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Abstract — This work focuses on the load balancing 
problem for online service applications (which are response 
time-sensitive) considering a distributed cloud system 
comprised of geographically dispersed, heterogeneous 
datacenters. An offline solution based on force-directed 
scheduling is presented, which can determine the application 
placement for long periods of time. The solution is then 
extended to do online application placement and migration 
for geographically distributed datacenters based on 
predictions about the application lifetimes, workload 
intensities, dynamic energy prices, and renewable energy 
generation capacities at different datacenters in the cloud 
system. The simulation results demonstrate 27% to 40% 
improvement using the proposed algorithms with respect to 
the method that does not consider the geographical load 
balancing.  

I. INTRODUCTION 

Demand for computing power has been increasing due to the 
penetration of information technologies in our daily interactions 
with the world both at personal and communal levels, 
encompassing business, commerce, education, manufacturing, 
and communication services. Dramatic increase in the 
computing resources requires a scalable and dependable 
information technology (IT) infrastructure comprising of 
servers, storage, network bandwidth, physical infrastructure, 
electrical grid, personnel and billions of dollars in capital 
expenditure and operational cost  to name a few.  

Datacenters associated with a cloud system are typically 
geographically distributed, yet connected together with 
dedicated high-bandwidth communication links. This helps 
reduce the peak power demand of the datacenters on the local 
power grid, allows for more fault tolerant and reliable operation 
of the IT infrastructure, and even, lowers cost of ownership. A 
datacenter itself comprises thousands to tens of thousands of 
server machines, working in tandem to provide services to the 
clients, see for example [1] and [2]. These datacenters can be 
owned by one cloud provider or may be federated.  

Datacenters are usually designed for the worst-case 
workload. At the same time, datacenter workload changes 
drastically depending on the time of the day and day of the 
week. Considering the dynamic energy pricing trend [3], price 
of the electrical energy purchased form the utility companies 
may be a function of time of day or the peak power consumed 
by the consumer. Energy prices at different sites of a 

geographically distributed cloud system can be different due to 
local time differences and differences in local utility company’s 
energy prices. To reduce the reliance on brown sources of 
electricity and supplement/diversify the power generation 
sources for a datacenter, there is a trend to generate electricity 
from renewable sources such as wind and solar at the 
datacenters’ site [4, 5]. Geographically distributed datacenters 
associated with a cloud system create load balancing 
opportunities that can result in a reduction in the total number of 
computing resources provisioned in datacenters (considering the 
time difference between peak workload times in different 
locations), as well as lowering of the operational cost of each 
datacenter by purchasing electrical energy at lower prices 
(considering dynamic energy prices at each site depending on 
the local time) and/or increasing the portion of the renewable 
power generated in some datacenters. 

Geographical load balancing (GLB) can be defined as a 
series of decisions about online assignment and/or migration of 
virtual machines (VMs) or computational tasks to 
geographically distributed datacenters in order to meet the 
service level agreements (SLAs) or service deadlines for 
VMs/tasks and to decrease the operational cost of the cloud 
system.  

Effectiveness of the GLB in case of offline computation 
assignment and scheduling has been demonstrated in previous 
work [6, 7]. Most of the previous work that has focused on the 
GLB problem for online service applications, e.g., [8, 9, 10], 
simplify the VM placement and migration problem to a request 
forwarding problem for a VM type or a collection of VMs. This 
representation ignores the heterogeneity of VMs, the VM 
packing problem, and real VM migration cost and can thus 
result in low performance in a real cloud system. 

In this work, we focus on the GLB problem for 
heterogeneous online service applications that are response 
time-sensitive. Communication latency, queuing and service 
delays, and VM migration penalty are the most important 
factors for determining the VM to datacenter assignment 
solution. The availability of each type of resource in a 
datacenter, peak power capacity, and varying power usage 
effectiveness (PUE) of a datacenter are considered in modeling 
the datacenter. There are two versions of the GLB solution: (i) 
an offline solution, which considers every optimization variable 
to be determined deterministically in order to derive a complete 
VM placement and migration solution for a long period of time, 
and (ii) an online solution, which uses prediction of the 
variables for the future to derive VM placement and migration 
for a short period of time. The offline solution can be used 
during the design of geographically distributed datacenters to 



 

 

reduce the initial capital expenditure and expected operational 
cost of the datacenter.  

This paper presents a novel algorithm based on force-
directed scheduling [11] to solve the offline problem for 
geographically distributed datacenters. This algorithm is 
subsequently extended to an online solution to perform periodic 
VM placement and migration management for online service 
applications based on the prediction of application active 
periods, workload types and intensities, electrical energy prices, 
and potential generation of renewable energy in the near future. 
The effectiveness of the proposed solutions is demonstrated by 
comparison them to a case without the GLB capability. 

This paper is organized as follows. The most relevant prior 
work is reviewed in section  II. Parameter definition and precise 
problem formulation for the offline scenario are given in 
sections  III and  IV. The offline version of the solution is 
presented in section  V while online problem formulation and 
solution are presented in section  VI. Simulation results are 
presented in section  VII and paper is concluded at section  0.   

