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Global Outline

!PART I: Sources of Leakage Power and Trends
" PART II: Design Techniques for Leakage 

Minimization
" PART III: Leakage-aware Circuits and Memory
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Lecture Outline

" Technology Trends
" Power Dissipation 101
" Leakage Currents

# Subthreshold leakage
# Gate leakage
# Junction leakage
# Gate-induced drain leakage

" Optimizing the Leakage Components
" Summary
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Performance
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Power Dissipation

Unconstrained power could reach 1,000’s of watts
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CMOS Scaling: An Overview

" Scaling improves:
# Transistor Density & Functionality 

on a chip
# Speed and frequency of operation 
⇒ Higher performance

" Scaling and power dissipation
# Active power  ↑ - CVDD

2f
" Scale VDD

" Scale Vth ⇒ Ileak↑
# Standby (or leakage) power ↑

VDDIleak

" Leakage power is catching up 
with the active power in VDSM 
CMOS circuits
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" Leakage Currents

# Subthreshold leakage
# Gate leakage
# Junction leakage
# Gate-induced drain leakage

" Optimizing the Leakage Components
" Summary
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Basic Principles of Low Power Design

" Reduce switching currents 
# Reduce the supply voltage

" Quadratic effect -> dramatic savings
" Negative effect on performance

# Reduce switched capacitance

# Reduce clock frequency
# Reduce wasteful glitching 

" Reduce short circuit currents (slope engineering)
" Reduce leakage currents
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Dynamic Power Dissipation - Analysis

" Static (non-simulative) - useful for synthesis and 
architectural exploration
# Probability-based
# Entropy-based

" Dynamic (simulative) - useful for final power evaluation 
and validation
# Direct (flat and hierarchical)
# Sampling-based
# Compaction-based

" Hybrid (high-level simulation + low-level analytical model 
evaluation)
# Power macromodels for datapath, control, memory
# Instruction-level models for microprocessors, DSPs
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Issues in Power Estimation

" Objective
# Average power vs. peak 

power
# Total circuit power vs. per-

node power

" Circuit structure and logic 
style
# Library cell characterization
# Reconvergent fanout
# Static vs. domino

" Input statistics
# Typical data streams
# Input correlations (spatial 

vs. temporal)

" Delay models
# Zero-delay vs. real-delay 

model

" Capacitance values
# Interconnect vs. gate input 

capacitances

" Circuit optimizations
# Clock gating, power gating
# Variable voltages

" Accuracy
# Absolute vs. relative 

accuracy
# Sign-off stage vs. 

optimization phase
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Dynamic/simulation based techniques

Static/non-simulative techniques
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Dynamic Power Dissipation -
Optimization
" Voltage and process scaling (3x/Generation)
" Design methodologies

# Power conscious RT/ logic synthesis
# Better cell library design and resizing methods
# Cap. Reduction
# Threshold voltage control
# Voltage islands, clustered voltage scaling
# Pin ordering, transistor sizing

" Architectural techniques
# Trade area for lower power 

" Power down techniques
# Clock gating, power gating

" Dynamic voltage scaling based on workload 
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Short Circuit Power Dissipation
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Outline

" Power Dissipation 101
" Technology Trends
" Leakage Currents

# Subthreshold leakage
# Gate leakage
# Junction leakage
# Gate-induced drain leakage

" Optimizing the Leakage Components
" Summary
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Leakage Components in Bulk CMOS

" Leakage Components
# Subthreshold Leakage
# Gate Leakage
# Junction Leakage
# Gate Induced Drain Leakage
# Impact Ionization current
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Scaling Effect

" Scaling increases all leakage components
" Leakage components are dependent on each 

other through the device geometry and doping 
profile – “Trade-off” is necessary

" Knowledge of each leakage component is 
necessary for process engineering and 
circuit/logic design
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Standard CMOS n-channel Transistor Model
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Subthreshold Leakage

" Subthreshold current (I2)
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Subthreshold Regime

Transfer characteristics of MOSFET for VGS near Vt:

Experimental observation:
( )

nkT

VVq

D

thGS

eI
−
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Two Key Figures of Subthreshold 
Regime
" The inverse subthreshold slope, S, is equal to the voltage 

required to increase ID by 10X:

# If n = 1, S = 60 mV/dec at 300 K

# We want S to be small to shut off the MOSFET quickly

# In well designed devices, S is 70 - 90 mV/dec at 300 K

" Off current, Ioff :
# Ioff = ID(VGS = 0)

# For logic CMOS, we want Ioff to be in the nA range

# Ioff set by S and Vth

10ln
q

nkT
S =
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Subthreshold Current

" In the subthreshold regime:
# no longitudinal field in channel
# energy band diagram looks like the base of bipolar transistor

# electrons flow from source to drain by diffusion

2 exp 1 expGS th DS
sub e T sth

T T

V V Vw
I v C

L nv nv
µ

    − −= −         
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Some Important Effects

" Drain-Induced Barrier Lowering
# An effect called drain-induced barrier lowering (DIBL) takes place 

when a high-drain voltage is applied to a short-channel device. The 
source injects carriers into the channel surface (independent of the 
gate voltage) 

" Short channel-length effect and Vt rolloff
# Shorter channel length results in lower threshold voltages and 

increases subthreshold leakage

" Body effect
# When the well-to-source junction of a MOSFET is reverse biased (i.e., 

VBS is reduced) , there is a body effect that increases the threshold 
voltage and decreases subthreshold leakage

" Narrow-Width effect
# Narrow width of the transistor can also modulate the threshold voltage 

and the subthreshold current
" Temperature effect

# As temperature increases, subthreshold leakage is also increased
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Modeling Subthreshold Current (Isub)

" Increases exponentially with reduction in Vth

" Modulation of Vth in a Short Channel Transistor
# L ↓ ⇒ Vth ↓ : “Vth Rolloff”
# VDS ↑ ⇒ Vth ↓ :”Drain Induced Barrier Lowering”
# VSB ↑ ⇒ Vth ↑ : “Body Effect”

2 exp 1 expGS th DS
sub e T sth

T T

V V Vw
I v C

L nv nv
µ

    − −= −         
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Modeling Subthreshold Current 
(continued)
" If VDS = 0   ⇒ Isub = 0

" If VDS > kT/q ⇒

" With

" Key dependencies of the subthreshold slope:
# Tox ↓ ⇒ Cox ↑ ⇒ n ↓ ⇒ sharper subthreshold

# NA ↑ ⇒ Csth ↑ ⇒ n ↑ ⇒ softer subthreshold
# VSB ↑ ⇒ Csth ↓ ⇒ n ↓ ⇒ sharper subthreshold
# T ↑ ⇒ softer subthreshold

" n reflects electrostatic competition between the top gate and the body 
(“bottom gate”)

2 exp GS th
sub e T sth

T

V Vw
I v C

L nv
µ

 −≈  
 
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Importance of the subthreshold regime

" Determines the off current:
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Projected Subthreshold Leakage 
Currents
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Subthreshold Leakage Power

0.1

1

10

100

1000

0.25u 0.18u 0.13u 90nm 65nm 45nm

Technology

S
D

 L
ea

ka
g
e 

(W
at

ts
) 30M Tr

15mm Die

Excessive sub-threshold leakage power



17

ASP-DAC 04 33Pedram/Fallah

Leakage Current of Transistor Stacks
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Scaling behavior of stack effect
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Gate Leakage

" Gate current (I4)
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Gate Oxide Tunneling

" Gate oxide tunneling of electrons that can result in 
leakage when there is a high electric field across a thin 
gate oxide layer. Electrons may tunnel into the 
conduction band of the oxide layer; this is called Fowler-
Nordheim tunneling 

" In oxide layers less than 3–4 nm thick, there can also be 
direct tunneling through the silicon oxide layer. 
Mechanisms for direct tunneling include electron 
tunneling in the conduction band (ECB), electron 
tunneling in the valence band (EVB), and hole tunneling 
in the valence band (HVB)
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Gate Current (Igate)

" Direct tunneling of electron through 
gate oxide is the dominant source

" Depends exponentially on the oxide 
thickness and the Vdd [BSIM 4]

( )
( )( )3/ 2

2
1 1 /

/ exp
/

g ox ox

DT g ox ox
ox ox

B V
J A V T

V T

 − − − Φ
 =   
 

" Gate Leakage Components [Cao et al 2000, BSIM 4]
# Gate to S/D overlap region (Igso & Igdo)
# Gate to channel (Igc) = to Source (Igcs) + to Drain (Igcd)
# Gate to substrate (Igb)
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Gate Leakage

40% ∆Vgs 
!

~5X IG
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" Aggressive scaling of the gate oxide layer 
thickness (Tox)
# Necessary to maintain drive current with scaling 
# 90nm technology: 
# Leads to significant gate tunneling leakage current 

(Igate)

" Igate: A super exponential function of Tox:   
# 30% reduction of     

Gate-Oxide Leakage Current
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Scaling Trends

" Gate leakage is predicted to increase at a rate of 
more than 500X per technology generation

" Sub-threshold leakage increases by around 5X 
for each technology generation

" Gate leakage power, which was almost non-
existent in previous technology generations, 
expected to contribute more than 15% to the 
total power consumption in a 2004 technology 
generation.
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Gate-Oxide Leakage Current
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Junction Leakage

" Junction leakage that results from minority carrier 
diffusion and drift near the edge of depletion regions, 
and also from generation of electron hole pairs in the 
depletion regions of reverse-bias junctions. When both n 
regions and p regions are heavily doped, as is the case 
for some advanced MOSFETs, there is also junction 
leakage due to band-to-band tunneling (BTBT)
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Diode Reverse Biased Leakage

" Diode reverse bias current (I1)

where VDB is drain to bulk (substrate) voltage











−=

−
thV
DBV

s eII 11
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Modeling Source/Drain Junction BTBT

" Electron tunneling from Valence 
Band of the p-side to the 
Conduction Band of the n-side

" Jn. BTBT Current density
# Junction field (ξ), junction voltage 

(Vapp), band-gap (Eg).

