performance in multi-threshold CMOS
technologies. The authors of [7] implement a power-efficient
network-on-chip with a packet-switched serial-communication
infrastructure, while integrating multiple IP cores. Learning-based
techniques proposed in [8][9] use adaptive control mechanisms to
select an optimal power management policy for embedded systems.

Although above-mentioned techniques [4]-[7] perform system-
level dynamic power management or DVFS technique for multicore
processors, little attention has been paid to improve decision-making

1 This research is supported in part by the National Science

Foundation under a CSR-EHS grant with award no. 0509564.

strategy which minimizes the system overhead of a power manager
(PM), i.e., to devise a learning-based power management policy that
can quickly analyze some easily available input features and
accurately predict the overall system state, which is subsequently
used to select the “optimal action”. For example, traditional
approaches for DPM, based on models of service requestor (SR),
service provider (SP), and service queue (SQ), work well only in the
case of that the workload of the system does not change very rapidly.
Otherwise, the energy and delay overhead of the power mode
transitions can become quite significant, rendering the DPM strategy
ineffective. Indeed, adaptive power management techniques [8][9]
are unsuccessful in reducing the total chip power when the overhead
of power-mode transitions is not controlled in multicore processors,
where the PM needs to control each processor individually.

In this paper, we will address a system-level power management
problem where a PM continually issues mode transition commands
to maximally exploit the power-saving opportunities. The overhead
associated with regular activity of the PM to monitor the workload
of the system and make decisions about performance mode (voltage
and frequency level) of different functional blocks in the system
tends to be high. This paper thus describes a supervised learning
[10] based DPM framework for a multicore processor, which
enables the PM to predict the performance state of the system for
each incoming task by a simple and efficient analysis of some
readily available input features. Experimental results demonstrate
the effectiveness of the framework and show that the proposed DPM
technique ensures system-wide energy savings under rapidly
varying workloads.

The remainder of this paper is organized as follows. Section 2
provides a motivational example. The details of the proposed power
management framework are given in section 3. Experimental results
and conclusions are given in section 4 and section 5.

2. Motivational Example
Considering conventional DPM approaches in a multicore processor,
where each processor core is equipped with multiple power-saving
modes (i.e., different DVFS sets), a system-level PM issues an
optimal DVFS value to each processor based on the current
workload by monitoring the flow queue as shown in Figure 1. This
figure shows an example of multicore processor architecture, so-
called distributed shared-memory multicore processor [11], where
the dynamic load balancing provides high-throughput and low-
latency data flow for each processor, and the control unit supports
high-performance and power-efficient cache coherency. Details of
the processor functionality are omitted to save space. Interested
readers may refer to [11]. To capture power-saving opportunities
inside the multicore processor, we consider the power consumption
of each processor, controlled by the PM with various DVFS sets.

Dynamic load balancing

Proc
I/F

Flow
Queue

Processor

L1 Memory

Control Unit Coherence
control bus

I & D
bus

Multicore Processor

Power manager

Performance
monitor

DVFS
assignment

Policy
calculation

Proc
I/F

Flow
Queue

Processor

L1 Memory

Proc
I/F

Flow
Queue

Processor

L1 Memory

Proc
I/F

Flow
Queue

Processor

L1 Memory

Dynamic load balancing

Proc
I/F

Flow
Queue

Processor

L1 Memory

Control Unit Coherence
control bus

I & D
bus

Multicore Processor

Power manager

Performance
monitor

DVFS
assignment

Policy
calculation

Proc
I/F

Flow
Queue

Processor

L1 Memory

Proc
I/F

Flow
Queue

Processor

L1 Memory

Proc
I/F

Flow
Queue

Processor

L1 Memory

Figure 1. Example of multicore processor architecture.
Assume that when jobs are given to the multicore processor, the

dynamic load balancing block (i.e., SR) writes the tasks into each
flow queue (i.e., SQ), while each processor (i.e., SP) reads the tasks
from its corresponding SQ. The PM monitors the workload of the
processor by looking at the corresponding SQ in order to assign the
DVFS value for the processor at each (regular or interrupt-driven)
event occurrence, called decision epochs. Note that the decision
epochs of the PM are separated by a time step, where the shorter this
time step is, the higher the delay and energy dissipation penalties are.
It is because that the DVFS method based on a voltage regulator and
a PLL incurs non-negligible power-mode transition delay and
energy dissipation [12]. Thus, the traditional DPM approach may
result in sizeable performance penalty as shown in Figure 2(a).

