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ABSTRACT 

 

Cloud computing systems (e.g., hosting datacenters) have attracted a lot of 

attention in recent years. Utility computing, reliable data storage, and infrastructure-

independent computing are example applications of such systems. Operational cost in 

these systems is highly dependent on the resource management algorithms used to assign 

virtual machines (VMs) to physical servers and possibly migrate them in case of power 

and thermal emergencies. Energy non-proportionality of IT devices in a datacenter, 

cooling system inefficiency, and power delivery network constraints should be 

considered by the resource management algorithms in order to minimize the energy cost 

as much as possible. Scalability of the resource assignment solution is one of the biggest 

concerns in designing these algorithms. This thesis examines the resource management 

problem in datacenters. First a centralized datacenter resource management is proposed, 

which considers service level agreements (SLAs) in VM placement in order to minimize 

the total operational cost of the datacenter. Second, a hierarchical SLA-based resource 

management structure is proposed, which considers the peak power constraints and 

cooling-related power consumption in addition to the scalability issue. The proposed 

hierarchical structure fits the hierarchical resource distribution in datacenters. The 

proposed structure is suitable to track and react to dynamic changes inside the datacenter 

to satisfy SLA constraints and avoid emergencies. Third, a load balancing algorithm to 

minimize the operational cost of a multi-datacenter cloud system is presented. Load 

balancing creates an opportunity to reduce the operational cost of the cloud system 



  xii 
 

considering dynamic energy pricing and availability of green renewable power plants in a 

datacenter site. 
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Chapter 1 . ENERGY-EFFICIENT DATACENTERS 

 

1.1 Introduction  

Demand for computing power has been increasing due to the penetration of 

information technologies in our daily interactions with the world both at personal and 

communal levels, encompassing business, commerce, education, manufacturing, and 

communication services. At personal level, the wide scale presence of online banking, e-

commerce, SaaS (Software as a Service), social networking and so on produce workloads 

of great diversity and enormous scale. At the same time computing and information 

processing requirements of various public organizations and private corporations have 

also been increasing rapidly. Examples include digital services and functions required by 

various industries, ranging from manufacturing to housing, and from transportation to 

banking. Such a dramatic increase in the computing resources requires a scalable and 

dependable IT (information technology) infrastructure comprising of servers, storage, 

network bandwidth, physical infrastructure, Electrical Grid, personnel and billions of 

dollars in capital expenditure and operational cost  to name a few.  

Datacenters are the backbone of today's IT infrastructure. The reach of datacenters 

spans a broad range of application areas from energy production and distribution, 

complex weather modeling and prediction, manufacturing, transportation, entertainment 

and even social networking. There is a critical need to continue to improve efficiency in 

all these sectors by accelerated use of computing technologies, which inevitably requires 
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increasing the size and scope of datacenters. However, datacenters themselves are now 

faced with a major impediment of power consumption. The energy consumption of the 

datacenters is increasing and covers up to 2% of the total electrical energy consumption 

in the united states in 2010 [1]. Power consumption of datacenters will soon match or 

exceed many other energy-intensive industries such air transportation.  

Apart from the total energy consumption, another critical component is the peak 

power; According to an EPA report [2], the peak load on the power grid from datacenters 

is estimated to be approximately 7 Gigawatts (GW) in 2006 in US, equivalent to the 

output of about 15 base-load power plants. This load is increasing as shipments of high-

end servers used in datacenters (e.g., blade servers) are increasing at a 20-30 percent 

CAGR.  

A significant fraction of the datacenter power consumption is due to resource 

over-provisioning. These solutions require well-provisioned servers in datacenters. More 

precisely, today’s datacenters tend to be provisioned for near-peak performance since 

typical service level agreements (SLAs) between clients and hosting datacenters 

discourage the development of significant performance bottlenecks during peak 

utilization periods. In order to achieve peak performance with minimum power 

dissipation under given SLAs, we need to design computing systems with the least 

energy consumption per instruction.  