" For Jn. BTBT: (Vbi + Vapp) > Eg

" Total Jn. BTBT = Source Jn. BTBT 
+ Drain Jn. BTBT

3/ 2

1/ 2

* 3 *

3 2

exp

2 4 2
,

4 3

app g
b b

g

V E
J A B

E

m q m
A and B

q

ξ
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π

−

 
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Gate Induced Drain Leakage

" Gate-induced drain leakage (GIDL) is caused by high 
field effect in the drain junction of MOS transistors. 
# In a negative-channel metal-oxide-semiconductor (NMOS) 

transistor, when the gate is biased to form accumulation layer in 
the silicon surface under the gate, the silicon surface has almost 
the same potential as the p-type substrate, and the surface acts 
like a p region more heavily doped than the substrate

# When the gate is at zero or negative voltage and the drain is at
the supply voltage level, there can be a dramatic increase of 
effects like avalanche multiplication and band-to-band tunneling. 
Minority carriers underneath the gate are swept to the substrate, 
completing the GIDL path 

# Thinner oxide and higher supply voltage increase GIDL
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Gate Induced Drain Leakage

" Drain to bulk current (I3)
" Strong inversion in the gate-drain overlap at low VG and 

high VD

" Will be a major obstacle in deep submicron technologies
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IV Model: GIDL Current

" The gate-induced-drain-leakage current and its body-bias 
effect are modeled by:
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Hot-Carrier Injection 

" Hot-carrier injection that occurs in short-channel 
transistors. Because of a strong electric field near the 
silicon/silicon oxide interface, electrons or holes can gain 
enough energy to cross the interface and enter the oxide 
layer. Injection of electrons is more likely to occur, since 
they have a lower effective mass and barrier height than 
holes
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Outline

" Power Dissipation 101
" Technology Trends
" Leakage Currents

# Subthreshold leakage
# Gate leakage
# Junction leakage
# Gate-induced drain leakage

" Optimizing the Leakage Components
" Summary
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Dual Threshold Voltages

" Use two
# Use the lower threshold for gates on critical path
# Use the higher threshold for gates off the critical path

" Improves performance without an increase in power
" Cons

# Increased fabrication complexity 
# Increased design time
# Beware of increased leakage in low VT portion of the 

circuit – could end up with increased power!
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Dual-Vt design for leakage control
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Multi Vt Design

" Gate-level Dual-Vth design Technique
# Gates in critical path(s) have low Vth

# Gates in non-critical paths have high Vth

" Mixed-Vth (MVT) CMOS Design Technique
# Transistor-level dual-Vth design technique

# Transistors within a gate can have different Vth

# More transistors can be assigned high Vth
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Mixed-Vt (MVT) CMOS - SKIP

" Mixed-Vt (MVT) CMOS Schemes
# Scheme I (MVT1)

" There is no mixed Vt in p pull-up or n pull-down trees

# Scheme II (MVT2)
" Mixed-Vt is allowed anywhere except for the series 

connected transistors
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Transistor Sizing for Leakage

" Leakage power depends on logic state
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Leakage Control

Stack EffectBody Bias Sleep Transistor

Vdd
Vbp

Vbn-Ve

+Ve

Equal Loading Logic Block

2-10X reduction 2-1000X reduction
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Effectiveness of RBB
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SD Leakage of Stacks
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Forward Body Biasing

" Use channel doping techniques to raise Vt

" Forward bias to bring Vt down to target value
" Reduces channel depletion depth and improves 

short-channel effects
# Allows L to be reduced by 15% for same worst case 

off current
# Increases body effect
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FBB versus RBB

" FBB
# When you remove bias = High Vt

# Apply Forward bias = Low Vt

" RBB
# No Bias = Low Vt

# Reverse Bias = High Vt

# With FBB, you can also use RBB
# RBB + FBB reduces leakage by 30x for low Vt devices
# RBB alone 2x for low Vt devices (Both 130nm, 110C)
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Supply Gating Techniques

MTCMOS
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Sizing of the Sleep Transistor

" Peak current that the sleep transistor can take 
influences performance
# Peak current design needs more silicon area
# Peak current design increases the off current

" Smaller Sleep transistor can cause reverse 
current, reduce noise margins, and improve 
performance
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Power Supply Gating

Phase-Locked Loop (PLL) as a voltage regulator, intended
to support DVS at run-time and leakage reduction during idle
times
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PSG Implementation: Global + Local
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Implementation – Power Supply Gating 
(PSG)
" Datapath logics

# Set the output of PLL to 0V during sleep mode

Global control 
of the output 
voltage of PLL

Local control 
of the output 
voltage of PLL
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Implementation- Power Supply Gating 
(PSG)
" Memory Structures

CMOS/NMOS/PMOS sleep transistor Gated-Vdd
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Summary

" Sources and mechanisms for power dissipation in VLSI 
circuits have been analyzed

" Closed-form equation useful for quick estimation of the 
various sources were provided

" Focus was placed in modeling and characterization of 
leakage currents in CMOS VLSI circuits

" Effect of process technology scaling on leakage currents 
were identified

" A review of various power optimization techniques for 
leakage current control was provided
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Global Outline

" PART I: Sources of Leakage Power and Trends
!PART II: Design Techniques for Leakage 

Minimization
" PART III: Leakage-aware Circuits and Memory
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Leakage Reduction Techniques

Vdd

0

0

O

Dual Vth or Multiple Vth

Stack Effect

Vdd

A
B

O

VBB

VTCMOS, Adaptive Body Bias,
Reverse Body Bias, Forward Body 
Bias.

Vdd

A
B

O

SLEEP

MTCMOS or Guarding

Vdd

A
B

O

Transistor sizing

Vdd

A
B

O

Vdd reduction

O

Vdd

A

B
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Introduction

" Uses two different threshold voltages, low Vth
and high Vth

# Total four different types of transistors (2 NMOS and 
2 PMOS)

" Low Vth transistors for gates on critical path and 
high Vth transistors for other gates.

" It is called Multiple Vth technology as well.

Dual Vth

Low VthHigh Vth
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Important Questions

" How can we assign threshold voltages to 
transistors?
# Not all non-critical gates can be made high Vth. 

" How many different threshold voltages do we 
need?
# Two or more?

" What are their optimal values?

Dual Vth
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Different Types

" Use only a single type of transistor for each gate.

" Use multiple types of transistor for each gate (Mixed Vth CMOS, 
MVT CMOS)
# MVT1: Same threshold voltage for all transistors in N or P networks.

# MVT2: Same threshold voltage for all transistors of a stack (due to 
proximity).

# No limitation (possible in some processes).

O

Vdd

A

B

Dual Vth

High Vth Gate (DVT) MVT1

O

Vdd

A

B

No Limitation

O

Vdd

A

B

MVT2

[Roy-DAC99-A]

Vdd

A

B

O
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Differences between Algorithms

Dual Vth

CustomCell-basedMethodology

More Than TwoTwo
Number of 
Threshold 
Voltages

Optimized
Pre-

determined
Threshold 
Voltages

Dominant
States

AverageProbabilistic
Known 
Input

Leakage 
Estimation

TransistorStack
Pull-up/Pull-down

Network
GateGranularity
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Mixed-Vth (MVT) CMOS

" Use several different threshold voltages for
transistors of each gate.

# Use the same threshold for
all transistors of pull-up or 
pull-down network.

# Use the same threshold for

all transistors of a stack.
" Manufacturing limitation due to 

proximity.

" Higher leakage saving
" More complex threshold assignment algorithm  

O

Vdd

A

B

Dual Vth
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MVT CMOS- Algorithm

" Assume all low-Vth transistors.
" For each transistor of each gate,

#Find the increase in the gate delay if high-Vth is 
used (∆td).

#Find the decrease in the gate leakage if high-Vth is 
used (                            ).

#Calculate 

" Higher value means more leakage can be saved using one 
unit of slack.

id

i

t

leak
ipriority

∆
∆=)(

Dual Vth

n

i
ieffi WKleak

µ
µ×=∆

[Roy-DAC99-A]
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MVT CMOS- Algorithm (2)

" Needs transistor-level static timing analysis.
" Propagation delay of a transistor,

" For each gate G, calculate its departure times, 
Tlr(G) and Tlf(G),

Dual Vth

)}()({max)(

)}()({max)(

idilr
i

lf

idilf
i

lr

ntGITGT

ptGITGT

+=

+=

Loutputintrinsicd Cttt +=
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MVT CMOS- Algorithm (3)

" Start from inputs and check gates level by level 
to calculate departure time of each gate.

" Back-track level by level to calculate the slack of 
transistors.

Dual Vth

Level 1 Level 2 Level 3
td1

td2

td3

td4

td5

td6

td7
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Back-Tracking (BT) Algorithm

" Back-track level by level and process transistors. 
Choose high-Vth for a transistor if its ∆td is less than its 
slack,
# Similarly for the algorithms working on stack/pull up and pull 

down/gate.

" Run time: O(n), where n is the number of transistors.

Dual Vth

Vth,a∆td,a ≤ Slacka

Transistor Level Algorithm

(Vth,a & Vth,b )

(∆td,a ≤ Slacka)&
(∆td,b ≤ Slackb)

Stack-Level Algorithm

Vdd

A

B

O

Vdd

A

B

O
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Priority Selection (PS) Algorithm (1)

" Similar to the previous algorithm.
" The transistors are processed based on their 

priority(i) values.

Dual Vth

Level 1 Level 2 Level 3

6
1

52

Vdd

A

B

O

Vdd

C

D

O
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Priority Selection (PS) Algorithm (2)

" After modifying each transistor, the slack values 
have to be recalculated.

" Run time: O(n2), where n is the number of 
transistors.

Dual Vth

Level 1 Level 2 Level 3
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Vdd

A

B

Priority-Based Backtracking (PB) Algorithm (1)

" A combination of two previous algorithms. 
" Transistors are put in m different groups 

according to their priority values.

Dual Vth

Vdd

C

D

Group 1

Group 2

Group 3

Group 4
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Priority-Based Backtracking (PB) Algorithm (2)

" For each group backtracking is done once during 
which only the transistors in that group are 
processed.

" It starts with the group with highest priority values.

Dual Vth

Group 1

Group 2

Group 3

Group 4

Vdd

A

B

Vdd

C

D 1

2

3
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Priority-Based Backtracking (PB) Algorithm (3)

" m=1 $ the algorithm is equivalent to the 
backtracking algorithm.

" m=n  $ the algorithm is equivalent to the priority 
selection algorithm.

" After each group is processed, the transistor 
slacks have to be recalculated.

" Run time: O(mn)

Dual Vth
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Experimental Setup

" Effective channel length = 0.32µm 
" Vdd = 1V
" High-Vth = 0.3V
" Low-Vth = 0.2V
" Temperature = 110°C
" SIS was used for mapping the circuits.