PM monitors
workload

Task ji arrives
to the SQ

QT

PM assigns
DVFS2

Starts task ji
with new DVFS2

task ji
is finished

PT
time

Task ji arrives
to the SQ

QT

Starts task ji
with new DVFS2

PT
time

PM classifies
task ji &
labels DVFS2

(a)

(b)

task ji-1
is finished

πT TRANT

TRANT

task ji-1
is finished

task ji
is finished

PM monitors
workload

Task ji arrives
to the SQ

QT

PM assigns
DVFS2

Starts task ji
with new DVFS2

task ji
is finished

PT
time

Task ji arrives
to the SQ

QT

Starts task ji
with new DVFS2

PT
time

PM classifies
task ji &
labels DVFS2

(a)

(b)

task ji-1
is finished

πT TRANT

TRANT

task ji-1
is finished

task ji
is finished

Figure 2. DPM approaches with DVFS technique:

(a) the traditional approach. (b) the proposed approach.

In this scenario (see Figure 2(a)), where TQ is the queuing time
(i.e., the time spent by a task in the SQ), and TP is the time interval
between two consecutive read operations at the SQ by the SP, we
assume that task ji-1 is running optimally (i.e., achieves the required
performance level with minimal amount of energy) with DVFS1.
Similarly, task ji runs optimally under DVFS2, where DVFS1 <
DVFS2 in terms of voltage and frequency values. Then, the
procedure for traditional DPM is explained as follows. First, task ji
arrives to the SQ and waits for time TQ before reaching the SP.
During TQ, the PM monitors the workload of the SQ and calculates
the optimal power management command, which takes Tπ time. This
time increases proportionally with the number of SPs, and is highly
dependent on the speed of the operating system. After making the
DVFS selections, the PM enables the voltage regulator or the PLL to
adjust the supply voltage or operating frequency for the SP, which
take TTRAN time (= max (τTRAN, τPLL)), where τTRAN is the transition
time of voltage regulator, and τPLL is the PLL lock time. Finally, the
SP takes TP time to complete task ji. The problems with this
approach are: i) when the workload changes, each SQ (or controller)
has to send an interrupt to the PM to request DVFS adjustments for
the corresponding processor, which significantly increases the
computational overhead of the PM as the number of processors

increases, and ii) if the PM monitors every SQ to decide the DVFS
values at the decision epochs, it has to schedule a series of DVFS
assignments for every processor since all of tasks are not completed
at the same time, which adds another scheduling overhead.

The main contribution of our work is that the incoming tasks are
labeled with the system state information (power dissipation and
execution time) and DVFS values are assigned to these tasks before
they reach the SP. This saves the required time of monitoring the
workload and generating an interrupt, as shown in Figure 2(b).

3. Learning-based DPM Framework
In this section, we present a theoretical framework to construct a
supervised learning-based dynamic power management framework.

3.1 Background on Supervised Learning
Supervised learning [10] is an effective and practical technique for
discovering relations and extracting knowledge in cases where the
mathematical model of the problem may be too expensive to
construct, or not available at all. Alternatively, it may be used to
derive a self-improving decision-making strategy instead of making
decisions based on the current perceived state of the system.

Input feature

ix

Output measure
iy

(), iix y
Training set

class
After learning

Input feature
kx

Output measure

ky

Predict class

Input feature
ix

Output measure
iy

(), iix y
Training set

class
After learning

Input feature
kx

Output measure

ky

Predict class

Figure 3. Concept of supervised learning.

The goal of the supervised learning is to learn a mapping from x
∈ X to y ∈ Y, given training sets that consist of input and output
pairs. Here X = {x1, x2, …, xn} denotes a set of inputs (a.k.a. input
features), and Y = {y1, y2, …, yn} is a set of outputs (a.k.a. output
measures). The input feature set contains quantifiable features of the
system under consideration. The output measure set can be a
continuous value (called regression) or a class label of the input
(called classification), which thus results in a numerical or
categorical measure. If the output measure is numerical (categorical),
then the learning will become a regression (classification) problem.