System-wide power management is another huge challenge in datacenters. First, 

restrictions on availability of power and large power consumption of the IT equipment 

make the problem of datacenter power management a very difficult one to cope with. 
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Second, the physical infrastructure (e.g., the power backup and distribution system and 

the computer room air conditioning, or CRAC for short, systems) tends to account for up 

to one third of total datacenter power and capital costs [3, 4, 5].  Third, the peak 

instantaneous power consumption must be controlled. The reason for capping power 

dissipation in the datacenters is the capacity limitation of the power delivery network 

(PDN) in the datacenter facility. Fourth, power budgets in datacenters exist in different 

granularities: datacenter, cluster, rack or even servers. A difficulty in the power capping 

is the distributed nature of power consumption in the datacenter. For example, if there is 

a power budget for a rack in the datacenter, the problem is how to allocate this budget to 

different servers and how to control this budget in a distributed fashion.  Finally, another 

goal is to reduce the total power consumption. A big portion of the datacenter operational 

cost is the cost of electrical energy purchased from the utility companies. A trade-off 

exists between power consumption and performance of the system and the power 

manager should consider this trade-off carefully. For example, if the supply voltage level 

and clock frequency of a CPU are reduced, the average power consumption (and even 

energy needed to execute a given task) is reduced, but the total computation time is 

increased. 

Cooling manager is responsible for keeping the inlet temperature of the servers 

below a certain threshold called critical temperature that is dependent on the server. The 

supply cold air from CRAC is shared between a collection of servers in datacenter. So, 

the highest inlet temperature determines the supply cold air temperature for that 

collection of servers. The supply cold air temperature determines the efficiency of the 
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cooling system. The cooling efficiency is a non-decreasing function of the supply cold air 

temperature. So, the datacenter manager should try to decrease the highest temperature in 

the system to increase the cooling system efficiency and decrease the total power 

consumption.     

Virtualization technology creates an application-hosting environment that 

provides independence between applications that share a physical machine together [6]. 

Nowadays, computing systems rely heavily on this technology. Virtualization technology 

provides a new way to improve the power efficiency of the datacenters: consolidation. 

Consolidation means assigning more than one Virtual Machines (VM) to a physical 

server. As a result, some of the servers can be turned off and power consumption of the 

computing system decreases. This is because servers consume a big portion of their peak 

power in the idle state and turning off a server improves the power efficiency in the 

system. Again the technique involves performance-power tradeoff. More precisely, if 

workloads are consolidated on servers, performance of the consolidated VMs (virtual 

machines) may decrease because of the reduction in the available physical resources 

(CPU, memory, I/O bandwidth) but the power efficiency will improve because fewer 

servers will be used to service the VMs. 

The IT infrastructure provided by the datacenter owners/operators must meet 

various SLAs established with the clients. The SLAs may include guarantee on providing 

compute power, storage space, network bandwidth, availability and security, etc. 

Infrastructure providers often end up over provisioning their resources in order to meet 

the clients’ SLAs. Such over-provisioning may increase the cost incurred on the 
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datacenters in terms of the electrical energy bill. Therefore optimal provisioning of the 

resources is imperative in order to reduce the cost incurred on the datacenter operators.  

Migrating a VM between servers causes a downtime in the client’s application. 

Duration of the downtime is related to the migration technique used in the datacenter and 

the communication distance between source and destination host of VM. For example, 

live migration causes a downtime amount of less than 100ms [7] for servers inside a 

chassis but this value can be in the order of minutes in case of migrating a VM from a 

datacenter to another one. 

The cloud computing system resources is often geographically distributed. This 

helps with reducing the peak power demand of the datacenters on the local power grid, 

allow for more fault tolerant and reliable operation of the IT infrastructure, and even, 

reduced cost of ownership. A datacenter however comprises of thousands to tens of 

thousands of server machines, working in tandem to provide services to the clients, see 

for example [8] and [9]. These datacenters can be owned by the cloud provider or 

federated by the cloud provider.  

In this thesis, we focus on SLA-based, energy-efficient resource management in 

cloud computing systems. High-level picture of the datacenters and related work are 

presented in the chapter  1.2 to  1.6. Moreover, description and related work for the 

resource management in a multi datacenter setting which is called geographical load 

balancing is presented in section  1.7. A short summary of our work and contributions are 

presented in section  1.8.  
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1.2 Datacenter Organization 

Figure 1 shows the cyber physical components of a hosting center. Many of the 

public or private hosting centers, e.g., Amazon’s, Google’s, have been known to use 

containerized datacenter architecture can accommodate 1000-1500 servers per container. 

 

Figure 1.  High level view of key components of a datacenter. 