II. RELATED WORK 

The GLB can be seen as the high-level resource 
management problem in the cloud system. Resource 
management problems in cloud computing systems have 
attracted a lot of attention in recent years. Datacenter, VM and 
SLA modeling, and resource management solutions inside a 
datacenter are extensively discussed in the previous work, cf. 
[12, 13, 14, 15, 16, 17, 18]. In this section, a review of the most 
relevant work to the GLB problem is provided. 

Some prior work has focused on reducing the operational 
cost of the cloud system by using the load balancing opportunity 
– see [19] and [20]. Model predictive control has been used to 
solve the GLB problem using the estimated future load, e.g., [21] 
and [22]. These studies consider homogenous datacenters 
(where all servers are identical), which is far from the real-world 
situations. Reference [8] considers heterogeneous datacenters 
(comprised of servers with different performance and power 
dissipation figures, and even with instruction sets), which results 
in a more elaborate load balancing mechanism. Unfortunately, 
this work still ignores the heterogeneity of VMs, VM packing 
problem, and realistic VM migration cost and can result in low 
performance under realistic scenarios. 

GLB increases the chances for effective utilization of 
renewable power sources in datacenters. For instance, a recent 
work in [23] investigates the feasibility of powering up a 
geographically distributed datacenter with only renewable 
power. A possible disadvantage of GLB is that the access to 
cheap electrical energy purchased from the local utility 
companies may result in an increase in the datacenter’s power 
consumption. Considering the environmental cost of energy 
usage (e.g., carbon emission) can eliminate this possibility. For 
example, reference [9] shows that if the electricity price is set 
based on the share of the brown energy to the total produced 
energy, GLB can reduce the brown energy usage. Similarly, Le 
et al. [10] present algorithms that reduce the brown energy 
usage in geographical distributed datacenters.   

Considering offline computation adds another perspective to 
the GLB problem i.e., the possibility of computation deferral. 
Computation deferral is only appropriate for batch applications 
with loose deadlines and can be used in combination with online 

service application load scheduling to further reduce the total 
energy cost or brown energy consumption of a datacenter. 
Reference [6] focuses on computation scheduling in datacenters 
and computation deferral to minimize the energy cost. 
Reference [7] solves the GLB problem considering online 
service and batch applications and cooling supply selection in 
datacenters. The cooling supply choices considered in this paper 
are to use a chiller or outside air cooling. 

III. PARAMETER DEFINITIONS 

The GLB solution for online service applications is a 
periodic VM assignment to and/or VM migration across 
geographically distributed datacenters if necessary. The 
objective of the GLB problem is to minimize the operational 
cost (the electrical energy bill plus SLA penalty) of the cloud 
system while satisfying resource, peak power capacity, and SLA 
constraints. Note that the decisions in the GLB solution are 
focused on the cloud-level VM assignment and migration. Each 
datacenter has its own VM management that assigns VMs to its 
servers and migrates VMs. The datacenter-level VM 
management and migration are out of the scope of this paper. 
An exemplary figure for a geographically distributed datacenter 
is shown in Figure 1.  

Figure 1 – An exemplary figure for a geographically distributed cloud 
system 

In this work we focus on solving the GLB problem in case 
of heterogeneous VMs and heterogeneous servers in each 
datacenter. We present two versions of the solution to this 
problem: (i) An offline solution considering predicted workload, 
known renewable power generation capability, and dynamic 
electrical electricity prices; (ii) A periodic online solution to 
decide about the VM placement and migration for the current 
time based on the immediate information and predictions about 
the future. Note that the assumption in the offline version of the 
problem is simplistic but the offline solution can be used in 
capacity provisioning for datacenters, determining datacenter 
site locations, or the amount of renewable power source 
construction near each datacenter. Moreover, as shown in this 
paper, the offline solution can be extended to the online version, 
which can be used in VM management in a cloud system.  

The time axis in the GLB problem is divided into time slots 
called epochs. Each epoch is identified by a unique id, denoted 
by ߬ . ܶ  denotes the duration of each epoch, which is in the 
order of a few minutes to as much as an hour. New VMs are 
only admitted at the beginning of each epoch. Similarly, 
decisions about VM migration and placement are only applied at 
the beginning of each epoch. In addition to this decision making 



 

 

process, a reactive manager migrates VMs between different 
datacenters in the case of drastic workload changes, which may 
create SLA, peak power, or thermal emergencies.  

The solution to the GLB problem involves information about 
(or prediction of) the dynamic energy prices, renewable power 
generation capability, VM workload, and VM active period. The 
quality of these predictions determines the quality of the 
proposed solution to the GLB problem. In the first part of the 
paper, we consider an offline version of the problem that 
assumes perfect prediction of these parameters and determines 
the complete VM placement and migration for a long period of 
time e.g., a full day. Definitions of parameters for the offline 
version of the problem are given next.  

 denotes the set of consecutive epochs that we consider for ߒ
the offline version of the GLB. Similar to the online solution, 
the offline solution changes the VM assignment solution only at 
the beginning of each epoch. Each VM and each datacenter are 
identified by a unique id, denoted by i and d respectively. ܫሺ߬ሻ 
denotes the set of active VMs in each epoch and ܦ denotes the 
set of geographically distributed datacenters. 