Dual Vth
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ISCAS Benchmark Circuits Mapped for Delay
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ISCAS Benchmark Circuits Mapped for Area
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Results for the Backtracking Algorithm
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ISCAS Benchmark Circuits Mapped for Delay
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ISCAS Benchmark Circuits Mapped for Delay

PI PO # Tr BT (s) PS (s) PB (s)
C432 36 7 1,056 0.03 2.83 0.08
C499 41 32 2,136 0.06 10.60 0.15
C880 60 26 1,546 0.04 7.00 0.10
C1355 41 32 2,724 0.07 22.40 0.20
C1908 33 25 2,986 0.10 26.20 0.21
C2670 233 140 3,930 0.11 55.40 0.28
C3540 50 22 5,440 0.14 95.94 0.41
C5315 178 123 9,000 0.24 302.00 0.70
C6288 32 32 10,630 0.50 337.47 1.03
C7552 207 108 12,084 0.40 591.66 1.08

Dual Vth

CPU Time on a SUN UltraSparc-II
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How Many Threshold Voltages?
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Dual Vth

[Srivastava-ISLPED03]
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Optimum Threshold Voltage for 1-Vth Method
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Optimum Threshold Voltages for 2-Vth 
Method
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Minimizing Total Power Consumption

" Combine the threshold assignment and sizing to 
achieve better results.

Sizing & Dual Vth

Vth DelayLeakage

Width Dynamic PowerDelayLeakage
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Minimizing Total Power Consumption

" Complex optimization problem
# Non-linear delay and power models 
# Leakage is a function of a gate’s input values
# Delay of a gate depends on its fanout

" Need to simplify the problem
# Use a cell-based approach

" Six different sizes for each cell
" Vth allocation is done at gate level

# Use the dominant leakage states when calculating the 
total power consumption

# Use a delay model which takes into account the load 
capacitance

Sizing & Dual Vth

[Keutzer-ISLPED03]
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The Power Model

" α is the switching activity factor,
" Pleak,i is the leakage in dominant leakage state i,

" βi is the probability of the gate being in state i.

Sizing & Dual Vth
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Three-Phase Algorithm

Sizing & Dual Vth

Delay Optimize the 
Low-Vth Circuit

Redistribute the Extra
Slack to Cells

Generates extra 
slack in the circuit.

Change Each Cell to 
Reduce Power

Small Decrease 
in Power?

No

Yes

STOP

Choose a cell with a
smaller size or a higher Vth.
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Slack Redistribution

" Evenly distributing the extra slack is not 
good,
# Some gates are better in trading off delay for 

power

" Calculate         for every gate.
# The higher the number, the higher the assigned 

slack.

" Power is not a linear function of delay.
# Recalculate          at every iteration.

" Discrete optimization: extra slack assigned 
to a gate may not be used,
# Assign it to another gate at next iteration.

Sizing & Dual Vth
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∆ Delay

Power
Cells
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Experimental Setup

" ISCAS85 Circuits
" 0.18µm process

# Vdd = 1.8V
# high-Vth= ±0.45V, low-Vth= ±0.30V

" Developed gates with 6 different sizes ranging 
from 0.18µm to 1.8µm

" Threshold assignment was done at gate level.

Sizing & Dual Vth
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Results

Sizing & Dual Vth
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Run Time of the Algorithm

Sizing & Dual Vth
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Power Breakdown

Sizing & Dual Vth
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Percentage of Power Reduction vs. Timing 
Constraint Relaxation for C3540

Sizing & Dual Vth
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Extending the Algorithm – The Idea

" It is possible to modify the algorithm to 
handle dual supply technologies.

" Topological limitation:
# A low-Vdd gate cannot drive a high-Vdd gate 

directly.
" Level converters can be used, but the 

overhead is large.

# A high-Vdd gate can drive any gates.

" Due to topological constraints and the 
fact that low-Vdd gates have 
significantly higher delay, the original 
slack distribution method is not good. 

Sizing, Dual Vdd & Dual Vth

0 < V’ < Vdd, high

Vdd, highVdd, low

0
Vdd, low

V’
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Extending the Algorithm

Sizing, Dual Vdd & Dual Vth

Delay Optimize the 
Low-Vth, high-Vdd Circuit

Redistribute the Extra Slack 
Based on the Topological 

Location of Gates

Change Each Cell to 
Reduce Power

Small Decrease 
in Power?

No

Yes

STOP

To minimize the number
of required level converters.
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Results

Sizing, Dual Vdd & Dual Vth
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New Unpublished Result: 18% additional reduction when using Dual-Vdd method.
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Guidelines

" Careful sizing (by using signals’ probabilities) 
can reduce the total power on average by 60% 
for a low-Vth circuit.
# No need to use multiple threshold voltages!

" If the threshold voltage value can be optimized, 
a single threshold voltage may be enough,
# In any case, more than two threshold voltages is not 

necessary.

" Use gate-level threshold assignment (simpler 
library)
# The transistor-level method is on average only 10% 

better.

Dual Vth
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Multi-Threshold CMOS (MTCMOS)

" It is also called guarding, power gating, ground 
gating, using sleep transistor, etc.

" A high-Vth is used to disconnect low-Vth 
transistors from the ground (Vdd).

N

outin

SLEEP

P

SLEEP

Virtual 
Supply

Virtual 
Ground

Low Threshold High Threshold

MTCMOS
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Simplification

" Instead of two sleep transistors, one can be used.

" Usually NMOS:
# µn > µp $ smaller size
# But, PMOS usually has a lower leakage.

N

outin

P

SLEEPVirtual 
Ground

MTCMOS

Vdd
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Further Simplification

" One sleep transistor can be shared between 
several gates.
# Reduction in the number of sleep transistors, area 

overhead, dynamic and leakage power.
# Increase in the complexity.

Gate1

SLEEPVirtual 
Ground

Gate2 Gate3

Vdd

MTCMOS
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Sleep Transistor Sizing

" Reduction in the high to low transition due to,
# Reduction in the gate drive from Vdd to Vdd – Vx.
# Increase in the threshold voltage of NMOS due to the body effect.

" Increase the sleep transistor width to solve the problem
# Increase in the area overhead, dynamic power and leakage.

" Technology scale down $have to enlarge the sleep transistor

SLEEP = Vdd

Vx

Vdd

MTCMOS

dsVappVthVthV ηγ −+= '
0

ddVgsV <

[Kao-DAC97]
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Reverse Conduction Path

" Current may flow from 
one output to another.

" Some nodes have a 
voltage between Vdd
and Ground.

" Vx is smaller than 
expected.

" Low to high transition 
is faster (Vx $ Vdd).

Vdd

SLEEP

Virtual 
Ground

Vdd

Vx

MTCMOS
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Worst Case Vector

" Usually changes after 
adding the sleep transistor
# Vx effect
# It depends on the critical 

path  and  the  profile  of 
current   flowing   to   the  
virtual ground.

" May even change by 
resizing the sleep 
transistor.

MTCMOS

Vdd

SLEEP

Virtual 
Ground

Vx
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Important Questions

" How many sleep transistors?
# Affects the area overhead, the dynamic power 

overhead, and the leakage power saving.

" How to cluster gates?
# Affects the routability and the size of the sleep 

transistors.

" What size to choose for the sleep transistors?
# Affects the delay and area overhead, the dynamic 

power overhead and the leakage power saving.

MTCMOS
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Different Algorithms

VariableFixed
The Threshold 
Voltage of the 

Sleep Transistor

PMOSNMOSType

More Than 
One

One
Number of Sleep 

Transistors

CustomCell-basedMethodology

ConservativeExhaustiveSizing

Module
Cluster of 

Gates
GateGranularity

MTCMOS
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Sizing: The Exhaustive Approach

" Objective: Finding the size of the sleep transistor 
for a given overall delay degradation (∆d/d).

" Exhaustively simulate a circuit with a sleep 
transistor under all test vectors,
# Will find the optimum size
# Works perfectly for library cells
# Impractical for larger circuits

" 16-bit adder $216× 216 ≅ 4.2 billion vectors, need to simulate 
the circuit under each vector for different size of the sleep 
transistor.

" In practice, the delay depends on the vectors of the previous 
cycle as well, i.e., 216× 216 × 216 × 216 =264 ≅ 18.4 × 1018 

vectors!!!

MTCMOS
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Sizing: The Conservative Approach

" Limit the delay degradation of each gate to ∆d/d.
" Find the optimum size of the sleep transistor for 

each gate,
# Much more demanding, but much easier to achieve.
# Assumes both low-to-high and high-to-low transitions 

degrade.

" Combine the sleep transistors of different gates.

MTCMOS

Time

Original

Overall Degradation is Fixed

Gate Degradation is Fixed
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Mutual Exclusion-Circuit A

C

I1 I2 I3 I4 I5

C

OutputInput

C

R

MTCMOS

V1 V3 V5

Virtual Ground 
Bounce

Sleep Transistor
Equivalent

[Kao-DAC98]
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Mutual Exclusion-Circuit B

C

I1 I2 I3 I4 I5

C

OutputInput

C

R

R

R

MTCMOS

Benefits:
• Reduction in the area overhead, leakage and dynamic power.
• Decrease in the virtual ground bounce due to increase in the 

parasitic capacitance.
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Mutual Exclusion-Circuit C

C

I1 I2 I3 I4 I5

C

OutputInput

C

R

MTCMOS
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Percentage of Delay Degradation

0

5

10

15

20

25

100 200 300 400 500

Sleep Transistor Resistance (Ohm)

D
el

ay
 D

eg
ra

d
at

io
n

 (%
)

Delay 5 - Case A

Delay 5 - Case B

Delay 5 - Case C

Total Delay - Case A

Total Delay - Case B

Total Delay - Case C

MTCMOS



61

ASP-DAC 04 121Pedram/Fallah

Merging Parallel Transistors

Circuit 1
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Circuit 2
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The Algorithm
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Find all possible 
transition times of 
gates assuming 
single cycle delay
for each gate.
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Comparison

" 60% overestimation!!!
# Because in practice only half of gates switch from high to low.

3 Chains

3 Chains

Inverter

Circuit

180ΩSizing

113ΩMutual 
Exclusion

340ΩSizing

Sleep 
Transistor 
Resistance

Method

MTCMOS
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How to Improve the Results

" The method gives an upper bound on the size of 
a sleep transistor.

" To improve the estimation,
# Use logical information instead of structural 

information to find out mutual exclusion.
# Limit the delay degradation of the entire circuit, not 

every module.