As shown in the figure, such a container or the leased space (room) may contain 

multiple server pools, a storage area network (SAN), and CRAC units. All servers within 

each server pool are identical in terms of their processor configuration, amount of 

memory and hard drive capacity, and network interface card. These server pools are 

connected to a storage area network (SAN) via an internal network. Server pools are 

arranged in rows where each row contains a number of racks. In some cases Global 

distributed file system (GFS) is used. GFS manages the disk drives that are connected to 

each individual server directly. This approach is tend to be more complicated but it can 

provide better performance in some distributed searches such as Google web search [10]. 
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Figure 2. Internal organization of a conventional (raised floor, hot/cold aisle) datacenter. 

Figure 2 shows such rows arranged in hot aisle/cold aisle structure. Each rack, 

depending on its physical configuration, i.e., 42U or 24U, can host a number of chassis 

(A, …, E in this figure). Each chassis can contain a number of servers. All servers in a 

chassis obtain their power via Power Delivery Unit (PDU) of the chassis. Therefore each 

chassis contains one PDU that is responsible for providing power to all the servers in that 

chassis. 

Based on the design of the datacenter different network fabrics are used. Intra-

rack network fabrics have more bandwidth than inter-rack network fabrics because of 

cost. For example each server can have a Gbps link for intra-rack communication but a 

rack with 40 servers may have only four to eight Gbps links for communication with 

servers in other racks [11].  

Apart from the IT infrastructure, the datacenter also contains cooling 

infrastructure such as CRACs. Typically CRACs depend on the chiller, generally located 

outside the datacenter facility, in order to cool the returned hot air. The cold air is passed 
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through raised floor plenums or through ceiling attached ones. In order to reduce the hot 

air recirculation, the cooling infrastructure may impose hot aisle or cold aisle 

containment which efficiently isolates the hot air from cold air and is known to improve 

the cooling efficiency. 

Power system in the typical datacenters contains uninterrupted power supply 

(UPS) systems to switch between the normal electricity and secondary electricity feed 

which is generated by a set of diesel generators (in datacenter location) in case of 

interruption in the first electrical feed from electrical grid.  These UPS contain batteries 

to provide the electricity to the datacenter between failure and availability of the 

generators. Moreover, UPS system removes power spikes from the electricity feed.  

There are different sources of energy inefficiency in datacenters. The first factor 

is Power Usage Effectiveness (PUE) [12]. This factor reflects the effectiveness of the 

datacenter building structure and captures the ratio of the total power consumption in 

datacenter to total IT power. Chillers, CARC and UPS system contribute in increasing 

PUE factor in datacenters [11].  Different techniques including change of temperature to 

increase the efficiency of CARC units and selecting high-efficiency gear are presented to 

reduce the PUE metric.  

The second inefficiency factor in datacenters is measured by Server PUE (SPUE). 

This metric captures the ratio of total power delivered to server to the useful power. 

Power supply, voltage regulator module and fan power losses affect SPUE parameter. 

Ratio of total power consumption to the useful power in servers can be calculated by 



9 
 

PUE×SPUE. New techniques for server design and more efficient datacenter designs 

improved this factor a lot in the past years [11].  

The last term in calculating the energy-efficiency of a datacenter is to calculate 

the energy consumption of the servers per computation unit. We do not discuss details of 

these calculations but it is shown that the power efficiency metric is improved by 

increasing the load of servers [11]. The most important reason behind having the best 

energy efficiency at 100% load in servers is the energy non-proportional behavior of the 

servers [13]. This means that servers with idle status consume a big portion of their peak 

power consumption. The fact that most of the times, servers are utilized with between 10 

to 50% of their peak load and discrete frequent idle times of servers [11] amplify this 

issue in the datacenters.  

Importance of designing servers with low idle power consumption (to save the 

power consumption in frequent idle times) and with maximum energy efficiency in 30 to 

50% utilization (to optimize the frequent case) is discussed in [11] and [13]. Effects of 

using energy proportional servers in datacenters are studied in [14]. The authors report 

50% energy consumption reduction by using energy proportional servers with idle power 

of 10% of peak power instead of typical servers with idle power consumption equal to 

50% of the peak power. Increasing the energy efficiency of the disk, memory, network 

cards and CPU with exploring different design techniques may help in having energy 

proportional servers. Different Dynamic Power Management (DPM) techniques such as 

dynamic voltage scaling (without latency penalty) and sleep mode for Disk and CPU 

components (with latency penalty) can increase the energy proportionality of the servers. 
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The process of power management in datacenters includes at least three main 

steps [11]: (i) estimating or measuring the power consumption profile of the computing 

systems, (ii) scheduling the job or placing the VMs on the physical server by determining 

consolidation potentials, and, (iii) understanding the effect of the statistical behavior of 

the workload on the power consumption of servers to plan for serving workloads on a 

group of servers with a power less than the required peak power. Because of this effect, 

efficient power provisioning for the datacenter is a big challenge and should be addressed 

in design process [14]. 