In this paper, each output measure is labeled with a pre-defined
class (e.g., performance level). The learning is performed on a
collection of training sets. Thus, training an agent (e.g., a PM)
involves finding a mapping from input features to output measures
so as to enable the agent to accurately predict the class of an output
measure when a new input feature is given. Figure 3 shows the
concept of supervised learning, where the agent predicts the classes
of output measures yk when input features xk are given after learning
with the training sets, where k = 1, …, n.

Considering algorithms for supervised learning, there are a
number of methods for classification such as the rule learner,
decision tree learner, Bayesian classifier, instance-based learner, and
support vector machine [10]. In our problem setup, we have found
that the Bayesian classifier is more efficient than other methods
since it can efficiently classify the output features corresponding to
a new input feature into a finite number of class labels. The key to
speed of the classification step is the pre-computation of prior and
conditional probabilities based on a training step (see below).

3.2 Learning-based Power Management Framework
It is useful to describe how the supervised learning can be adapted to
the power management problem. Figure 4 presents a top level
structure of the proposed PM which incorporates a Bayesian
learning framework. The learning framework consists of two phases:
training phase and classification phase. Essentially, we aim to use

the supervised learning to enable the PM to automatically discover
the relations between input features and output measures and to
predict the processor’s performance level (power dissipation and
execution time per task) by using the classification.

Feature
extraction

Training set
collection

Supervised
Learning

Classification DVFS
sets

output
measure

Training phase Classification
phase

input
feature

Power manager

Measure
extraction

Policy
generation

Feature
extraction

Training set
collection

Supervised
Learning

Classification DVFS
sets

output
measure

Training phase Classification
phase

input
feature

Power manager

Measure
extraction

Policy
generation

Figure 4. Structure of the proposed power manager.

Key functions implemented inside the PM are as follows:
- Feature extraction: choose the input feature (i.e., characteristics of

the tasks, and state of the SQ),
- Measure extraction: choose the output measure (i.e., the power

dissipation and execution time of the tasks),
- Training set generation: assemble the input feature and output

measure into the training sets,
- Supervised learning: map the input feature to the output measure

based on the training sets, and
- Classification: select the most likely class given the input feature.

The proposed supervised-learning DPM technique mainly
comprises of three parts: training, classification, and policy
generation. The procedures for training, classification and policy
generation are explained next.

3.2.1 Input Feature and Output Measure Extraction
The first step is the training phase which extracts input features

and output measures, where system knowledge is required to
produce well-prepared training sets. During the process of feature
extraction, in the context of the power management problem, the
PM gathers input features such as the type of tasks (e.g., high-
priority or low-priority), the state of the SQ, and the arrival rate of
tasks, which affect the performance level of the SP. In addition, the
PM collects performance-related information (e.g., the system
power dissipation and the execution time of tasks) as the output
measures. The class of each output measure, considered as an
attribute, is as a pre-defined level or range, such as a range of
system power dissipations or time durations for task execution.

Table 1 shows an example of training sets which consist of
selected input feature and output measure pairs. Notice that the
queue occupancy and the arrival rate of task are assigned attributes
(i.e., low, med, or high), where low = [0 33%], med = (33% 67%],
and high = (67% 100%] when applied to the SQ occupancy, and low
= [0 0.33], med = (0.33 0.67], and high = (0.67 1] when applied to
the arrival rate. Each output measure is labeled with a specific class
from the set L. In our problem setup, the class set L is defined as L1
= {pow1, pow2, pow3} where pow1 < pow2 < pow3, and L2 = {exe1,
exe2, exe3} where exe1 < exe2 < exe3. Note that each class is defined
as a range of values, e.g., pow1 = [34mW 41mW], pow2 = (41mW
47mW], pow3 = (47mW 54mW], exe1 = [14.1ns 21.5ns], exe2 =
(21.5ns 28.5ns], and exe3 = (28.5ns 35.7ns]. In addition to our input
features, the power dissipation and execution time may be
determined by many other factors, including the cache hit/miss ratio,
cache hierarchy, and so on. However, the extent to which these
factors impact the performance level of the SP is highly dependent
on the system architecture or configuration, which is outside the
scope of the present paper.

Table 1. Example training set for the DPM problem.