G3
G9G7

G5
Output1

Output2

Not on the critical path; no need to limit its delay degradation. 

MTCMOS



63

ASP-DAC 04 125Pedram/Fallah

Gate Clustering through Bin Packing and 
Set Partitioning
" Using one sleep transistor per module $ complex 

interconnect and parasitic resistance
" Solution: cluster gates and use one sleep transistor per 

cluster
1. Calculate the maximum allowed current for each cluster.
2. Use an algorithm to cluster gates.

MTCMOS

G1

G5

G6G2

G4

G7
G3

G9

G8

[Anis-DAC02]
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Finding the Maximum Current and the 
Optimum Size of the Sleep Transistor

m
VV

VC

Lthdd

ddL
d µατ α 0.18for    3.1      

)(
≈

−
=

SLEEP
Vx

Vdd

ατ
)(

LthXdd

ddL
SLEEPd VVV

VC

−−
=

]2/)[()/( 2
XXHthddsleepoxnsleep VVVVLWCI −−= µ

sleepLW )/( can be calculated for a given performance degradation 

and           value.sleepI

MTCMOS

SLEEPd

d   
τ

τ−= 1n Degradatio ePerformanc
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Find Current Forms for Each Gate

G1
G2

I1

I2

T1

T2

I1: 0,0,4,8,12,16,12,8,4,0,  0,  0,  0,  0,  0,0,0,0,0,0
I2: 0,0,0,0,  0,  0,  0,3,6,9,12,15,18,15,12,9,6,3,0,0

Imax1

Imax2

MTCMOS
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Preprocessing

" Make sub-clusters: choose gates whose leakage 
combined does not exceed the maximum 
leakage of any of them.

I1

I2

I3

I4

Sub-cluster 1

MTCMOS
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Bin-Packing

" Combine sub-clusters to form clusters whose max 
currents are less than a threshold selected before (i.e., 
Isleep).

" Objective: to minimize the number of clusters (sleep 
transistors).

SC1
Imax = 20

SC2
Imax = 32

SC3
Imax = 26

SC4
Imax = 28

SC5
Imax = 23

Cluster1

Cluster2

Cluster3

MTCMOS

Threshold:  Imax ≤ 50
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Problems

" Uses an Integer Linear Programming package to 
solve the problem
# For a circuit with 220 gates: BP about 200s and SP 

about 1000s.

" No physical location information is used
# Two gates located 
far from each other 
may be put in the 
same cluster

" Complex routing 
and high interconnect 
resistance.

MTCMOS

G1

G2

G3

G5

G4

G6

G7 G10

G9

G8
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G15

Set-Partitioning Method

" Perform placement and route.
" Modify the cost function to take into account the 

distance between cells when choosing clusters.

MTCMOS

G1 G2 G3 G4 G5 G6 G7

G8 G9 G10 G11 G12 G13 G14

G16 G17 G18 G19 G20 G21 G22

Vdd

GND

Sleep Transistor
Channel
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Results: Leakage Reduction
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MTCMOS
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Results: Dynamic Power Reduction in Active 
Mode
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Results: Total Sleep Transistors’ Width
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MTCMOS
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Results: Number of Sleep Transistors
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Samsung’s MTCMOS Design Methodology

" Design new cells that have sleep transistors.
" Use conventional P&R methodology. 

Vdd

GND

Vdd

VGND

GND

Area Overhead
~ 12%

MTCMOS

[Won-ISLPED03]
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Problems

" MTCMOS cannot be applied to Flip 
Flops
# Data loss

# Can copy the data to an external 
memory

" Delay and dynamic power overhead
" Energy overhead of external memory

" In an SoC, not all IP blocks are 
guarded, 
# Short circuit current if a guarded output 

drives a regular input.

MTCMOS

Flip 
Flop

Vdd

Gate2

Vdd

Gate1

Vdd

0 < V’ < Vdd

V’
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Complementary Pass-Transistor Flip Flop 
(CPFF)

MTCMOS

O

SCB

Q

Q

data
D

data

CLK

SCB

A high threshold transistor is used to reduce
the leakage in the sleep mode.

High threshold inverters 
are not guarded.

Low threshold 
transistors to 
decrease the 
delay.

High threshold transistors are used to 
cut the leakage path in sleep mode.
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Preventing Short Circuit Current

SC

IP2

SCB

Floating Prevention Circuit

MTCMOS

Active ActiveSleep

T1 T2

IP1

SC

SCB

SLEEP
" Store the data in a latch 

before disconnecting 
the module from the 
ground.
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Design Flow

Add Power Management 
Block to the RTL Code

Synthesize the RTL Code

Insert FPCs at the Interface 
to Unguarded IP Blocks

Insert Sleep Transistors

Place & Route Check Placement Rules 
and Floating Nodes

Replace All Flip Flops 
with CPFFs

Floor Plan Size Sleep Transistors

MTCMOS
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DSP Core

" The method was applied to a 16-bit DSP chip
" 0.18µm, Vdd = 1.8V
" Inserted 324 sleep transistors with the size of 

5µm 
" Ground bounce: average=9mV, max=49mV
" Performance degradation = 2%

MTCMOS
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A 32-bit RISC Processor used in a PDA

333MHz

Clock

1,914K

# Gates

0.18µm 

5-metal

Process

270mW18mm
5.7mm ×
5.7mm

Power 
Dissipation

Total Sleep 
Transistors Width

Chip Size

6000x2µW 

Reduction
Leakage 
Power

MTCMOS
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Minimizing Ground Bounce

" During sleep period, 
internal nodes are 
charged up.

" When the sleep transistor 
is turned on, there is a 
current spike flowing to 
the ground (due to the 
large Vds of the sleep 
transistor).

" This creates large Vdd
and ground noise.

Circuit

Vdd

Vdd

GND

MTCMOS

[Kim-ISLPED03]
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IBM’s Solution 1

" Turn-on the sleep 
transistor at two 
steps,

1. Using a weak PMOS: 
Vgs< Vdd for the sleep 
transistor (linear 
region). Originally, Vds

is high.

2. Using a strong PMOS: 
Vgs= Vdd for the sleep 
transistor (saturation 
region). Vds is low. 
Therefore, the peak 
current reduces.

Circuit

Virtual Ground

Vdd

Virtual Vdd

Weak

Sleep

Sleep Delayed Sleep

MTCMOS
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IBM’s Solution 2

" Use several sleep 
transistors.

" Turn them on with 
some delay.

" The resistance 
between the virtual 
ground and the 
ground is reduced 
when the Vds of the 
sleep transistor is 
low. This reduces 
the peak current.

Circuit

Vdd

Sleep FFFFFF

W
23

1 W
23

2
W

23

4

W
23

16

MTCMOS
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Results

" Applied to a 16-bit ALU (with a multiplier)

" Designed at 0.13µm, 1.5V, operating at 500MHz.
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Imax Imin Vmax-
Vdd

Vmin-
Vdd

Vmax-
GND

Vmin-
GND

Ts

R
a
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 (
%

) 

Method1 Method2

MTCMOS

Vmax

Vmin

Ts is the time it takes for the voltage 
of both ground and Vdd settle 
within ±5% of their final values.

TS
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Toshiba’s Mixed MTCMOS and Dual Vth 
Method
" Used to reduce the leakage power in a 

DSP core for W-CDMA cell phones
" Cell phones spend a significant amount 

of time in the standby mode.
# High leakage power

" But they have to exchange some 
information with base stations every 
100ms.

MTCMOS & Dual Vth

[Usami-ISLPED02]
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Combining MTCMOS and Dual Vth

" Using MTCMOS for the entire circuit means Flip 
Flop values have to be saved and restored 
every 100ms.
# Significant delay and power overhead.

" Solution: use MTCMOS for selected cells only 
(critical path)
# Use Dual Vth for other cells including Flip Flops.

" Use one sleep transistor per cell
# Simpler analysis Active Sleep

Td, Ed

T’d, E’d

MTCMOS & Dual Vth



75

ASP-DAC 04 149Pedram/Fallah

Cell Generation

" Exclude Flip Flops and Latches
" Exclude cells with small drive

# Unlikely to be used on the critical path

" Exclude high fanin gates
# Can be implemented using 2-input gates.

" Develop complex gates to speed up the 
critical path

" Overall 56 MTCMOS cells were developed 
using low-Vth transistors for logic.

MTCMOS & Dual Vth
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Floating Node Problem

Low Vth

High Vth

O

Vdd

A

B

Sleep

Vdd

A

B

Sleep

O

B

A

" An MTCMOS gate should not drive a regular gate (static 
current).

" Use a latch-type or bypass-type gate.
# Note that two sleep transistors are used.

Latch Type Bypass Type

MTCMOS & Dual Vth
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Another Possible Solution

" Use transistors to pull-up or pull-down outputs of 
MTCMOS gates
# Smaller number of transistors, but almost the same 

area overhead.
" The area overhead is dominated by the sleep transistor size

# Extra switching activity in the circuit every time the 
circuit goes to the standby mode.

sleepP

N

in
out

P

N

in out

sleep

MTCMOS & Dual Vth
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Applying the Technique

" It is not possible to limit conventional tools to use 
MTCMOS cells for critical paths and high-Vth
cells for non-critical ones.

" A high-Vth circuit was developed first.
" Critical paths were identified.
" Cells on the critical paths were replaced by 

MTCMOS cells,
# Started from output and continued backward until the 

timing constraint was met.

MTCMOS & Dual Vth
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Driving Sleep Transistors

" Many sleep transistors and long wires.
# Electromigration problem, etc.

" A clock-tree-synthesis tool was used to generate 
a buffer-tree.
# Only tree-construction and buffer placement, no skew 

issue.

MTCMOS & Dual Vth
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Experimental Setup and Result

" Applied to a 34K-cell module.
" High-Vth=0.55V, Low-Vth=0.35V, 0.18µm, Vdd=1.5V @ 

100MHz.
" 30 out of 53 levels of gates on the critical path were 

replaced by MTCMOS cells to meet the timing 
constraint.
# Reduction from 10.27ns to 8.85ns (a 14% improvement).

" 12% of total cells were replaced with MTCMOS cells. 
# Area overhead=10%.

" Leakage at 85°C, 
# Active mode: 86µA

# Standby mode: 28µA ≅ leakage of a high-Vth design

MTCMOS & Dual Vth
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Precomputation

If  f is independent of  Y, then freeze Y.