A time-of-use (TOU) dependent energy pricing scheme is 
considered for each utility company. The energy price is 
assumed to be fixed for each epoch. ܲܧௗሺ߬ሻ denote the energy 
price in datacenter d during epoch ߬ . TOU-dependent energy 
pricing scheme (in contrast to peak-power dependent energy 
pricing) enables one to ignore the time variation of renewable 
power generated in local renewable power facilities during an 
epoch and model the amount of generated renewable power by 
the average generated power in that epoch, which is denoted by 
 ௗሺ߬ሻ. The allowed peak power consumption of a datacenter isܩ
determined by the power delivery network in the datacenter and 
is denoted by ܲௗ,௫ . To translate the average power 
consumption to ܲௗ,௫, peak to average power ratio (ܴܲܣௗሺ߬ሻ) 
is used. This parameter depends on the resource capacity of the 
datacenter and the set of VMs assigned to the datacenter.  

The PUE factor of a datacenter, which is defined as the ratio 
between total power consumption of the datacenter to the power 
consumed by the IT equipment in the datacenter, is dependent 
on the datacenter design (including facility planning and 
management and cooling technology) and the amount of 
instantaneous power consumption. We consider the PUE factor 
to be decomposed to a constant factor (݂݂ܧௗ), which accounts 
for the uninterrupted power supply (UPS) inefficiencies within 
the datacenter, and a load-dependent factor (1   ,(ௗሺ߬ሻܱܲܥ/1
which captures the inefficiency of the air conditioning units in 
the datacenter. In the load-dependent factor, the coefficient-of-
performance (ܱܲܥௗሺ߬ሻ), which models the amount of power 
consumed by the air conditioning units, depends on the 
temperature of the supplied cold air, which is in turn a function 
of the IT equipment power dissipation in the datacenter. 
Optimal ܱܲܥௗሺ߬ሻ is a monotonically decreasing function of the 
average power consumption in the datacenter.  

We consider only the processing capacity as the resource in 
each datacenter (consideration of other resource types such as 
the storage or network bandwidth falls outside the scope of 
present paper). To model each datacenter more accurately, we 
consider datacenters with heterogeneous servers. Each server 
type is identified by a unique id ݆ in each datacenter and the set 
of server types in each datacenter is shown by ܬௗ. ܥௗ, denotes 
the number of servers of type ݆ in datacenter ݀. Different server 

types have different characteristics in terms of their processing 
speed (CPU cycles per second) and power consumption.  

Due to non-energy proportional behavior of the servers [24], 
it is important to translate the amount of resources required in 
the server pool to the number of active servers. To capture the 
VM packing effect, we assume that any active server of type j, 
is utilized by an average value (smaller than one, e.g., 0.8) 
denoted by ߶ത . The rationale is that considering any resource 
requirement value, server-level power management strategies 
including server consolidation or dynamic voltage and 
frequency scaling methods are employed in the datacenter 
ensuring that an active server is utilized at a high level so that 
we avoid having to pay the penalty associated with the non-
energy proportionality behavior of the servers. This average 
utilization level for different server types may not be the same 
because the characteristics and configuration of each server type 
in terms of its power consumption vs. utilization level curve as 
well as the amount of memory, local disk size, network interface 
bandwidth are generally different.  

The average power consumption of each of these resource 
types in datacenter can be found by multiplying the average 
power consumption of a typically utilized server of given type 
(߶ത ܲ

  ܲ
) by the number of servers needed to support the 

assigned VMs in the datacenter. In this formula,  ܲ
  and ܲ

 
denote the idle and utilization-dependent power consumption of 
a server of type	݆. 

Each client of the target cloud system creates one VM to 
execute its application. The SLA for online service application 
determines a target response time for requests generated by the 
VM. The cloud provider must guarantee the satisfaction of this 
response time constraint for a percentage of incoming requests 
(e.g. 95%) and agrees to pay a fixed penalty for any request 
violating the response time constraint. Moreover, SLAs 
determine VM migration cost, which is the penalty for service 

outage due to VM migration. ݉ܿ
ௗ,ௗᇲሺ߬ሻ  denotes the VM 

migration cost between datacenter ݀ and ݀ᇱ. 
Let ݔ

ௗ,ሺ߬ሻ  denote the amount of servers of type j in 
datacenter d allocated to VM ݅  in epoch ߬. To determine this 
resource allocation parameter for each VM, a performance 
model must be considered. Each VM will have different 
resource requirements and exhibit different response time 
behavior if it is assigned to different server types. Moreover, 
dependence of a VM’s request response time in a host 
datacenter can be determined based on the communication 
distance between the VM’s origination point and the host 
datacenter, the data rate in dedicated communication channels, 
the packet size of the incoming requests and outgoing response.    

Performance models proposed in the literature can help 
translate the resource allocation parameter to specific SLA 
violation cost or price based on the client’s SLA requirements, 
VM workload in the epoch, execution behavior of VM on the 
specific server type, and the communication latency. The 
performance model can be abstracted by parameter ݎ

ௗ,ሺ߬ሻ and 

function ݂ሺݔ
ௗ,ሺ߬ሻሻ  that denote the least amount of the 

computing resource needed in order to guarantee satisfaction of 
the SLA constraint and the expected SLA cost of VM i in epoch 
߬ with allocation parameter ݔ

ௗ,ሺ߬ሻ, respectively. According to 

definition, ݂ሺ0ሻ ൌ 0 . Ignoring ݔ
ௗ,ሺ߬ሻ ൌ 0 , this function is 



 

 

monotonically decreasing with respect to ݔ
ௗ,ሺ߬ሻ . If the 

communication latency of assigning a VM to a datacenter 
violates the SLA response time constraint, parameter ݎ

ௗ,ሺ߬ሻ 
will be equal to infinity in order to avoid such assignments.   