Queue
occupancy

Output measures

Task type

Input features

Arrival
rate of task

Power
dissipation

Execution
time

pow1

low-priority

high-priority

high-priority

low-priority

high-priority

low-priority

low-priority

low-priority

low-priority

pow2

pow3

pow2

pow1

pow1

pow2

pow2

pow1

exe1

exe1

exe3

exe3

exe1

exe2

exe2

exe2

exe1

med

low

med

low

low

med

med

med

med

low

low

med

med

med

med

med

med

high

Queue
occupancy

Output measures

Task type

Input features

Arrival
rate of task

Power
dissipation

Execution
time

pow1

low-priority

high-priority

high-priority

low-priority

high-priority

low-priority

low-priority

low-priority

low-priority

pow2

pow3

pow2

pow1

pow1

pow2

pow2

pow1

exe1

exe1

exe3

exe3

exe1

exe2

exe2

exe2

exe1

med

low

med

low

low

med

med

med

med

low

low

med

med

med

med

med

med

high

The training set size affects the accuracy of classification, i.e.,
variance of the predicted value increases as the training set size is
reduced, resulting in an increased bias. In this paper, the training set
size is determined by calculating a conditional probability while
varying the set size, as described in the experimental results section.
3.2.2 Training and Classification
Having obtained the training set, the second step is the classification
phase, which uses supervised learning to train an accurate classifier.
The classifier’s goal is to organize a new input feature {x1, x2, …,
xn} into a finite number of classes l from the set L for each one of
the output features in the set {y1, y2, …, yn}.

Specifically, in the Bayesian classifier, the classification task is
essentially the assignment of the maximum a posteriori (MAP) class
given the data x = (x1, x2, …, xn) and the prior of class assignments
to yi by maximizing the posterior probability Prob(yi = l | x1, x2,…,
xn) of assigning class l to output feature yi given the new evidence x,
such as

1 2

1 2

1 2

arg max (| , , ,)

(, , , |) ()arg max
(, , ,)

MAP i n
l

n i i

l n

y Prob y l x x x

Prob x x x y l Prob y l
Prob x x x

= =

= ⋅ =
=

K

K

K

(1)

The denominator Prob(x1, x2, …, xn), which is the marginal
probability of witnessing the new evidence x under all possible
hypotheses, is irrelevant for decision making since it is the same for
every class assignment. Prob(yi = l), which is the prior (pre-
evidence) probability of the hypothesis that the class of yi is l, is
easily calculated from the training set. Hence, we only need
Prob(x1,x2,…,xn | yi = l), which is the conditional probability of
seeing the input feature vector x given that the class of yi is l. The
factor 1 2

1 2

(, , , |)
(, , ,)

n i

n

Prob x x x y l
Prob x x x

=K

K
represents the impact of the new

evidence x on the hypothesis that yi=l. If it is likely that the evidence
will be observed when this hypothesis is true, then this factor will be
large. Multiplying the prior probability by this factor results in a
large posterior probability of the hypothesis given the evidence. The
Bayes' theorem thus measures how much new evidence should alter
belief in some hypothesis.

Now, Prob(x1,x2,…,xn | yi = l) may be expanded as Prob(x1 |
x2,…,xn , yi = l)×Prob(x2, x3,…, xn | yi = l). The second factor above
can be decomposed in the same way, and so on. Furthermore,
assuming that all input features are conditionally independent given
the class, i.e., Prob(x1 | x2, …, xn , yi = l) = Prob(x1 | yi = l). Therefore,
we obtain: Prob(x1, x2,…, xn | yi = l) = ∏Prob(xj | yi = l), and we
compute the maximum a posteriori class as follows:

1

arg max () (|)
n

MAP i j i
l j

y Prob Proby l x y l
=

= = ⋅ =∏ (2)

An example of how to classify the input features is given next.
Suppose that we have a set of three input features and a set of two
output features as shown in Table 1, where {x1, x2, x3} = {task type,
queue occupancy, arrival rate}, and {y1, y2} = {power dissipation,
execution time}. We first compute the per-input-feature conditional
probabilities required for the classification task. For the example
training set, we have: Prob(x1 = low | y1 = pow1) = Prob(x1 = low |
y1 = pow2) = 3/4, Prob(x1 = high | y1 = pow1) = Prob(x1 = high | y1 =
pow2) = 1/4, and Prob(x1 = high | y1 = pow3) = 1. There may be
some cases where particular input features do not occur together
with an output measure due to an insufficient number of data points
in the training set. In this case, a standard way to deal with zero
conditional probabilities is to eliminate them by smoothing [13],

()
(|)

()