Goals:Minimize the size of g, maximize |Y| and the 
likelihood of the condition happening.

R1

R2
A

LE

f
X

Y

g

Basic idea:

Freeze some of the 
inputs when a specific 
condition on input 
values holds.

Precomputation-based Guarding
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Guarded Evaluation

" Disabling gates that perform redundant computation.
" Select an existing signal s instead of generating a new 

signal.

R A
LE

f

(s=1)  ⇒ (f=1)
s

s

Precomputation-based Guarding
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Precomputation-based Guarding

" A combination of precomputation and MTCMOS (ground 
gating). 

" Reduces both switching and leakage power
" Can be used to disable part of a register as well.
" Solves the input sharing problem

# There is switching activity in all modules, but at each cycle the 
output of only one module is used.

Precomputation-based Guarding

R

Add/Sub

Logic

Shift

Scan

Set

M
U
X

[Abdollahi-ICCD03]
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Comparators

R1

R2

>
AHP
BHP

=

>
ALP
BLP

0

1

If  AHP>BHP , then A>B
If  AHP<BHP , then A<B

A = 1001,1010 0101,0100
B = 0001,1010 1101,0100

Precomputation-based Guarding

High Portion

Low Portion
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Adders

" Partition the adder into HP and LP.
" The goal is to disable the HP when there is no need to it.
" If the sign extension part of operands exceed the HP 

range, it is disabled.

HP           LP
A       = 1111,1111 1101,0011
B       = 0000,0000 0011,0110
Sum  = 0000,0000 0000,1001

Precomputation-based Guarding
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Choosing the HP and the LP

" Increasing the size of the HP (i.e., the number of 
bits),
# decreases the number of times it can be disabled.
# Increases the amount of power that can be saved 

each time the portion is disabled.
" There is a tradeoff.

Precomputation-based Guarding

HP             LP
1111,1111 0001,0011    
0000,0000 0111,0110

HP             LP
1111,111100 01,0011              
0000,000001 11,0110

HP             LP
1111,111 10001,0011          
0000,000 00111,0110

# bits disabled:      8                                         10                    7
# times disabled:   1                                          0                    1
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Adders

sign extension

Reg1 Reg2Detection Logic

Adder
HP

Adder
LP

Inputs (HP) Inputs (LP)

CLK CLK

EN’

Output (HP) Output (LP)

01

latch

EN

SEL

SEL

Precomputation-based Guarding
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Hybrid Guarding

" Partition the HP to two or more segments.
" Disable one or more segments based on the 

input data.
" More saving at the cost of more complexity.

11 bits    10 bits     11 bits
Detection

Logic

Precomputation-based Guarding

HP1         HP2
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Dynamic Guarding

" Number of partitions = number of bits
" Dynamically detect the sign extension length and disable 

bits.
" At each cycle the maximum possible number of bits are 

disabled.

Detection
Logic

…

……

Precomputation-based Guarding
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Reducing the Switching Activity

D D D
Sleep

New Sleep

Sleep:

New Sleep:

Precomputation-based Guarding

" Turning the sleep transistor on and off consumes 
dynamic power.
# Turn-off the sleep transistor only if it is going to be off for a long 

period.
# Predict the future behavior based on previous cycles behavior.

Low Pass Filter
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Experimental Setup

" 32-bit functional units
" Process Technology

# BSIM 70nm
# Vdd = 0.9V
# NMOS Vth = 0.2V 
# PMOS Vth = -0.22V
# Sleep transistors’ Vth = 0.5V

" Test Bench
# Thousand vectors corresponding to ALU unit in the 

data-path of a processor executing a JPEG decoder 
program

Precomputation-based Guarding
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Results for a Comparator
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Operand Isolation

" If  f is independent of  Y, then set g to 1.
" May freeze Y for several consecutive cycles.
" Alternatively, an AND gate or a Multiplexer can be used. 

A f
X

Y

g

Precomputation-based Guarding

[When-DATE00]
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Results for an Adder
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Precomputation-based Guarding



85

ASP-DAC 04 169Pedram/Fallah

Results for the Register Driving the Adder

Clock Gating

Operand Isolation
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Results for the Total Power

Clock Gating

Operand Isolation
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Multipliers

Precomputation-based Guarding

" A two-dimension array of adders.
" Sign extension of X can be used to disable left part of the 

array.
" Sign extension of Y can be used to disable bottom part of the 

array. X

Y

ASP-DAC 04 172Pedram/Fallah

Two Dimensional Guarding

Precomputation-based Guarding

" The multiplier is 
partitioned to four 
segments.

" Segment A is 
always active.

" Segment D is 
active if both B and 
C are active.

AB

CD
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Results for a Multiplier
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Regs

22b Clock Gating
16b Clock Gating  

22b Guarding
16b Guarding

22b Guarding
Dynamic Guarding

22b & 16b Hybrid Guarding
Dynamic Guarding

Input1:
Input2:  

Precomputation-based Guarding
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Delay and Area Overheads

6%9%
Input1: 22b & 16b Hybrid 

Guarding
Input2: Dynamic Guarding

Multiplier

10%15%
18-bit Guarding

(Reduced Switching Activity)
Adder

30%25%10-bit GuardingComparator

Area
Overhead

Delay
Overhead

Guarding MethodCircuit

Precomputation-based Guarding
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Fujitsu’s FR500 VLIW Processor (FR-V 
Family)
" Technology: 0.18µm 
" Vdd = 1.8V 
" 4 operations per instruction
" At each cycle at most two operations can be performed 

on 32-bit integers.
" Data path modules

# 2 integer units

# 1 multiplier

# 1 divider

Precomputation-based Guarding
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The Integer Unit
" Five different modules

# Driven by the same registers
" High switching activity

" Depending on the instruction, output 
of one of the modules is used
# Other modules can be turned off.

" Add/Sub module is used frequently 
and its inputs are usually small
# Use precomputation based guarding 

to save power.
" Other modules are used infrequently

# Use full guarding to turn off entire 
module.

One Integer Unit

M
U
X

Logic

Shift

Scan

Set

Add/Sub

Precomputation-based Guarding



89

ASP-DAC 04 177Pedram/Fallah

Flow (1)

SCRIPT

Gate Level 
Description

SPICE Model

SPICE

Sleep Transistor 
Width

Precomputation-based Guarding

Percentage of Delay 
Degradation
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Flow (2)

CompilerC Program
Assembly 

Code Simulator

PowerMill

Input TraceSPICE Model + 
Sleep Transistor

Precomputation-based Guarding

Power 
Consumption
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Fast Power Estimation for Add/Sub

Script

% of time in sleep mode
and # times sleep 

transistor is switched

EXCEL

Approximate 
Power 

Input Trace

Library 
Information

# bits for Precomputation
and Approximate 

Size of the Sleep Transistor

Precomputation-based Guarding

" Can be used instead of PowerMill to speed up the search 
for optimum number of precomputation bits.
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Results for the Integer Unit

14%61%Clock Gating + Operand Isolation

11%58%Operand Isolation

9%81%Precomputation-based Guarding

Area 
Overhead

Power 
Saving

Method

" The large slack time of some modules was used to decrease the 
size of their sleep transistors.

" Delay overhead = 12% 
# May not be important as the critical path usually corresponds to memory 

read stage.

" Integer units are the hot spots of processors. Decreasing their 
temperature helps to simplify packaging and cooling system.

Precomputation-based Guarding
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Advantages of the Method

" Decreases both dynamic and leakage power.
" Can be applied to circuits that other techniques 

cannot handle easily.
" Higher power saving.
" Lower area overhead. 

Precomputation-based Guarding
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Additional Benefit

" Sleep transistors can decrease the dynamic power even 
when they are on,
# Because of decreasing the glitches on internal nodes.
# About 9% in Add/Sub module.

" Sleep transistors can increase the speed of low-to-high 
transition of some nodes of the circuit.

The voltage transition of an internal node 
before and after adding the sleep transistor.

Vdd

GND

Precomputation-based Guarding
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Guidelines (1)

" To achieve a very low leakage use MTCMOS 
method.

" If the size of the circuit or the number of gates 
that will be guarded is small, use one sleep 
transistor per cell/gate. 
# Higher area overhead, but less complexity.

" To achieve the best result, carefully analyze the 
current profile of gates,
# 20X improvement in leakage saving
# 38X improvement in area overhead

MTCMOS
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Guidelines (2)

" To reduce potential problems (e.g., routing, area 
overhead, and design complexity) use MTCMOS 
for critical-path gates and Dual-Vth method for 
other gates.
# Note: guarded gates should not drive non-guarded 

ones.

" If reducing both leakage and dynamic power are 
important, use precomputation-based guarding.

MTCMOS
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Impact of Well Bias on the Leakage

VTCMOS

VT is the thermal voltage,
Vapp is the applied reverse body bias,
η is the DIBL coefficient, 
Cox is the gate oxide capacitance, 
µ0 is the zero bias mobility, 
m is the sub-threshold swing coefficient of the transistor,
∆Vth is a term introduced to account for transistor-to-transistor leakage
variations.

TV
thV

T
eff

ox

TV
dsV

dsVbsVthVSVGV
Tmv

sub

eev
L

W
CA

  where,eeAI

η

ηγ

µ
∆−

−+−−−

=

−××=

8.12
0

)'(
1

)('

)1(
0

[Roy-ISLPED03]

ASP-DAC 04 186Pedram/Fallah

70nm Technology
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50nm Technology
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Reduction in the effectiveness of the method.
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Process Variation Effect
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Technology:

Back bias reduces the leakage as well as the effect of variation
of gate length and supply voltage on it.
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Leakage Distribution Improvement

" Channel length: Gaussian distribution µ=50nm, σ=2.5nm
" Both the mean and the standard deviation of leakage 

values reduced by 41%,
# Similar results when changing doping profile and supply voltage.
# Good when testing chips

Zero Body Bias

Optimal Body Bias

VTCMOS
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How to Change the Substrate Voltage

" Use a charge pump to generate a variable 
voltage.

VTCMOS

Φ Φ Φ Φ

P-Well

[Kim-DATE02]
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Charge Pump Equivalent Circuit

" Shift the charge from the P-well to the ground.
" Change the frequency of Φ, to change the voltage of the well.

VTCMOS

Φ

P-Well

Φ Φ Φ

-Vdd -2Vdd -3Vdd -4Vdd
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Using Commercial Tools for Designing Dual 
Vth and VTCMOS Circuits

" No need to use library cells which have all 
combinations of Vth’s.