Note that constraint ݔ
ௗ,ሺ߬ሻ  ݎ

ௗ,ሺ߬ሻ  guarantees that the 
SLA constraint will be satisfied based on the assumed 
performance model but in order to satisfy the SLA constraints, 
the host server monitors the performance of the application and 
in case of SLA violation increases the amount of resource 
allocated to it or requests VM migration from the datacenter-
level resource manager. 

IV. PROBLEM FORMULATION FOR THE OFFLINE PROBLEM 

The offline version of the GLB problem can be formulated 
as follows:  
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ௗ,ሺ߬ሻ ݎ

ௗ,ሺ߬ሻൗ െ 1  ߳൯
ା

∈ௗ∈  0     ∀݅ ∈  ሺ߬ሻܫ
(3) 

∑ ݔ
ௗ,ሺ߬ሻ∈ூሺఛሻ  ݀∀  ௗ,ܥ ∈ ݆∀	&	ܦ ∈  ௗ (4)ܬ

݉ܿሺ߬ሻ  ݉ܿ
ௗ,ௗᇲݕ

݀ሺ߬ሻݕ
ௗᇲሺ߬ െ 1ሻ      ∀݀, ݀ᇱ ∈  (5) ܦ

ܲௗሺ߬ሻܴܲܣௗሺ߬ሻ  ܲௗ,௫  (6) 

where ሺܣሻା  denotes the max	ሺܣ, 0ሻ  and Parameter ߳  is a very 
small positive value. Note that ݊݃݅ݏሺ0ሻ is equal to 0.  

The optimization parameters in this problem include the 
assignment parameters (ݕ

ௗሺ߬ሻ) and the allocation parameters 
ݔ)

ௗ,ሺ߬ሻ). The objective function includes three terms: (i) the 
energy cost paid to the utility companies, (ii) the VM migration 
cost, and, (iii) the SLA cost of VMs based on the VM 
assignment and amount of resources allocated to them. 

Equation (1) determines the average power consumption of 
each datacenter based on the allocated resource to VMs. 
Constraint (2) determines the pseudo-Boolean assignment 
parameter for each VM in each epoch. Constraint (3) forces the 
amount of resources allocated to each VM to be greater than 
ݎ
ௗ,ሺ߬ሻ . Resource capacity constraint for each server type in 

each datacenter is captured by constraint (4). Constraint (5) 
determines the migration cost associated with each VM. The 
migration cost is equal to zero unless the VM is migrated from 
datacenter ݀ᇱ to ݀ in epoch ߬. In the latter case, the migration 

cost is equal to ݉ܿ
ௗᇲ,ௗ . In order to consider the initial VM 

assignment solution, if VM ݅ is initially assigned to datacenter 
ݕ ,݀

ௗሺെ1ሻ is set to one. Finally, constraint (6) captures the peak 
power capacity constraint in each datacenter. 

The GLB problem is an NP-hard optimization problem. 
Most of the previous work [8, 9, 10, 19] has focused on solving 
the GLB problem with continuous workload approximation. The 
problem can subsequently be solved using convex optimization 
methods. The continuous approximation of the GLB problem is 
acceptable in case of homogenous VMs or simple request 
forwarding scenarios in a cloud system. This simplification 
cannot, however, accurately capture the VM migration cost and 
may result in poor performance due to the necessity of deciding 
about the actual VM placement after finalizing the load 
balancing solution. In this work, we present an online and 
offline solution to the GLB problem for online service 
applications in the cloud system. 

V. ALGORITHM FOR THE OFFLINE SOLUTION  

As explained in section  III, in the offline version of the 
problem, we assume that every input parameter is known as 
opposed to an online scenario in which these parameters are 
only predicted with certain confidence. The input parameters in 
this problem are the VM arrival time and active period, the VM 
workload in each epoch, energy price and generated power in 
the renewable power plant for each datacenter. We consider 
these parameters to be fixed during an epoch. Making this 
assumption means that the frequency of drastic changes in the 
system is considered to be greater than the frequency of 
applying the optimization solution.  

The GLB problem involves a resource allocation problem 
for VMs assigned to each datacenter at each epoch. To 
determine the optimal amount of resources that need to be 
allocated to a VM to minimize the summation of energy and 
SLA costs, we need to know the effective energy price and the 
PUE of a datacenter. It is obvious that these values cannot be 
determined without knowing the average power consumption in 
the target epoch but we can estimate ܱܲܥௗሺ߬ሻ  and ܲௗሺ߬ሻ by 
using their typical values in previous epochs with similar 
conditions. The problem of finding the best resource allocation 
parameter for VM ݅ if it is assigned to server type ݆ in datacenter 
݀ may be formulated as follows: 

ௗሺ߬ሻܥܧ		݊݅ܯ
ቀ ܲௗሺ߬ሻ െ ௗሺ߬ሻቁܩ

ା
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1
ௗ݂݂ܧ
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1
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subject to: 
ݔ
ௗ,ሺ߬ሻ  ݎ