A datacenter may host clients of dissimilar nature, e.g., high performance 

computing clients or multi-tier internet application, such as e-commerce, clients. Clients 

requiring simple computing infrastructure may view hosting center as one big pool of 

servers whereas clients running multi-tier applications may view hosting center as a pool 

of servers arranged in many tiers, each with its own unique functionality.  

Similar to a computer, datacenter needs Operating System (OS) software to 

manage the resources and provide service to applications. This OS is composed of 

different parts like a desktop OS. For example, important roles of a datacenter OS is 

described in [11] including resource management, hardware abstraction, deployment and 

maintenance and programming frame work. The following paragraphs describe these 

roles with more details from [11].  

The complexity of resource management and providing service to application in a 

datacenter is much higher than the complexity of resource management in a desktop 

computer because datacenter is composed of thousands of computers, networking and 
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storage devices. Resource manager in datacenter OS maps the user tasks to hardware and 

provide task management services. This resource manager can provide SLA-based 

resource management or power-aware resource management if needed based on the 

specified users’ needs in terms of processing, memory capacity and network bandwidth. 

Hardware abstraction role of datacenter OS provides basic services for tasks like 

message passing, data storage and synchronization in cluster level.  

Software image distribution and configuration management, monitoring service 

performance and quality, and triaging alarms for operators in emergency situations are 

examples of tasks done in deployment and maintenance part of datacenter OS. 

Monitoring service performance in datacenter is composed of application performance 

monitoring and debugging tools and platform-level monitoring tools. For each 

application, datacenter OS receives the performance metrics like response time and 

throughput regularly. These massages can help to correct the resource management 

decisions made and to avoid more disruption in the application performance. 

Performance debugging tools provide details of interaction between applications running 

on the servers. These data can help the datacenter resource manager to make decision 

when needed. Also platform-level monitoring tools monitor the operation of servers in 

datacenter to avoid software failure and decide in case of hardware failure. 

To ease the developing of software for software developers for datacenter 

applications and to hide the complexity of a large computing system, programming 

framework like MapReduce are used. These frame work automatically handle the data 

partitioning, distribution, and fault tolerance. 
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In addition to datacenter-level software, platform-level and application-level 

software are employed in datacenter. Platform-level software provides service to the 

application assigned to servers. These services include providing common kernels, 

libraries and OS expected to be present in each server. On the other hand, Application-

level software implements a specific service in datacenter. Online service and offline 

computation (batch applications) are two categories of the services provided in 

datacenters. Online services like web search are sensitive to response time of the 

application but batch applications like creating index for web search are throughput 

sensitive. This means that these categories need different resource types and different 

resource management approach in datacenter. 

1.3 Datacenter Management 

A datacenter resource management system is comprised of three main 

components: a resource arbiter, a power manager, and a temperature manager.  

An exemplary architecture for the datacenter resource management system with 

emphasis on the resource arbiter is depicted in Figure 3. In this architecture, the resource 

arbiter handles the application placement and application migration. 

To assign tasks to resources in a datacenter, one must monitor the resource 

availability and performance of the physical servers in the datacenter. In addition, the 

resource arbiter must interact with the power and thermal managers. For example, if the 

power manager has limited the peak power consumption of a server (or a group of 

servers), the resource arbiter should consider this limitation when assigning a new task to 
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the server(s). On the other hand, the power manager tries to minimize the average power 

consumption in servers while considering the performance constraints for tasks assigned 

to servers as set forth by the resource arbiter. Similarly, the resource arbiter must use the 

information provided by the thermal manager to decrease the workload of hot servers. At 

the same time, the thermal manager tries to control the temperature of active servers 

while meeting the per-task performance constraints set forth by the resource arbiter. 

Related work for each part of the datacenter manager is presented in the following 

sections. 