" Significant leakage saving can be achieved by 
using all low-Vth and all high-Vth gates only.

Vdd

A

B

O

Vdd

A

B

OO

Vdd

A

B

VTCMOS & Dual Vth

[Sakurai-ISLPED01]
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Using Commercial Tools for Designing Dual 
Vth and VTCMOS Circuits

" This simplification reduces the saving by only 4-
7%.

" Manageable library size: only 2X increase.
" Low- Vth is determined from timing constraint.
" The optimum high-Vth is about 0.1V higher.

VTCMOS & Dual Vth
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Experimental Setup and Result (1)

" An 8-bit RISC processor
" Designed using 3K logic gates at 0.18�m 

technology.

" Low-Vth=-0.1V, high-Vth=0V, Vdd=0.5V.
" Leakage reduction: 80%

VTCMOS & Dual Vth
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Experimental Setup (2)

" In order to improve saving, VTCMOS method 
can be combined with Dual Vth technique.
# Threshold voltage of transistors can be changed while 

in sleep mode or in active mode (clock frequency has 
to be decreased).

" The technique was applied to an MPEG-4 
encoder.

" Place & route (P&R) was done using a 
commercial tool,
# In order to add metal lines to control back-bias, the 

cells were placed with extra space between them.

" After that, substrate/well contacts were modified.

VTCMOS & Dual Vth

ASP-DAC 04 196Pedram/Fallah

Experimental Setup (3)

" Next, well contacts on the Vdd line and substrate contacts 
on the ground line were removed by using a script.

" Finally, the n-well and p-well patterns were added 
between the cells.

" Area overhead: 9%

Standard Cells

Vss
P diffusion

Standard Cells

Vss

P diffusion

Standard Cells

Vss
P diffusion

Standard Cells

Vss

P diffusion

Standard Cells

Vss

P diffusion

Standard Cells

Vss

P diffusion

VBSN
Contact

VTCMOS & Dual Vth
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Power Comparison

VTCMOS & Dual Vth
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Guidelines

" The optimum value for high-Vth is about 0.1V 
more than low-Vth.

" If clock frequency can be reduced, VTCMOS is 
better than dual-Vth technique because it 
reduces the leakage of gates in critical path as 
well.

" VTCMOS is good for improving yield.
" Using VTCMOS and dual-Vth techniques 

together is not a good idea.

VTCMOS & Dual Vth
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Transistor Stacks in Single Threshold 
CMOS- The Idea

0

Vdd

Vdd

Vdd

ON

ON

OFF

OFF

Vdd

Vdd

Vdd

0
OFF

ON

ON

OFF

0

Vdd

Vdd

Vdd

ON

ON

OFF

OFF

SLEEP = 0

Vdd

Vdd

0
OFF

ON

ON

OFF

Vdd

SLEEP = 1

Stack Effect

[Roy-DAC99-B]
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Transistor Stacks in Single Threshold 
CMOS- The Algorithm
1. Find the minimum leakage vector using a heuristic.
2. Perform critical path and slack analysis.
3. Choose a gate which is in high leakage state (and not 

on the critical path).
4. Output = 1 $ add an NMOS sleep transistor
5. Output = 0 $ add a   PMOS sleep transistor
6. Repeat steps 3-5.

Stack Effect
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Leakage of New Technique vs. Applying 
Minimum Leakage Vector Only
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Technology: 0.18 Technology: 0.18 µµmm
Supply Voltage = 1.5VSupply Voltage = 1.5V
Threshold VoltageThreshold Voltage = 0.2V= 0.2V

Input Dependence of the Leakage 
Current

X0 X1 Leakage

0   0 23.60 nA

47.15 nA

51.42 nA

82.94 nA

X0

X1

X0

X1

0   1

1   0

1   1

Input Vector Control

[Abdollahi-ISLPED02]
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Input Vector Control Method

0

1

Combinational 
Logic

Primary 
Inputs

Min-Leakage 
Vector

sleep

sleep
input

input’

Min-Leakage Input = 0

sleep     input’

0       input

1          0

sleep
input

input’

Min-Leakage Input = 1

sleep     input’

0       input

1          1

Input Vector Control
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a0 b0 s0 Boolean Clauses

0    0       0       cl1  = a0 + b0 + s0 

0    1       1       cl2  = a0 + b0 + s0

1    0       1       cl3 = a0 + b0 + s0

1    1       0       cl4 = a0 + b0 + s0

Finding the Minimum Leakage Vector: 
Boolean Satisfiability Formulation

000 bas ⊕=

),,,( 4321 clclclclANDl =

)()( 000 truelbas =⇔⊕=

000 sba ⇒

000 sba +
000 sba ++

0s
0a

0b )

Input Vector Control



103

ASP-DAC 04 205Pedram/Fallah

Computing Leakage 

1111101001010000)( LDLDLDLDXLeakage jjjj
j +++=

0101 jj
j XXD = 0110 jj

j XXD = 0111 jj
j XXD =

Xj0

Xj1

Xi1

Xi0

-Quantize the leakage values to k levels.

0.18 µm

VDD = 1.5V

VT   = 0.2V

X0 X1 Leakage

0   0 23.60 nA

47.15 nA

51.42 nA

82.94 nA

0   1

1   0

1   1

L00

L01

L10

L11

Input Vector Control
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Decreasing the Number of Additions
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Input Vector Control
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Leakage Computing Circuit
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Minimum Leakage Vector Identification

Search for the minimum leakage value for which the 
above Boolean network is satisfiable.

Leakage 
Value

<

Leakage 
Computing 

Logic

Original 
Circuit

Primary 
Inputs

Primary 
Outputs

Internal 
Signals

Circuit 
Leakage

1

Input Vector Control
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Linear Search Algorithm for Minimum 
Leakage

C = Trivial Upper Bound   
on the leakage.            
MLV = {}

Generate Boolean 
clauses corresponding to 

total_leakage < C

Solve the resulting 
satisfiability problem

Satisfiable?MLV = satisfying vector

C = C-1

Minimum Leakage = C+1

Min-Leakage Vector = MLV

Stop

Start

Yes No

if        total_leakage < C – 1
then total_leakage < C

Input Vector Control
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Applying the Minimum Leakage Vector

Combinational

Logic

FF

FF

FF

FF

FF

FF

Input

Flip-Flops

Output

Flip-Flops

Next StatePresent State

...

...

...
...

...

...

Internal

Flip-Flops

Input Vector Control

Sequential Circuit

[Abdollahi-ISQED02]
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Scan Based Testing

1

0

Test Data

Input Data

Test Signal

FF

FF1
0

FF1
0

FF1
0

Combinational

Logic
...

Test

Test

Test

Scan In

Scan Out

Test Steps:

1. Test = 1 

• Apply n clocks and shift in the 
test vector.

2. Test = 0

• Apply one clock and capture the 
circuit response.

3. Test = 1

• Apply n clocks and shift out the 
response.

in1

in2

inn

Input Vector Control
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Modifying the Scan Chain

FF1
0

Combinational

Logic
...

Test’

Scan In

Scan Out

0
1

Sleep

FF1
0

Test’

0
1

Sleep

FF1
0

Test’

0
1

Sleep

mlv1

mlv2

mlvn

in1

in2

inn

Sleep mode:
Sleep = 1
Test’ = 1
The minimum Leakage Vector is 
applied to inputs of the 
combinational logic

Operational mode:
Test’ = 0
Inputs are directly applied to the 
combinational logic.

Extra multiplexers are not on critical 
paths.

Input Vector Control

test
sleep

test’
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Results - ISCAS89 Benchmark 

Minimum: 16%     Maximum: 39%   Average: 29%
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Delay Overhead - ISCAS89 Benchmark
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Comparing the Maximum and Minimum 
Leakage Values
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Upper bound on the leakage saving that can be achieved.
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Minimum Leakage vs. Average 
Leakage in the Sleep mode
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• Average leakage values were found using random vectors.
• The figure shows the actual leakage saving that may be achieved.
• Note that in a circuit, many gates are not in their minimum 

leakage states.
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Add Controllability to Internal Nodes to 
Improve Results

0
1

sleep
Min-leakage input

Input Vector Control
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Adding Control Points

sleep sleep

X = 0 X = 1      Y = 0 X = 1      Y = 1

00
01
10
11

Leakage(MUX)Y=0

Leakage(MUX)Y=1

0
0 1MUXL

kMUXL

Ltotal

'
totalL

Leakage level

X Y

<

X Y Parameters 

X = 0 :  No change

X = 1 : Multiplex with 
optimum value

Y = 0 : Optimum value = 0

Y = 1 : Optimum value = 1 1

Input Vector Control
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Power Reduction by Adding Control 
Points
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About 15% improvement by adding control points.
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Break-Even Time
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The sleep period has to be larger than the break-even time in order to save
power.
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Modifying Gates to Reduce the Overhead of 
the Method

P

N
sleep

in out

P

N

P

N

in inout
out

sleep

in outg in g
sleep

out
in g

sleep
out

X = 0 X = 1      Y = 0 X = 1      Y = 1

A ) B ) C )

Input Vector Control
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Delay Calculation

00
01
10
11

LeakageB

LeakageC

X Y

LeakageA

Leakage

00
01
10
11

DelayB

DelayC

X Y

DelayA

Delay

arrival_time(in1)

delay(in1, out)

arrival_time(inm)

delay(inm, out)

MAX arrival_time(out)

in1

inm

out

MAX circuit_delay

arrival_time(PO1)

arrival_time(POn)

Input Vector Control
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Equivalent Boolean Network
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Energy Saving for Different Speed 
Degradations
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Runtime of the Algorithm
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State Dependence of Sub-Threshold and 
Gate Leakages
" A key difference between the state dependence 

of Isub and Igate

# Isub primarily depends on the number of OFF in stack
# Igate depends strongly on the position of ON/OFF 

transistors

Pin Reordering

Vdd

O

Vdd

Vdd

0

Igate=0

Igate=0

Isub

3.8040.0003.804110

0.6760.0000.676100

10.1436.3393.804101

18.30312.6775.626011

1.9841.2750.709010

47.28819.01528.273111

7.0486.3390.709001

0.3820.0000.382000

Itotal
(nA)

Igate

(nA)
Isub

(nA)
State

5x reduction

[Lee-DAC03]
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Combining It with Input Vector Control

" Input Vector Control can be used to reduce Isub.
" Pin reordering can be used to reduce Igate