ௗ,ሺ߬ሻ  (7) 
In this formulation, ܲௗሺ߬ሻ  and ܱܥܲௗሺ߬ሻ  denote the 

estimated average power consumption and COP, respectively. 
Considering a non-increasing SLA cost function, the problem 
has only one solution in which ݔ

ௗ,ሺ߬ሻ ൌ ݎ
ௗ,ሺ߬ሻ, ݔ

ௗ,ሺ߬ሻ ൌ 1 or 
it satisfies the following equality (KKT conditions): 

߲݂ ቀݔ
ௗ,ሺ߬ሻቁ

ݔ߲
ௗ,ሺ߬ሻ

ൌ െܥܧௗሺ߬ሻ
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ା

ܲௗሺ߬ሻ
ൈ 

1
ௗ݂݂ܧ

ቆ1 
1

ܲௗሺ߬ሻܱܥ
ቇ ܶሺ ܲ

  ܲ


߶ത
ሻ 

(8) 

Considering a constant communication delay for assigning a 
VM to a datacenter, a closed form solution can be found for (8) 
by using the M/M/1 queuing model, cf. [16]. In case of more 



 

 

complicated SLAs or queuing models, it may not be possible to 
obtain a closed form solution for this problem, but a numerical 
solution can be used in such cases. In the rest of this paper, 
ݔ
ௗ,ሺ߬ሻ denotes the solution of (8) or zero depending on the 

value of ݕ
ௗሺ߬ሻ. Note that, at any point of the algorithm where 

all VMs are assigned to a datacenter for an epoch, the value of 
ݔ
ௗ,ሺ߬ሻ  can be updated based on real values of ܲௗሺ߬ሻ  and 
 .ௗሺ߬ሻܱܲܥ

The GLB problem considering VMs with lifetimes greater 
than single epoch is more complicated than finding the best VM 
placement solution for each epoch because a VM may cost less 
if it is not assigned to its best datacenter in the current epoch so 
as to avoid having to pay for costly VM migration in a next 
epoch. To be able to find an efficient and high-performance 
solution for the GLB problem, we propose a force-directed load 
balancing (FDLB) algorithm, which determines VM placement 
solution based on force-directed scheduling (FDS) [11].  

FDS is one of the notable scheduling techniques in high-
level synthesis. It is a technique used to schedule directed 
acyclic task graphs so as to minimize the resource usage under a 
latency constraint. This technique maps the scheduling problem 
to the problem of minimizing forces in a physical system which 
is subsequently solved by iteratively reducing the total force by 
task movements between time slots. In reference [25], we 
applied this technique to the task scheduling in demand response 
problem. 

To solve the GLB problem using the FDS technique, |ܶ| 
instances of each datacenter (one for each epoch) and an 
instance of each VM for each epoch in its active period are 
created. Note that, the instance of a VM in epoch ߬ only has 
interactions with datacenter instances in that epoch and the VM 
instances in epoch ߬ െ 1 and ߬  1 (if they exist). Forces in this 
system are defined based on different terms in the objective 
functions and resource and peak power capacities in datacenters. 
Assigning an instance of VM ݅  in epoch ߬  to server type ݆  in 
datacenter ݀ creates the following force in the system: 
݁ܿݎܨ

ௗ,ሺ߬ሻ ൌ ܨ ܱ
ௗ,ሺ߬ሻ  ሺ߬ሻܯܨ  ܥܨ

ௗ,ሺ߬ሻ 
ܨ ܲ

ௗ,ሺ߬ሻ  ܴܨ
ௗ,ሺ߬ሻ  

(9) 

where: 
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ܨ ܲ
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(13) 

ܴܨ
ௗ,ሺ߬ሻ ൌ ቀ1 െ ݁ି௫

,ೕሺఛሻቁ ݁ቀ∑ ௫
,ೕሺఛሻ∈ሺഓሻ ି,ೕቁ  (14) 

It can be seen that different force elements are defined for 
different parts of the objective function or constraints in the 
GLB problem as explained next. ܨ ܱ

ௗ,ሺ߬ሻ captures the energy 
and SLA costs based on the amount of resources allocated to the 

VM. ܯܨሺ߬ሻ captures the VM migration cost whereas		ܥܨ
ௗ,ሺ߬ሻ 

captures the energy cost of the cooling power consumption 
change due to the average power consumption change. ܨ ܲ

ௗ,ሺ߬ሻ 
and ܴܨ

ௗ,ሺ߬ሻ capture the pressure on the peak power and server 
type ݆ resource capacity constraints in the datacenter. Note that 
ܨ ܲ

ௗ,ሺ߬ሻ and ܴܨ
ௗ,ሺ߬ሻ do not have corresponding cost meaning, 

but are added to the force calculation to make sure the capacity 
constraints are satisfied. 

Finding a feasible solution to minimize the objective 
function is equivalent to minimizing the summation of forces 
applied to VM instances. Starting from any solution, we can 
identify the VM instance movements (from a server type in a 
datacenter to another server type in a datacenter) that results in 
reducing the force and execute these movements to reach a 
lower operational cost. The order of these movements affects 
the final results because executing a movement changes the 
forces applied to some other VM instances.  