 

Figure 3. An example of resource management architecture in a datacenter. 
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1.4 Resource Arbiter related work 

Several versions of the resource management problem have been investigated in 

the literature. Some of the prior work focuses on maximizing the number served tasks in 

a datacenter (or total revenue for the datacenter operator) without considering energy 

cost. Example references are [15] and [16], where the authors present heuristic periodic 

solutions based on network flow optimization to find a revenue maximizing solution for a 

scenario in which the total resource requirement of tasks is more than the total resource 

capacity in the datacenter. The resource assignment problem for tasks with fixed 

memory, disc, and processing requirements is tackled in [17], where the authors describe 

an approximation algorithm for solving the problem of maximizing the number of tasks 

serviced in the datacenter. 

Another version of the resource management problem is focused on minimizing 

the total electrical energy cost. The constraints are to service all incoming tasks while 

satisfying specified performance guarantees for each task. A classic example of this 

approach is the work of Chase et al. in [18] who present a resource assignment solution in 

a hosting datacenter with the objective of minimizing the energy consumption while 

responding to power supply disruptions and/or thermal events. Economics-based 

approaches are used to manage the resource allocation in a system with shared resources 

in which clients bid for resources as a function of delivered performance. The presented 

mechanism of accepting bids by the hosting datacenter considers the IT power cost in the 
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datacenter. In this paper, the CPU cycle count is used as the only (unified) resource in the 

datacenter. 

Yet another version of the resource management problem considers the server and 

cooling power consumptions during the resource assignment problem. A good 

representative of solution approaches to this problem is reference [19], in which 

Pakbaznia et al. present a periodic solution for concurrent task assignment and server 

consolidation. In this paper, workload prediction is used to determine the resource 

requirements (and hence the number of ON servers) for all incoming tasks for the next 

decision epoch. Next considering the current datacenter temperature map and using an 

analytical model for predicting the future temperature map as a function of the server 

power dissipations, locations of the ON servers for the next decision epoch are 

determined and tasks are assigned to the ON servers so that the total datacenter power 

consumption is minimized.  

Considering the effect of consolidation on the performance and power 

consumption of servers is the key to reducing the total power consumption in a datacenter 

without creating performance problems. For example, Srikantaiah et al. [20] present an 

energy-aware resource assignment based on an experimental study of the performance, 

energy usage, and resource utilization of the servers while employing consolidation. Two 

dimensions for server resources are considered in this paper: disk and CPU. Effect of 

consolidation on performance degradation and energy consumption per transaction is 

studied. The authors recommend considering consolidation carefully so as not to over-

utilize servers in any resource dimension. The problem of application placement into a 
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minimum number of ON servers, which is equivalent to the well-known bin-packing 

problem, is discussed and a greedy algorithm for solving it is described.  

A good example of considering server power consumption and migration cost in 

the resource assignment problem is reference [7], which presents power and migration 

cost aware application placement in a virtualized datacenter. In particular, the authors 

present a power-aware application placement controller in a system with heterogeneous 

server clusters and virtual machines. For this problem, all VMs can be served in the 

datacenter and each VM has fixed and known resource requirements based on the 

specified SLA. This work tries to minimize power and migration cost. An architecture 

called pMapper and a placement algorithm to solve the assignment problem are 

presented. Various actions in pMapper algorithm are categorized as: (i) soft actions like 

VM re-sizing, (ii) hard actions such as Dynamic Voltage Frequency Scaling (DVFS), and 

(iii) server consolidation actions. These actions are implemented by different parts of the 

implemented middleware. There is a resource arbiter, which has a global view of the 

applications and their SLAs and issues soft action commands. A power manager issues 

hard action commands whereas a migration manager triggers consolidation decisions in 

coordination with a virtualization manager. These managers communicate with an 

arbitrator as the global decision making part of the system to set the VM sizes and find a 

good application placement based on the inputs of different managers. SLA revenue loss 

due to performance degradation as a result of the VM migration is used as the migration 

cost. To optimally place VMs onto servers, the authors relay on power efficiency metric 

to rank the servers because creating a model for all mixes of all applications on all servers 
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is infeasible. A heuristic based on a first-fit decreasing bin-packing algorithm is presented 

to place the applications on servers starting with the most power-efficient server.  

The problem of resource allocation is more challenging in case of having clients 

with SLA contracts with the datacenter owner who would like to maximize its profit by 

reducing the SLA violations, decreasing the operational cost and maximizing the profit 

by increasing the customers without having to increase the physical assets (resource 

overbooking) [21]. 

Many researchers in different fields have addressed the problem of SLA-driven 

resource assignment. Some of the previous works consider probabilistic SLA constraints 

with violation penalty, e.g. [22] and [23]. Some other works consider utility function-

based SLA [24, 25, 26, 27]. In [28], we adopt a SLA with a soft constraint on the average 

response time and solve resource assignment problem for multi-tier applications. 