# Place off-transistor at bottom of stack
" Affects performance

" Inter-dependent problems
# Use simultaneous optimization

" Minimum leakage vector depends on the relative 
magnitude of Isub, Igate, and IBTBT.
# For a 2-input NAND

" Isub is at minimum  $ 00
" Igate is at minimum $ 10

Pin Reordering

101000
Minimum Leakage

Vector

255090Technology (nm)

Vdd

1
0

O
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Result

" Sleep mode savings

# Avg. 18% using state assignment alone

# Avg. 27% by using pin reordering along with state assignment
# Igate reduced by 45% up to 82%

" The impact of state assignment and pin re-ordering: 
C6288
# State assignment works equally well for Isub & Igate

# The addition of pre –reordering provides substantial benefits for 
both Igate & Ileak with slight improvement for Isub

" Effectiveness will increase for technologies with higher 
components of Igate

Pin Reordering
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Comparing Effectiveness of Several 
Techniques

Effectiveness and Scaling Trends
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Leakage Reduction for a 130nm Technology

Effectiveness and Scaling Trends

11.5X12.0XStack Effect

2.1X2.3XReverse Bias by 30% of Vdd

8.7X9.3XIncrease in Leff by 30% 

1.9X2.2XReduction in Vdd by 30% 

Theoretical 
Model

Simulation 
Results

Technique
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Ioff – Ion Curve

Effectiveness and Scaling Trends

0

5

10

15

20

0.250.30.350.40.450.50.550.6

ION/µm (mA)/µm

I O
F

F
/µ

m
(n

A
)/
µm

Baseline (no leakage control)

110°C

Vdd Scaling

Stack Effect

Leff Increase

VTCMOS

ASP-DAC 04 232Pedram/Fallah

Normalized Ioff/Ion Degradation: Scaling 
Trends

Effectiveness and Scaling Trends

ON

OFF

ON

OFF

I

I

I

I

∂
∂=ζ VTCMOS

Stack 
Effect

Changing 
Le

Changing 
Vdd

7.51.92.80.870nm

92.13.11100nm

202.23.11.1130nm

Higher values are better.
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Comparing Different Techniques

Delay in 
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Mode
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Conclusion

L: Low, M: Medium, H: High, N: No, Y: Yes
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Global Outline

" PART I: Sources of Leakage Power and Trends
" PART II: Design Techniques for Leakage 

Minimization
!PART III: Leakage-aware Circuits and Memory
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Lecture Outline

" Introduction
" Leakage-Biased Domino Circuits 
" Low Leakage Memory Cells

# Dual Vt SRAM

# Gated Vdd SRAM

" Low Leakage Cache
# Leakage-Biased Bitlines (LBB) Cache
# Cache Decay

# Drowsy Caches

" Summary
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Leakage Reduction Techniques

" [Heo,Asanovic 2002]
" Static: Design-Time Leakage Optimizations (DTLO)

# Replace fast transistors with slow ones on non-critical paths
# Tradeoff between delay and leakage power 
# Critical paths dominate leakage after applying DTLO techniques
# Example: PowerPC 750

" 5% of transistor width is low Vt, but these account for >50% of total 
leakage

" Dynamic: Run-tTme Leakage Optimizations (RTLO)
# RTLO switches critical path transistors between inactive and 

active modes 
# RTLO could give large leakage savings
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Existing DTLO Circuit Techniques

" Dual Vt Cell Selection
# Use high Vt cells on non-critical paths and low-Vt cells 

otherwise
# Maintain a delay budget constraint

" Dual Vt and Dual Vdd Designs
# Defines four types of cells; use them judiciously to minimize 

total power subject to a delay constraint
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Existing RTLO Circuit Techniques

" Power Gating
# Sleep transistor between supply and 

virtual supply lines
# Increased delay due to sleep transistor

" Sleep Vector
# Input vector which minimizes leakage

# Increased delay due to mux and active 
energy due to spurious toggles after 
applying sleep vector

Sleep signal

Virtual Vdd

Vdd

Logic cells

0

0
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Fine-Grain RTLO Techniques

" Have to turn off small pieces of an active processor for 
short periods of time
# Difficult to turn off large pieces for long periods → Fine-grain 

RTLO techniques

" Requirements of Fine-grain RTLO techniques
# Circuits with low active delay penalty, low energy moving in and

out of sleep, and fast wakeup time 

# Micro-architectural scheduling to keep the sleep time as long 
and often as possible

" Compare to coarse-grain RTLO techniques 
# O.S. puts whole processor to sleep for a long time ⇒ doesn’t 

save power when running code

# Low steady-state leakage only concern
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Lecture Outline

" Introduction
" Leakage-Biased Domino Circuits 
" Low Leakage Memory Cells

# Dual Vt SRAM

# Gated Vdd SRAM

" Low Leakage Cache
# Leakage-Biased Bitlines (LBB) Cache
# Cache Decay

# Drowsy Caches

" Summary
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Conventional Domino

clk

In
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Dual-Vt Domino

" [Kao and Chandrakasan, 2000]
# High Vt for precharge phase

# Input gating → increased delay and active energy

# High Vt keeper → increased noise margin

1

(High Vt transistor: Green colored)
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MHS-Domino

" [Allam, Anis, Elmasry, 2000]
# Clock-delayed keeper

# Pull-down through PMOS → short circuit-current in static 
inverter

clk

In

Sleepb=0

Dynamic node
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Leakage-Biased (LB) Domino

" [Heo and Asanovic, 2002]
" Active Mode

clk

Sleep=0

In

Sleepb=1
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Leakage-Biased (LB) Domino

" Sleep Mode

Clk=1

Sleep=1

In=0

Sleepb=0
LB-Domino biases itself into a low-leakage

stage by its own leakage current

Node1  1→0 Node2  0→1
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Han-Carlson Adder

" Evaluation with carry generation circuit of a 32-
bit Han-Carlson adder
# 6 levels of alternating dynamic and static logic
# 4 circuits: LVT, DVT, LB, and LB2

" Constraints
# Input/Output noise margin kept to 10% of Vdd

# Precharge/Evaluation delay equalized to within 1% 
error
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PG Cells of Han-Carlson Adder

(a) Low Vt (LVT) (b) Dual Vt (DVT)



126

ASP-DAC 04 251Pedram/Fallah

PG Cells of Han-Carlson Adder

(c) Leakage-Biased 1 (LB) (d) Leakage-Biased 2 (LB2)
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Processes

" 180nm: TSMC 180nm Processes
" 70nm: BPTM 70nm Processes

100C100CTemperature

0.9V1.8VVdd

0.15V/-0.18V0.27V/-0.23VLow Vt

(NMOS/PMOS)

0.39V/-0.40V0.46V/-0.45VHigh Vt

(NMOS/PMOS)

70nm180nmProcess
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Input Vectors

" 3 different input vectors
# Active energy and leakage power dependent upon 

inputs
# Vec1 discharges no dynamic nodes
# Vec2 discharge half of dynamic nodes
# Vec3 discharge all dynamic nodes

10xffffffff0xffffffffVector 3

00x000000000xffffffffVector 2

00x000000000x00000000Vector 1

CiBA
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Delay and Active energy consumption – 180 
nm Process

Delay and Active energy consumption : 180 nm process
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Delay and Active energy consumption – 70 
nm Process

Delay and Active energy consumption : 70 nm process
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Steady-State Leakage Power

Steady-state leakage power:180 nm process for the left one and 70 nm for the right one. Clk is high 
for all and sleep is asserted for LB and LB2. Note that y-axis for the left one is log-scale.
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Lecture Outline

" Introduction
" Leakage-Biased Domino Circuits 
" Low Leakage Memory Cells

# Dual Vt SRAM

# Gated Vdd SRAM

" Low Leakage Cache
# Leakage-Biased Bitlines (LBB) Cache
# Cache Decay

# Drowsy Caches

" Summary
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Leakage in Memories

" Leakage energy is rising due to lower threshold 
voltage

" Due to large on-chip memories for resources 
such as caches, translation look aside buffers 
and prediction tables, controlling leakage in 
memories is important



130

ASP-DAC 04 259Pedram/Fallah

Dual Vt SRAM Cell

0

1

BIT BIT_BAR

GLOBAL BIT GLOBAL BIT_BAR

0

WL

1 1

HVT transistors: green-colored
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Leakage Paths in Dual Vt SRAM Cell

0

1

BIT BIT_BAR

GLOBAL BIT GLOBAL BIT_BAR

0

WL

1 1
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Leakage Paths in Dual Vt SRAM Cell 
(Cnt’d)

Bitline leakage depends on the stored value

0

1

BIT BIT_BAR

GLOBAL BIT GLOBAL BIT_BAR

0

WL

1 1
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Gated-Vdd SRAM Cell

" State-destroying mechanism (Gated-Vdd)
# Introduces a power-switch between the ground and 

the circuit to reduce leakage
# Does sizing to maximize the static power saving but 

loses data in SRAM cells

" State-preserving mechanism (Modified Gated-
Vdd)
# Appropriately sizes the NMOS power-switch to 

provide the required minimum supply voltage to 
maintain the state of a static memory cell
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Modified Gated-Vdd SRAM Cell
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Gated GND (or Source-Biased) SRAM 
Cell
" [Kim and Roy 2002]
" Add a gated ground control 

transistor in between the 
actual ground and the 
sources of NMOS 
transistors in the SRAM cell

" The creation of a virtual 
ground (floating near 0.4V) 
during the low leakage 
mode operation can 
potentially make this circuit 
more vulnerable to soft 
errors (for 0 to 1 bit flip)
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Gated-Ground Transistor Sharing

" Gated-ground 
transistor is shared by 
a BANK of SRAM cells

" The gated-ground 
transistor should be 
turned on before the 
word line goes high

" Bank decoder turns on 
the gated-ground 
transistor before word-
line reaches the SRAM 
cell pass transistor

" No extra control logic is 
required
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Energy Savings in 64KB L1 Cache

" Leakage energy:
# 54% Subthreshold
# 9.3% Gate leakage

" Leakage savings:
# 65.8% Subthreshold
# 44.1% Gate leakage

" Energy overhead:
# 2% @ 70nm

Overall energy reduction 
achieved by diode footed L1 
cache is 39.2% in 70nm 
process
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Lecture Outline