The initial solution has a significant impact on the quality of 
the final solution for the GLB problem. To be able to perform 
gradual VM movement to reduce the total force, we consider an 
initial solution in which, each VM instance is cloned and 
uniformly distributed between possible resource types in 
different datacenters related to the target epoch. Let ܰሺ߬ሻ 
denote the number of instances for VM ݅  in epoch ߬ . The 
amount of resources allocated to new VM instances is replaced 
by ݔ

ௗ,ሺ߬ሻ/ ܰሺ߬ሻ and force components are calculated based on 
this value. Note that the SLA cost for these VM instances 
should be calculated from ݂ሺݔ

ௗ,ሺ߬ሻሻ/ ܰሺ߬ሻ	while the migration 
cost-related force calculation should consider multiple VM 
instances in neighboring epochs with appropriate weights. More 
precisely, ܯܨሺ߬ሻ for an instance of the VM should be replaced 
by the following term: 

ሺ߬ሻܯܨ ൌ
ଵ

ேሺఛሻ
∑ ݉ܿ

ௗ,ௗᇲሺ
௬
ᇲሺఛାଵሻ

ேሺఛାଵሻ


௬
ᇲሺఛିଵሻ

ேሺఛିଵሻ
ሻௗᇲ∈   (15) 

Starting from the initial solution, we need to merge instances 
associated with each VM in each epoch to reduce the number of 
instances related to each VM to one for each epoch ( ܰሺ߬ሻ ൌ 1). 
Speed of the instance merging affects the run-time of the 
algorithm and the overall quality of the solution. We select a 
three-stage merging approach in which first we reduce the 
number of instances for each VM in each epoch to 4 and then 
reduce the number of instances to 2, and finally, determine the 
VM placement. In each stage, the best merging action (least 
force increase) between different VMs and different epochs is 
selected and executed until there are no VMs with more than the 
target number of instances in each epoch. To calculate the best 
merging action and its associated force, the total force applied to 
VM instances is calculated and subtracted from the best total 
force if the instances are reduced to the target number of 
instances. Note that any VM instance movement results in 
changes in forces applied to VM instances associated with the 
datacenters in that epoch and its own VM instances in the 
neighboring epochs. These force changes are captured in 
equation (9) but to calculate the next best VM movement, the 
value of force for affected VM instances needs to be updated.  

After finalizing the VM placement solution, in case of 
resource or peak power capacity constraint violation in 
datacenters, the VM instance movement must be continued until 



 

 

a feasible solution is reached. In this stage, VM instances can 
select any destination resource type in a datacenter in the 
corresponding epoch in contrast to gradual VM instance 
merging, which was limited to select destination(s) between 
current VM instance hosts. In addition to this stage, even 
without any peak power capacity or resource constraint 
violations, the VM movement can be continued to further 
reduce the total cost with the restriction that no VM movement 
that results in any constraint violations should be tried.  

Considering this algorithm, we can formulize the datacenter 
and renewable power plant design problem to minimize the 
capital expenditure and operational cost. The presented 
algorithm can also be modified and used in the online VM 
management in a cloud system comprised of geographically 
distributed datacenters. Details of this extension are given next.   

VI. PROBLEM FORMULATION AND PROPOSED SOLUTION FOR 

THE ONLINE VERSION OF THE PROBLEM 

VM placement in a cloud system comprised of 
geographically distributed datacenters is performed at the 
beginning of each epoch based on the prediction of the 
optimization parameters. The online solution for the GLB 
problem determines the VM placement solution for the current 
epoch (denoted by ݐ in this sectionሻ with the consideration of 
future epochs. To make a decision about a VM placement, we 
need to consider its active period, its workload in the next 
epochs, other VMs in the system including existing VMs and 
new VMs that will enter the cloud in the next epochs, and 
energy price and renewable energy generation for next epochs.  

The cloud system cost (ܥܥሺݐሻ) in epoch ݐ can be formulated 
as follows: 

ሻݐሺܥܥ ൌ ∑ ሻݐௗሺܲܧ ܶ൫ܲௗሺݐሻ െ ሻ൯ݐௗሺܩ
ା

ௗ∈   

																	∑ ቀ݉ܿሺݐሻ  ∑ ∑ ݂ ቀݔ
ௗ,ሺݐሻቁ∈ௗ∈ ቁ∈ூሺ௧ሻ    

(16) 

The online version of the GLB problem tries to minimize the 
summation of ܥܥሺݐሻ and the costs of the future epochs (ܥܥሺݐ 
߬ሻ) by VM placement for the current set of VMs. 

The online GLB solution directly affects ܥܥሺݐሻ  but only 
indirectly affects ܥܥሺݐ  ߬ሻ . In contrast to straightforward 
calculation of ܥܥሺݐሻ  based on the VM placement solution 
(considering perfect information about optimization parameters 
in epoch ݐ), estimating ܥܥሺݐ  ߬ሻ is a difficult task due to the 
following missing information about epoch ݐ  ߬: 

(i) Existence of VM ݅  ( ݅ ∈ ሻݐሺܫ ) in epoch ݐ  ߬ . A 
probability value denoted by ݎሺݐ  ߬ሻ  is considered to 
determine the probability of the VM to be active in epoch ݐ  ߬. 
This probability is a decreasing function of ߬. 