,j

i

i
j i

x

freq x y l
Prob x y l

freq y l n

λ

λ

= +
= =

= +
 (3)

where λ is a smoothing constant (λ > 0), and nx is the number of
different attributes of xi that have been observed. For the example
training set, using equation (3) with λ = 1, we have: Prob(x1 = low |
y1 = pow3) = Prob(x2 = med | y1 = pow3) = 1/4. We will also need the
prior probabilities for the various output feature classifications,
which are calculated from the training set data. In this example,
Prob(y1 = pow1) = Prob(y1 = pow2) = 4/9, and Prob(y1 = pow3) = 1/9.
After calculating the conditional and prior probabilities, the PM can
decide the best power management policy by predicting the MAP
class for a new input feature vector.

Let a new input feature (x1 = low, x2 = med, x3 = med), which
was not in the training set, be presented to the PM, which classifies
the input feature based on equation (2) as follows. Firstly, for the
hypothesis y1 = pow1, the posterior probability is: Prob(y1 =
pow1)⋅Prob(x1 = low, x2 = med, x3 = med | y1 = pow1) =
(4/9)⋅(3/4)⋅(1/2)⋅(1) = 1/6 because Prob(x1 = low | y1 = pow1) = 3/4,
Prob(x2 = med | y1 = pow1) = 1/2 and Prob(x3 = med | y1 = pow1) = 1.
Secondly, for the hypothesis y1 = pow2, the posterior probability is:
Prob(y1 = pow2)⋅Prob(x1 = low, x2 = med, x3 = med | y1 = pow2) =
(4/9)⋅(3/4)⋅(1)⋅(1/4) = 1/12 because Prob(x1 = low | y1 = pow2) = 3/4,
Prob(x2 = med | y1 = pow2) = 1 and Prob(x3 = med | y1 = pow2) = 1/4.
Lastly, for the hypothesis y1 = pow3, the posterior probability is:
Prob(y1 = pow3)⋅Prob(x1 = low, x2 = med, x3 = med | y1 = pow3) =
(1/9)⋅(1/4)⋅(1/4)⋅(1) = 1/144 because Prob(x1 = low | y1 = pow3) =
1/4, Prob(x2 = med | y1 = pow3) = 1/4 and Prob(x3 = med | y1 =
pow3) = 1. Consequently, the MAP class of the power dissipation for
the new input feature vector is pow1. Similarly, computing MAP of
the execution time results in posterior probabilities of hypotheses y2
= exe1, y2 = exe2, and y2 = exe3 being 1/24, 2/9, and 1/18. Thus, the
PM concludes that the MAP class of the execution time is exe2.

The PM predicts the MAP performance level of the processor
when a new task arrives in the SQ. The classification based on the
Bayesian classifier is robust to noisy and/or extraneous input
features. It is also fast because it only requires a single pass through
the training data to initialize the prior and conditional probabilities
while requiring only a few multiplications and comparison to
determine the MAP performance level of the processor at runtime.
3.2.3 Stochastic Policy Optimization
Finding an optimal power management policy in a learning-based
framework requires an autonomous decision making strategy which
maps the output classes to actions. The actions commanded by the
PM change the performance state of the system and lead to

quantifiable penalties (or rewards). In this paper, we consider the
case where an action incurs a cost (e.g., energy dissipation), where
the PM’s goal is to devise a policy for issuing a command that
minimizes this expected cost.

Assume that the target processor system has k (power-delay or
PD for short) states denoted by s1, …, sk, where s1 <…< sk in terms
of the PD product (PDP) in the respective states. The PM can
choose an action from a finite set of supply voltage-clock frequency
(VF) settings A = {a1, …, an}, where a1 <…< an in terms of the VF
values (notice that a lower V requires a correspondingly lower F for
the processor while a higher V allows a higher F, hence VF pairs
may be considered as a single optimization variable in this setup).