" Introduction
" Leakage-Biased Domino Circuits 
" Low Leakage Memory Cells

# Dual Vt SRAM

# Gated Vdd SRAM

" Low Leakage Cache
# Leakage-Biased Bitlines (LBB) Cache
# Cache Decay

# Drowsy Caches

" Summary
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Introduction

" On chip caches represent a sizable fraction of the total 
power consumption of Processor

" As feature sizes shrink, the dominant component of this 
power loss will be leakage

" In a time interval the activity in cache is centered only on 
a small set of lines

" Hence leakage power can be reduced by putting the cold 
cache lines in state-preserving low power “Drowsy 
Mode”
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Review of Some Techniques

" Turn-Off circuits by creating a high-impedance path to 
ground; Trade-Off increased execution time for reduced 
static power consumption

" Gated-Vdd Technique turns off cache lines that are not 
likely to be used 

" Drawbacks
# State loss once power is turned off
# Reloading from L2 has potential to negate the energy savings
# Performance is affected due to reloading
# Complex algorithms are needed to reduce these effects

" Adaptive body-biasing with Multi-Threshold CMOS 
(ABB-MTCMOS) -> threshold voltage of cache line is 
varied (increased) dynamically to yield reduction in 
leakage energy
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Review: Preferred State Caches

Asymmetric SRAM
(Optimized for Leakage of “0”)
" The lower current drive of 

the high threshold voltage 
transistors make this design 
vulnerable to a stored value 
of 1 (its non favorable state 
for leakage reduction) 

" Similarly for the cell 
optimized for 1
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Dynamic Fine-Grain Leakage Reduction 
Using Leakage-Biased Bitlines
" Metrics for comparing fine-grain dynamic deactivation 

techniques
# Steady-stage leakage, Transition time, Fixed transition energy 

" Presents a new circuit-level leakage reduction technique, 
Leakage-Biased Bitlines (LBB)
# Low deactivation energy and fast wakeup

" Save leakage power of I-Cache and Multiported regfile 
by LBB
# I-cache: Idle subbank deactivation
# Multiported regfile:  Idle read ports and dead register 

deactivation
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LBB for Caches

" Modern cache structure: 
Hierarchical Bitlines 
# To save active power

# To reduce delay 

# To reduce bitline noise Local Bitline

SenseAmp

Subbank

Local-Global Switch

Global Bitline
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LBB for Caches (Cont’d)

" Local bitlines (32-bit 
cells) disconnected 
from senseamp by 
local-global switch

" LBB for Caches: If a 
subbank is not in 
use, turn off 
precharge 
transistors and delay 
precharging

Local Bitline

SenseAmp

Subbank

Local-Global Switch

Global Bitline
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Dual Vt SRAM cell

Bitline leakage depends on the stored value

0

1

BIT BIT_BAR

GLOBAL BIT GLOBAL BIT_BAR

0

WL

1 1

The Target
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Leakage-Biased Bitlines (LBB)

" LBB lets bitlines float by turning off the local HVT NMOS precharge 
transistors
# No static current draw because local bitline isolated
# LBB uses leakage itself to bias bitlines to the voltage which minimizes leakage!

" A good fine-grain dynamic technique
# Minimal transition energy:

" Same number of precharges (delayed precharge)

# Minimal transition time:
" Wakeup latency is only that of precharge phase

Discharge to 0 Stay at 1
Discharge to an intermediate 

value between 0 and 1

0

1

0

0 1

1
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Performance Issues for LBB Caches

" Subbank must be precharged before use
# Case 1 (best): subbank decode and precharge happen before 

more complex word-line decode, therefore no penalty. 
# Case 2 (worst): add additional pipeline stage for precharge

" One cycle increase in branch misprediction penalty 

# Focus on I-Cache because any latency increase can be partly 
hidden by branch prediction
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I-Cache Subbank Deactivation

Case 2 (worst) assumption (adding additional pipeline stage)  
→→→→ 2.5% IPC decrease on average

Leakage energy saving across processes
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Cache Decay - Preliminary

" [Kaxiras, Hu, and Martonosi, 2001] 
" Consider a data cache
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Main Idea

" During the dead time of a cache line
# Discard items from the cache
# Mark the lines invalid
# Put the cache lines to sleep based on generational aspect of cache line 

usage to reduce the leakage current of cache

" The basic premise is that cache lines are storing items that will not 
be used again
# Any static power dissipated on behalf of these cache items is wasted

" Use a transistor structure limiting the static leakage power by
# Banking cache
# Providing sleep transistor (Gating off the Vdd)

" Reduce the power wasted on dead items in the cache
# Without significantly worsening either program performance or dynamic 

power dissipation by exploiting sleep transistor at a finer granularity
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Potential Benefits

" Fraction of time that the cached data are dead
# 65 % for integer benchmarks
# 80 % for FP benchmarks
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Methodology and Modeling
" Simulation based on 

# SimpleScalar framework
" Benchmarks from

# SPEC CPU2000
# MediaBench suites

" Static power
# Saved by turning off 

portions of the cache
" The extra dynamic power

# Additional hardware
" Counter to support decay 

policy
# Extra cache misses

" Extra L2 cache reads and 
writebacks

# early writebacks ( : )( )

( 2 : )( 2 )

EnergyMetric ActiveRatio

Ovhd leak OvhdActivity

L Access leak extraL Accesses

=
+
+

ASP-DAC 04 282Pedram/Fallah

Relating Dynamic and Static Energy 
Costs
" Implications of increasing the miss rate of L1 cache

# Dynamic power dissipation ** predominant
" Due to an access to L2 cache, and possible additional accesses 

down the memory hierarchy
# Instruction stall ** marginal

" Interfering with smooth pipeline operation and dissipating extra
power

# Lengthened program execution cycles ** marginal
" Lead to extra power being dissipated

" In some cases, the stalls and execution cycles decrease 
due to the early writebacks
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Cache Decay

" Time-based leakage control
# Balancing potential for

" Saving leakage energy
" Incurring extra L2 cache accesses

# Based on competitive algorithm

# Long wait: leakage energy increases

# Immediate off: # of extra misses increase

" When to turn a cache line off
# Until the static energy dissipation since its last access is equal to 

the overhead of an extra miss
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Example

" To be effective, the wait times before turning a cache 
line off must be short enough to be seen in real-life
# E of an L2 access = 9 * ( E of L1 in a cycle )

" Decay interval = 10,000 cycles, where 1024 lines are assumed

Good
enough
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Example

" Ave. access interval  vs.  Ave. dead time
# gzip = 458  :  38,243  cycles
# applu = 181  :  14,984  cycles

# Dead times are not only long, but that they may also be easy to 
identify

" Since we will be able to notice when the flurry of short access 
interval references is over
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Hardware Implementation of Cache 
Decay
" Gated Vdd technique

# Insert a sleep transistor between the ground (or supply) and the
SRAM cells of the cache line

" Counter
# reset at each cache line access

# incremented at each fixed time interval

# Global and Local counter

# Energy overhead of additional HW is marginal
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Implications of Cache Line Power Off

" The first access to a powered-off cache line
# Cache miss
# Resetting counter and power the cache line on

# Delayed until the cache line is stabilized

# So,use the valid bit during such delay
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Results (SPECint 2000)
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(SPEC fp2000) - SKIP
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The Influence of the Decay Interval

Fixed-size

1K

8K
64K 512K

(average over all the benchmarks)
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Normalized Cache Leakage Energy Metric
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Drowsy Cache

[Flautner, Mudge et al, 2002]
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Policies

" Policy implications of using L1 Drowsy Data Caches must be 
explored

" L2 cache can be kept in drowsy mode without significant impact on 
performance

" The cost of being wrong – i.e., putting a cache line to sleep when 
required – is relatively small
# This is the major difference with Gated-Vdd

" Simple Policy
# Periodically put all the caches to sleep – regardless of access patterns –

and the line is woken up only when it is accessed

# Requires only a single global counter and no per-line statistics

" Complex Policy
# Use per-line access pattern to decide about switching to drowsy mode
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Policies (Cont’d)

" Worst-case execution time increase can be calculated 
using:

# where:
" accs specifies the number of accesses
" wakelatancy is wake up latency
" accsperline is the number of accesses per line
" wsize specifies the window size
" memimpact describes how much impact a single memory access 

has on overall performance
# using the formula, for  wakeuplatency=1, memimpact=1 

ExecFactor (crafty)    = 9% ; ExecFactor (equake)  = 4%

( ) ( )
wakelatency memimpact

accs wsize accs
accperline

ExecFactor
wsize

×× + −
=
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Policies (Cont’d)

" Memory Impact is a function of both micro-architecture and the 
workload:
# The workload determines the ratio of the number of memory accesses 

to instructions
# The micro-architecture determines what fraction of wake up transitions 

can be hidden, i.e., not translated into global performance degradation
# The micro-architecture also has a significant bearing on IPC which in 

turn determines the number of memory accesses per cycle

" Assuming that half of the wake-up transition latencies can be hidden 
by the micro-architecture, based on the ratio of 0.63 of memory 
accesses per cycle, ExecFactor for crafty benchmark reduces to 
2.8%

" The actual impact of the technique is likely to be significantly lower 
than the results from analytical model
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Drowsy Tags

" The question is whether the tags are put into drowsy mode along 
with the data or whether they are always on!

Latencies of accessing lines in the drowsy cache
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Drowsy Tags

" Extra delay :
# Awake lines are read out and their tags are compared. If none of

the tags match after the first read, then controller wakes up all 
the drowsy lines in the indexed set, and then they can be 
compared

" Unmatched tags should be put back to sleep as the 
chance of them being accessed is less

" In the case of direct mapped caches there is no 
performance advantage to keeping the tags awake
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Policy Evaluation

" The following parameter can be varied and 
different policies will be achieved
# Update Window Size

" Various benchmarks from SPEC2000 suite on 
SimpleScalar using Alpha ISA were run in two 
configurations
# OO4: 4-wide Superscalar Pipeline, 32K direct-

mapped L1 I$, 32 byte line size, 1 cycle hit latency, 
32k 4-way set associative L1 D$, 32 byte line size, 1 
cycle hit latency, 8 cycle L2 cache latency
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Policy Evaluation (Cont’d)

" Impact of Window size on performance and on the fraction of drowsy lines
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Summary

" A number of circuit and architecture-level optimization 
techniques targeting leakage current control and 
minimization were reviewed

" Special emphasis was placed on leakage reduction in 
memory cells, on-chip caches and the cache hierarchy

" Results demonstrate that a significant leakage power 
saving is possible depending on the logic style, circuit 
design, and architecture being used
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