(ii) VM ݅ Workload (݅ ∈ ݐ ሻ) in epochݐሺܫ  ߬. Considering 
the SLA, workload in our problem formulation may be 
translated into resource allocation parameters. Therefore, we 
consider predicted resource allocation parameters in epoch ݐ 
߬, denoted by ݔො

ௗ,ሺݐ  ߬ሻ. 
(iii) Energy price and average renewable power generation. 

We consider ܧܲ ௗሺݐ  ߬ሻ  and ܩௗሺݐ  ߬ሻ  to represent the 
predicted energy price and average renewable power generation 
in epoch ݐ  ߬. 

(iv) The rest of active VMs ( ݐሺܫ  ߬ሻ െ ሻݐሺܫ ) and their 
workload in that epoch. Instead of predicting a number of active 
VMs for epoch ݐ  ߬, resource utilization related to those VMs 

in datacenters can be used. These resource utilization parameters 
can be found based on the state of the datacenters in similar 
scenarios (same energy price, renewable power generation and 
workload) after removing the resource utilization related to 
VMs that existed in epoch ݐ . The amount of predicted 
background utilized resources for resource type ݆ in datacenter 
݀ in epoch ݐ  ߬ is denoted by ܥመௗ,ሺݐ  ߬ሻ.  

Parameters ݎሺݐ  ߬ሻ  and ݔො
ௗ,ሺݐ  ߬ሻ  can be estimated 

based on the historical data about the VM type and VM’s 
original location. Energy price can be predicted based on the 
historical data or information received from utility companies 
and average renewable energy generation can be estimated 
based on weather prediction.   

Based on the predicted optimization parameters, the online 
VM placement problem in a geographically distributed 
datacenter can be set up similar to the offline problem. A 
maximum application lifetime is considered for every VM and 
SLA and migration cost and allocation parameters for VM ݅ in 
epoch ݐ  ߬  are dampened by probability ݎሺݐ  ߬ሻ . To 
simplify the formulation, in the following formulation, we 
consider the predicted parameters to be equal to their actual 
values for epoch ݐ and set ݎሺݐሻ ൌ 1. The online GLB problem 
can thus be formulated as follows: 

	݊݅ܯ ܶܧܲ ௗሺݐ  ߬ሻ ቀܲௗሺݐ  ߬ሻ െ ݐௗሺܩ  ߬ሻቁ
ା

ௗ
ఛ∈బ

 

 ሺ߬ሻݎ  ቌ݉ܿሺݐ  ߬ሻ ݂ቀݔො
ௗ,ሺݐ  ߬ሻቁ

ௗ

ቍ
∈ூሺ௧ሻ

ఛ∈బ
 

subject to constraints (2), (3), (5), (6) and 
∑ ݐሺݎ  ߬ሻݔො

ௗ,ሺݐ  ߬ሻ∈ூሺఛሻ  ௗ,ܥ െ ݐመௗ,ሺܥ  ߬ሻ   (17) 
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ௗ,ሺݐ  ߬ሻ∈ூሺఛሻ ൯ቇ  

(18) 

This problem can be solved by using the force-directed VM 
placement algorithm for the offline problem. Note that the 
number of VMs in this problem is limited to |ܫሺ߬ሻ| , which 
results in shorter execution time for this solution. It can be 
shown that, even starting from unsatisfactory background 
resource utilization, the online solution converges to a good 
solution after a number of iterations of the solution because the 
accuracy of the background workload will be improved by 
applying the online solution. 

VII. SIMULATION RESULTS 

To show the effectiveness of the proposed algorithms for the 
GLB problem, a simulation framework is implemented. 

In this simulation framework, we considered a US-based 
cloud system that has five datacenters in California, Texas, 
Michigan, New York, and Florida. The communication rate 
between these datacenters is assumed to be 1Gbps. Size of these 
datacenters rages from 4,000 to 1,600 servers belonging to four 
different server types, selected from HP server types. Duration 
of epoch is set to one hour. The average utilization of servers is 
assumed to be 70%. Peak power capacity of each datacenter is 
set to 80% of the peak power consumption of the deployed 
servers and cooling system. Based on the weather patterns, each 
datacenter has a combination of solar and wind power plant with 



 

 

power generation capacity of up to 20% of its peak power 
consumption. The renewable power generation changes during 
the day based on type of the power plant. Energy price of each 
datacenter is assumed to follow the pattern shown in Figure 2 
with appropriate time shift.  

Figure 2 – Energy price offered by utility companies 

To determine the relation between the COP and average 
power consumption in a datacenter, we applied the genetic-
algorithm-based power provisioning policy presented in 
reference [18] to find the maximum COP for different range of 
power consumption in a two-row rack setting (250 blade servers 
with 110KW peak power) using hot-aisle/cold-aisle cooling 
arrangement. The results are reported in Figure 3. 

Figure 3 – Dependence of COP on average power consumption 

It can be seen that the COP can be modeled as a linear 
function of the average power consumption with acceptable 
error. To approximate the COP function for the whole 
datacenter, the power coefficient in this linear estimation is 
multiplied by ௗ,௫/110KW . This assumption is based on 
having multiple server rooms with capacity of 110KW each.   