There is a state transition probability for transitioning from state
s to another state s’ after executing an action a, i.e., T(s’, a, s) =
Prob(s’ | a, s). Furthermore, we make a common assumption that the
cost function is additive (the PDP which is the same as energy
dissipation is clearly additive). Considering the minimization of the
total energy dissipation as an objective, we define the energy
dissipation of a system at a given time t as follows. First, assume
that the predicted classes for the output measures (i.e., power
dissipation and execution time) are p and d, where p ∈ L1 and d ∈ L2
as defined in our problem setup. Note that p and d may be
considered as ranges of power and execution time values, i.e., p =
[p− p+] and d = [d− d+]. Then, the expected cost of current state, C(s,
a), where a is the action prescribed by the PM in state s=<p, d>, is
defined as a specific range such that

[](,) (,) (,)C s a p d e s a p d e s a− − + +∈ ⋅ + ⋅ + (4a)

where e(s, a) is the expected energy dissipation to transit from state
s to some next state under action a, which is in turn calculated from
T(s’, a, s) and the state transition energy dissipation overhead. The
above expression means that cost lies between expected minimum
and maximum costs. To obtain a scalar cost function, we define:

(,) (,)
2

p d p d
C s a e s a− − + +⋅ + ⋅

= + (4b)

We develop a policy generation technique by using well-known
dynamic programming method making use of principles of
overlapping subproblems, optimal substructures, and memoization.
We speak of the minimum cost of a system state as the expected
infinite discounted sum of cost that the system will accrue if it starts
in that state and executes the optimal policy [14]. Generally, using π
as a decision policy, this minimum cost is written as

*

0

() min ()t

t

s E c t
π

γ
∞

=

⎛ ⎞Ψ = ⋅⎜ ⎟
⎝ ⎠
∑ (5a)

where γ is a discount factor, 0 ≤ γ < 1, and c(t) is the cost at time t.
In our problem setup, the minimum cost function is unique and

can be defined

* *

'

() min (,) (', ,) (')
a s S

s C s a T s a s s s Sγ
∈

⎛ ⎞Ψ = + Ψ ∀ ∈⎜ ⎟
⎝ ⎠

∑ (5b)

which asserts that the cost of a state s is the expected instantaneous
cost plus the expected discounted cost of the next state, using the
best available action. From Bellman’s principle of optimality [15],
given the optimal cost function, we specify the optimal policy as

* *

'
() arg min (,) (', ,) (')

a s S
s C s a T s a s sπ γ

∈

⎛ ⎞= + Ψ⎜ ⎟
⎝ ⎠

∑ (6)

Simply stated, the power manager determines the optimal action
based on Eqn. (6) at each event occurrence (i.e., decision epochs).
The task of casting the decision epochs to absolute time units is
achieved by the system developer. Unlike AC line-powered systems,

we focus on battery operated systems that strive to conserve energy
to extend the battery life,.

Given C(s, a) and T(s’, a, s), one way to find an optimal policy
is to find the minimum cost function. It can be determined by an
iterative algorithm (cf. Figure 5) called value iteration that can be
shown to converge to the correct *Ψ values. It is not obvious when
to stop this algorithm. A key result bounds the performance of the
current greedy policy as a function of the Bellman residual of the
current cost function [16]. It states that if the maximum difference
between two successive cost functions is less than ε, then the cost of
the greedy policy (i.e., the policy obtained by choosing, in every
state, the action that minimizes the estimated discounted cost, using
the current estimate of the cost function) differs from the cost
function of the optimal policy by no more than 2εγ / (1−γ) at any
state. This provides a stopping criterion for the algorithm.

 1: initialize Ψ(s) arbitrarily
2: loop until policy good enough
3: loop for ∀s ∈ S
4: loop for ∀a ∈ A
5:
6:
7: end loop
8: end loop
9: end loop

'

(,) (,) (', ,) (')
s S

Q s a C s a T s a s sγ
∈

= + Ψ∑
() min (,)

a
s Q s aΨ =

1: initialize Ψ(s) arbitrarily
2: loop until policy good enough
3: loop for ∀s ∈ S
4: loop for ∀a ∈ A
5:
6:
7: end loop
8: end loop
9: end loop

'

(,) (,) (', ,) (')
s S

Q s a C s a T s a s sγ
∈

= + Ψ∑
() min (,)

a
s Q s aΨ =

Figure 5. The value iteration algorithm.

Results of the policy generation are stored in a state-action
mapping table so that the PM does not need to compute the optimal
action in each system state at runtime. Instead the optimal action
generation is reduced to a simple table lookup. In practice, the PM
examines the input features each time a new task arrives in the SQ,
estimates the most likely state of the system, and looks up and issues
the corresponding “optimal” action from the mapping table.