Different approaches like reinforcement learning [29] and look-ahead control theory [30] 

are also presented to use in the resource assignment problem considering SLA 

constraints. Along with these periodic SLA-based resource assignment solutions, some 

reactive resource assignment solutions to avoid SLA constraint violation are presented in 

the literature [31] and [32]. 

Modeling the performance and energy cost is vital for solving the resource 

assignment problem. Good examples of theoretical performance modeling are [33] and 

[34]. Benani et al. [33] present an analytical performance modeling based on queuing 

theory to calculate the response time of the clients based on CPU and I/O service times. 

Urgaonkar et al. [34] present an analytical model for multi-tier internet applications based 
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on the mean-value analysis. An example of experimental modeling of power and 

performance in servers is presented in [35]. 

1.5 Power manager related work 

Power management is one of the key challenges in datacenters. The power issue is 

one of the most important considerations for almost every decision in a datacenter. In this 

context, the power issue refers to power distribution and delivery challenges in a 

datacenter, electrical energy cost due to average power consumption in the IT equipment 

and the room air conditioning, and power dissipation constraints due to thermal power 

budgets for VLSI chips. 

Figure 4 depicts a distributed power management architecture composed of 

server-level power managers, plus blade enclosure and rack-level and datacenter-level 

power provisioner, denoted as SPMs, EPPs, and DPP, respectively. There is one SPM per 

server, one EPP per blade enclosure, and a single DPP for the whole datacenter. This 

architecture is similar to the four-layer architecture presented in [36]. The only difference 

with the architecture presented in [36] is that the authors in [36] present two server-level 

power managers. The first one reduces the average power consumption and the second 

one avoids power budget violation in the server. 

A number of dynamic power provisioning policies have been presented in the 

literature, including [14], [36] and [37], where the authors propose using dynamic (as 

opposed to static) power provisioning to increase the performance in datacenter and 

decrease power consumption. From another perspective the problem can be seen as 

predicting how many computing infrastructure can be safely deployed with a given power 
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budget. In the following paragraphs reference [14] is explained as the representative work 

in this area. 

Fan et al. [14] present the aggregate power usage characteristics of a large 

datacenter for different applications over a long period of time. These data can be 

deployed to maximize the use of the deployed power capacity in datacenters and reduce 

the risk of power budget or performance constraint violation. The results show a big 

difference between theoretical and practical power consumption of server clusters. This 

 

Figure 4. An example power management architecture and its relation to resource arbiter and 
thermal manager 
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difference grows by increasing the size of the cluster. This shows that the opportunity of 

minimizing the power budget or increasing the number of servers with fixed power 

budget increases as we go higher in the datacenter hierarchy (e.g. from rack to 

datacenter.)  

For example, it is reported that considering a real Google datacenter, ratio of the 

theoretical peak power consumption to maximum practical power consumption is 1.05, 

1.28 and 1.39 for rack, Power Distribution Unit (PDU) and cluster, respectively. The 

authors discussed two approaches usually used for power and energy saving which is 

DVFS and reducing the idle power consumption in servers and enclosures. Provided 

results suggest that employing DVFS technique can result in 18% peak power reduction 

and 23% energy reduction in real datacenters. Moreover, decreasing the idle power 

consumption of the servers to 10% of their peak power can result in 30% peak power and 

50% energy reduction in the whole datacenter. 

Based on the provided measurements and results, the authors outline a dynamic 

power provisioning policy in datacenters to increase the possibility of over-subscription 

of available power and protect the power distribution hierarchy against overdraw. The 

authors mention that over-subscribing power in racks is not safe but in PDU and cluster 

(between 7 to 16% more machines) is safe and efficient. Also it is desirable to mix the 

applications to increase the gap between theoretical and practical peak power to be able 

to increase the over-subscription of power. 

SPM is perhaps the most researched power management problem in the literature. 

Various Dynamic Power Management (DPM) techniques that solve versions of this 
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problem have been presented by researchers. These DPM approaches can be broadly 

classified into three categories: ad hoc [38], stochastic [39], and learning based methods 

[40].  