Synthetic workloads are generated to be used in the GLB 
problem. Based on population distribution in US, applications 
are created in different time horizons and geographical 
locations. Application workload is changed according to the 
local time of its origination point. The application lifetime is set 
randomly based on uniform distribution between one and 16 
hours. The SLA parameters and costs for these applications are 
set based on the Amazon EC2 pricing scheme [26]. We used the 
SLA model presented in reference [16] to determine the SLA 
cost based on the amount of resources allocated to each VM. 
The minimum resource requirement for each VM is determined 
considering a target response time, a tolerable response time 
violation rate, behavior of the VM on the target server type, the 
round-trip time between VM location and target datacenter 
location, and the time required to transmit the typical packet in 
the incoming requests and outgoing responses. The penalty for 
an under-serviced request is set to be equal to the service price 
for one hour divided by the maximum number of requests that 
can violate the response time in each charge cycle. The 
migration cost is considered to be linearly related to the 
migration latency. The linear coefficient is set to be equal to the 
service price for one charge cycle divided by the worst possible 
migration latency (New York to California.)  

The baseline in our simulation is a case without geographical 
load balancing. For this scheme, each client is assigned to its 
nearest datacenter that has sufficient available resources. This 
scheme results in low VM migration cost if there are no 
resource contentions in the datacenters.  

To show the effectiveness of the proposed offline algorithm, 
we created workload for more than 100,000 clients across the 
US for a full day and determined the GLB solution by using 
proposed algorithm and baseline solution. The workload 
intensity, which is obtained by summing the minimum resource 
requirement for the active VMs, is reported in Figure 4. 

Figure 4 – The intensity of the workload as a function of time of the day 
captured by the total minimum resource requirement for active VMs 

The operational cost of the cloud system with the FDLB 
algorithm, the baseline algorithm, and FDLB-1 (a simplified 
version of FDLB) are presented in Figure 5. Note that FDLB-1 
constructively (i.e., epoch-by-epoch) determines the VM 
placement solution in order to reduce the run-time of the 
original solution. 

Figure 5 – Operational cost of the cloud in different epochs using different 
scheduling algorithms  

As can be seen, in the beginning of the day, performance of 
the baseline method is similar to that of FDLB algorithm but in 
peak workload hours, the total operational cost using the 
baseline algorithm increases significantly. The total operational 
cost of the cloud system for one day by using the FDLB 
algorithm is 40% less than that of the baseline algorithm and 5% 
better than that of the FDLB-1. The run-time of FDLB, FDLB-1 
and baseline on a 2.66GHz quad-core HP server are 466, 69 and 
7 seconds, respectively. Share of different elements of the 
operational cost using FDLB algorithm is shown in Figure 6. As 
can be seen, FDLB solution avoids VM migration in light 
workload but VM migration is used under heavy workload 
situations to reduce the PUE, increase the share of renewable 
energy, and decrease the energy cost.  

Figure 6 – Share of energy, SLA and migration cost in operational cost in 
different epochs 
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To show the effectiveness of the proposed online solution, 
we created a four-day scenario. To be able to apply the 
prediction about the background workload from first day of the 
online algorithm to the other days, we considered similar 
situations for all four days. The predicted parameters (discussed 
in section  VI) are deviated from real values by up to 10% to 
model the misprediction phenomenon. The number of created 
VMs in each day is at least 100K. Normalized total operational 
costs of each day using the online and offline FDLB algorithms 
and the baseline method are reported in Table I. As can be seen, 
the online version of the algorithm works 8% worse than the 
complete and perfect information scenario in the offline version 
but it is 7% better than only considering the current epoch 
(FDLB-1) and 27% more effective than not considering the load 
balancing opportunity. Moreover the efficacy of the online 
algorithm improves by updating the background workload after 
the first day. Run-time of the online algorithm (after background 
workload preparation) ranges from 10 to 80 seconds for each 
epoch on a 2.66GHz quad-core HP server. 

TABLE I. NORMALIZED TOTAL OPERATIONAL COST OF THE CLOUD DURING FOUR 
DAYS USING DIFFERENT LOAD BALANCING ALGORITHMS 

Day 
Normalized total OPEX for full day 

Online 
FDLB 

Offline 
FDLB 

Online 
FDLB-1 Baseline 

First day 1 0.91 1.02 1.24
Second day 1 0.92 1.08 1.29
Third day 1 0.92 1.08 1.29
Fourth day 1 0.94 1.09 1.31

Overall 1 0.92 1.07 1.27 

It is worth noting that load balancing for online service 
applications is more effective when there are some resource 
contentions, different energy prices, or varying renewable power 
availabilities in datacenters’ site. This fact is noticeable in 
Figure 5. The difference between FDLB and baseline results 
increases by having heavier workload in the cloud system. In 
contrast, decreasing the number of clients to half (50K) reduces 
the benefit of performing load balancing in the mentioned 
settings to 8% and 6% for the offline and online algorithms. 

VIII. CONCLUSION 

This work focused on the load balancing problem for online 
service applications considering a distributed cloud system 
comprised of geographically dispersed, heterogeneous 
datacenters. The problem formulation and a novel solution were 
presented and simulation results demonstrated the effectiveness 
of the proposed algorithms. The effectiveness of GLB was 
shown to be greater for high workloads and different electrical 
energy prices in datacenters’ site. A possible future work is to 
combine the GLB problem for online applications with offline 
computation tasks scheduling problem to increase the benefit of 
the load balancing. Another possible future work is to consider 
GLB problem with multi-tier applications, which create multiple 
dependent VMs. 
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