4. Experimental Results
We applied the proposed DPM technique to a multicore processor
which includes a dynamic load balancing (DLB) block and four
processors (cf. Figure 1). The DLB block, which guarantees in-order
delivery of tasks, enables tasks from a single network interface to be
processed in parallel on multiple processors. As a typical
application, we performed TCP/IP-related tasks (e.g., TCP
segmentation and checksum offloading [17]) on this processor.

In the first experiment, we analyzed performance characteristics
of the processor in terms of the power dissipation and execution
time. Considering the power number of the processor, we relied on
detailed gate-level realization of the processor with TSMC 65nmLP
library to precisely capture the power-saving opportunities. By
varying the voltage and frequency values during the simulation
setup, we achieved power and delay numbers with Power Compiler
[18] for the processor after running the same tasks. We defined a set
of three actions, i.e., a1 = [1.00V, 150MHz], a2 = [1.08V, 200MHz],
and a3 = [1.20V, 250MHz] for simplicity.

We generated a training set by running a set of tasks on the
processor as follows. First, we considered a scenario whereby the
processor accepts two types of tasks: low-priority and high-priority,
where a high-priority task can move ahead of all the low-priority
tasks waiting in the queue. Next, we defined a set of input features
{occupancy state of the SQ, arrival rate of task} and output
measures {power dissipation [mW], execution time [ns]}, similar to
Table 1. The classes of output measures are defined as: pow1, pow2,
and pow3 = [34. 41.0], (41.0 47.0], and (47.0 54.0] as well as exe1,
exe2, and exe3 = [14.1 21.5], (21.5 28.5], and (28.5 35.7]. During the

training phase, voltage and frequency values are assigned to the
processor based on simple requirements such as:
- The processor runs faster when high-priority tasks arrive with

medium or high arrival rates,
- The processor runs slower when low-priority tasks arrive with low

or medium arrival rates.
Since the training set size affects the classification accuracy, we
performed simulations to determine an appropriate size by varying
the set size from 50 to 3000 as shown in Figure 6. We have thus
empirically determined that a training set size of 1000 is adequate.

Figure 6. Selection of the training set size.

Figure 7. Classification for tasks in terms of power dissipation
and execution time levels.

The second experiment was designed to demonstrate the
effectiveness of the proposed learning-based DPM framework. The
PM first collects the training sets which consist of 1000 input
feature and output measure pairs. Second, based on the classes of
the output measures, the PM calculates the required prior and
conditional probabilities. Next, we randomly generated 100 tasks
that arrive into the queue of the corresponding processor. Then, the
classification was performed for each incoming task to determine
the system state, i.e., power and time (i.e., delay) levels, as shown in
Figure 7, where the x-axis represents the sequence of tasks (i.e.,
from task 1 to task 100). After predicting the system state, the PM
looks up the pre-characterized system state to action mapping table
to obtain the best action to issue.

Finally, we investigated the energy-efficiency of the proposed
DPM technique. For comparison purpose, we implement a power
management policy (denoted by Greedy), as described below. We

use three VF values to simplify the experimental setup (a1 < a2 < a3
in terms of VF values).
Greedy: Apply a greedy DPM assignment strategy which

- Uses the lowest a1 value when 0 < arrival rate of task ≤
0.33 (i.e., low workload).

- Likewise, it uses a2 and a3 when 0.33 < arrival rate of task
≤ 0.67 and 0.67 < arrival rate of task < 1, respectively.

Bayesian: Apply the optimal actions, based on the Bayesian
learning-based DPM method described in this paper.

Next, we generated a number of tasks by selecting the priority and
arrival rate of tasks randomly, where 0 < the arrival rate of tasks < 1,
and applied the above-mentioned DPM policies to the multicore
processor described earlier. The simulation results in Figure 8,
which report the (normalized) energy dissipation of each task
(numbered from 1 to 100) for one processor, show that the proposed
DPM technique, i.e., Bayesian exhibits sizeable energy savings
compared to the other techniques. Note that considering the
performance of the processor, the overhead of performing
classification in Bayesian is negligible since it does not affect the
execution time of the processors (i.e., the classification and table
lookup are performed during the queuing period before the VF
change). Experimental results in Table 2, which also reports the
characteristics of the workload distribution for each processor (e.g.,
the Proc1 has 27 high-priority tasks, etc.), demonstrate that,
compared to the Greedy policy, the Bayesian policy achieves
system-wide energy savings of up to 28.7% (these are the averages
on four processors), respectively.