DPM techniques focus on putting the power consuming components to idle mode 

as frequently as possible to maximize the power saving. Studies on different datacenter 

workloads [13], [14] and [41] show frequent short idle times in workload. Because of 

short width of these idle times, components cannot be switched to deep sleep modes 

(with approximately zero power consumption) considering performance penalty of 

frequent go-to-sleep and wakeup commands. On the other hand, idle power modes for 

usual servers have relatively high power consumption with respect to the sleep mode 

power consumption. Consolidation can be an answer to this problem to reduce the total 

power consumption which is the result of stochastic overlap between idle times of 

different applications on server.  Recently, a number of new architectures have been 

presented for hardware with very low (approximately zero) idle mode power 

consumption (energy proportional servers) to be able to reduce the average power 

consumption in case of short idle times [14] and [3].  

Different work in literature proposed different power management architectures 

and algorithms for datacenter. Distributed provisioning and management of power and 

high energy consumption of the clusters are big challenges in the datacenter power 

management. Control theory, coordinated, hierarchical and distributed management, and 

ad-hoc approaches are presented in different papers. Most of the previous work use static 

power provisioning policy and try to minimize the total energy required to satisfy the 
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performance requirements or minimize the task or application or VM migration cost in 

coordination with resource arbiter.  

As explained in the previous sections, resource assignment problem is strongly 

tied to the power management problem. For example, the most effective method of power 

saving which is turning a server off is solely decided by the resource arbiter. Also power 

manager feedbacks can help the resource arbiter to correct some of the performance 

requirement violations. Moreover, resource arbiter uses some of the current and historical 

data from power management (e.g. power budget violation statistics and approximated 

power budget for servers and racks) as an input for resource assignment decisions. 

Therefore, many work proposed resource and power management together. In the 

following paragraphs, a brief overview of the datacenter power (and performance) 

management architectures proposed in previous work is presented. Note that most of the 

presented approaches propose structures or algorithms for resource assignment and power 

management together with more focus on power management and saving techniques. 

The hierarchical power management structure presented in Figure 4 is similar to 

the hierarchical and coordinated power management presented by Raghavendra et al. 

[36]. In addition to the presented power managers, VM controller is designed to decrease 

the average power (operational cost) in the system by consolidating the VM and turning 

off unused servers. This controller uses the resource utilization of the servers as input to 

decide about VM assignment to decrease the power consumption in racks or datacenter. 

In this paper, the authors proposed a greedy heuristic for this controller. The Proposed 
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power management is validated from correctness, stability, and efficiency aspects in a 

simulation based environment. 

Control theory has been applied to manage power and performance in datacenters. 

Chen et al. [42] proposed an autonomic management system for application placement 

and energy management in hosting datacenters. Two different techniques for power 

management are used in the proposed model: (i) turning off inactive servers, and, (ii) 

dynamic voltage scaling. Energy consumption of the servers and wear-and-tear cost (cost 

of turning on/off a server) are considered in that model.  Two different approaches to 

minimize the power consumption of the datacenter constrained to satisfying SLA 

requirements (average response time constraint) are presented based on queuing theory 

models and feedback control theory. Moreover, a hybrid method is proposed to use both 

of these approaches in different decision makings in the system. 

Wang et al. [43] proposed a coordinated architecture that includes a cluster-level 

power control loop and a performance control loop for every VM. These control loops 

are configured to achieve desired power and performance objectives in the datacenter. 

Cluster-level power control monitors the power consumption of the servers and set the 

DVFS state of the servers to reach the desired power consumption. VM performance 

control loops dynamically controls the VM performance by changing the resource (CPU) 

allocation policy. Moreover, a cluster-level resource coordinator is designed to migrate 

the VMs in case of performance violation.   

Decision making in the power manager can be distributed or coordinated. 

Distributed decision making in some cases is forced by the specific hardware or software 
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used in the servers. For example, servers DVFS is usually implemented in hardware and 

cannot be controlled from outside. Another difference between distributed and 

coordinated decision making is decision epoch length at different levels (longer decision 

epoch in the coordinated level). Different work in the literature explore different level of 

decision making in the datacenter power (and performance) manager. For example, 

individual and coordinated voltage and frequency scaling, turn on/off policy are proposed 

and compared with each other from power saving perspective [44]. Considering the 

average response time in servers, individual DVFS policy results in the least saving 

(18%) and the policy that considers only turning on/off servers results in 42% saving in 

power consumption. Moreover, 60% power saving is reported for a policy with 

coordinated voltage and frequency scaling along with turning servers on/off based on the 

workload. 