Figure 8. Energy dissipation comparison between a greedy DPM
and the Bayesian Learning based DPM.

Table 2. Energy savings in the multicore processor.

Processor

Proc3

Proc1

Proc2

Proc4

Number of tasks

High-pri Low-pri Total

Total energy (normalized)

Greedy Bayesian
Energy saving
Over Greedy

27 23 50 77.8 64.1 17.6%

52 48 100 170.9 113.8 33.4%

67 83 150 258.4 175.7 32.1%

103 97 200 340.9 231.5 32.0%

Processor

Proc3

Proc1

Proc2

Proc4

Number of tasks

High-pri Low-pri Total

Total energy (normalized)

Greedy Bayesian
Energy saving
Over Greedy

27 23 50 77.8 64.1 17.6%

52 48 100 170.9 113.8 33.4%

67 83 150 258.4 175.7 32.1%

103 97 200 340.9 231.5 32.0%

5. Conclusions
This paper addressed the problem of dynamic power management,
where a system-level PM continually intervenes to exploit power-
saving opportunities subject to performance requirements. The
overhead associated with regular activity of the PM to monitor the
workload of a system and make decisions about power management
of different functional blocks in the system tends to undermine the

overall power savings of the DPM approaches. This paper thus
described a supervised learning based DPM framework for a
multicore processor, which enables the PM to predict the
performance state of the system for each incoming task by a simple
and efficient analysis of some readily available input features.
Results demonstrate the effectiveness of the framework.

References
[1] Y-H. Lu, and G. De. Micheli, “Comparing System-Level Power

Management Policies,” IEEE Design & Test of Computers, Vol. 18,
Issue 2, Mar-Apr. 2001.

[2] A. Naveh, et al., “Power and Thermal Management in Intel Core Duo
Processor,” Intel Technology Journal, Vol. 10, Issue 2, May, 2006.

[3] Dual-Core Processor Power and Thermal Design Guide, Mar., 2006.
http://www.amd.com

[4] A. Iyer, and D. Marculescu, “Power Efficiency of Voltage Scaling in
Multiple Clock, Multiple Voltage Cores,” Proc. of Int’l Conf. on
Computer Aided Design, Nov., 2002.

[5] R. Kumar, et al., “Single ISA Heterogeneous Multicore Architecture:
The Potential for Processor Power Reduction,” Proc. of 36th Symposium
on Microarchitecture, Dec., 2003.

[6] Q. Wu, P. Juang, M. Martonosi, and D.W. Clark, “Voltage and
Frequency Control with Adaptive Reaction Time in Multiple-Clock
Domain Processors,” Proc. of 11th Symposium on HPCA, Feb., 2005.

[7] K. Lee, et al, “Low-power Network-on-Chip for High-Performance SoC
design,” IEEE Trans. on VLSI, Vol. 14, Issue 2, Feb., 2006.

[8] E. Chung, L. Benini, and G. De Micheli, “Dynamic Power Management
Using Adaptive Learning Tree,” Proc. of ICCAD, Nov., 1999.

[9] G. Dhiman, and T. S. Rosing, “Dynamic Power Management Using
Machine Learning,” Proc. of ICCAD, Nov., 2006.

[10] O. Chapelle, B. Scholkopf, and A. Zien, Semi-Supervised Learning, The
MIT Press, 2006.

[11] J. Silc, B. Robic, and T. Ungerer, Processor Architecture: From
Dataflow to Superscalar and Beyond, Springer, 1999.

[12] T.D. Burd, and R.W. Brodersen, “Design Issues for Dynamic Voltage
Scaling,” Proc. of ISLPED, Aug., 2000.

[13] Tom Mitchell, Machine Learning, McGraw Hill, 1997.
[14] A. Gosavi, Simulation-based Optimization: Parameter Optimization

Techniques and Reinforcement Learning, Kluwer Academic, 2003.
[15] R.E. Bellman, Dynamic Programming, Princeton University Press, 1957.
[16] R J. Williams, and L C. Baird, “Tight performance bounds on greedy

policies based on imperfect value functions,” Technical Report NU-
CCS-93-14, Northeastern University, Nov., 1993.

[17] IEEE 802.3 Ethernet document. http://www.ieee802.org.
[18] Synopsys compiler. http://www.synopsys.com.