Beloglazov and Buyya [45] propose a management architecture comprises 

dispatcher, local and global managers. Local managers migrate the VMs in case of SLA 

violation, low utilization of server resources, high temperature and high amount of 

communication with another VM in a different server. Global managers receive 

information from local managers and issue commands for turning on/off servers, 

applying DVFS or resizing VMs.  

Liu et al. [46] presented an architecture comprises migration manager and 

monitoring services to reduce power consumption in datacenter considering SLA 

requirements. Physical machine’s cost, VM status and VM migration cost are used as 

inputs of the proposed algorithm. The algorithm searches between different possible VM 



25 
 

placement to minimize the total cost and execute the live migration moves that system 

needs.  

Using the power management capability of VMs in SPM is studied in [47]. The 

proposed power management aims to control and globally coordinate the effect of the 

diverse power management policies applied by the VMs supporting the isolation between 

VMs and physical servers. With this management approach, isolation and independence 

properties are maintained by sending power states to VMs. This enables VM to know the 

power management capabilities independent of the physical hardware. Changes to power 

state of the physical nodes are made considering the generated command by VMs as a 

hint. These commands are ignored in a basic system wherein VMs do not know the 

power management capabilities of the physical machine. 

1.6 Thermal Management 

Accounting for up to 30% of the total energy cost of a datacenter, the cooling cost 

is one of the major contributors of the total electricity bill of large datacenters [48]. These 

values are shrinking by introducing new cooling techniques and new structures for 

datacenters. There has been several work attempting to reduce the energy required for 

cooling in a datacenter. The “hot-aisle/cold-aisle” structure, which has become common 

practice these days, is one of the attempts to improve the cooling efficiency of 

datacenters. 

The cooling system is changed in container-based datacenters. In these 

datacenters, heat exchange and power distribution network are integrated into a standard 

shipping container that contains servers. Chilled water is used in the container-based 
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datacenters to remove heat from flowing air in the datacenters similar to CRAC unit in 

rack-based datacenters. The container-based datacenters show higher energy efficiency 

(less power delivery loss and less cooling cost) compared to today’s typical datacenters 

and it is predicted that this structure will be used for developing next generation 

datacenters [11]. 

There are different approaches introduced for reducing the power consumption of 

the cooling system in datacenter. Some works [49, 50, 51, 52, 53] considered 

temperature-aware task placement to reduce the CRAC power consumption in 

datacenters. 

Sharma et al. [50] proposed a power provisioning scheme to reduce the datacenter 

cooling power consumption. In this approach, the power provisioned for each server is 

inversely related to the measured temperature of that server.  

To decrease the maximum temperature in datacenter, and increase the supplied 

cold air temperature for better energy efficiency in the cooling system, Moore et al. [51] 

presented a temperature-aware workload placement. The proposed temperature-aware 

workload placement is in fact a power provisioning policy based on the temperature 

(status) measurement in the system. This means that a portion of the total power 

requirement of workloads is assigned to each server based on the server temperature in 

the previous measurement. The authors claimed that assigning power to servers based on 

the measured temperature can minimize the maximum temperature in the system and then 

the cooling system can provide the cool air with higher temperature resulting in higher 

energy efficiency. A discrete-version of power provisioning policy which is proposed in 
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[50] is introduced in this work to consider discrete power modes in the servers. The 

authors also proposed a method to minimize the maximum temperature in datacenter 

based on minimizing the heat recirculation. Heat recirculation, which means using hot air 

instead of cold air for cooling the servers, can occur because the cold air is not supplied 

to the system or the separation between cold aisle and hot aisle is not perfect. A method 

to minimize the heat recirculation is proposed which includes a calibration phase to find 

the datacenter-related values of heat recirculation for different parts of the datacenter and 

then use it with online measurements to decide about the power provisioning policy in the 

datacenter.  

The idea of minimizing heat recirculation using temperature-aware task 

scheduling (application placement) is also proposed in [52]. The task scheduling policy in 

this work focuses on making the inlet temperature as even as possible to decrease the 

cooling system power consumption. Tang et al. [53] also proposed two different solutions 

for minimizing heat recirculation in datacenters based on Genetic algorithm and 

sequential quadratic programming.  

A recent work [54] proposes using thermoelectric coolers as power management 

mechanism inside the servers to allow the datacenter cooling system to increase the 

supply cold air temperature to minimize the cooling system power consumption. The 

proposal is evaluated with simulation and the authors report 27% cooling power 

consumption reduction using the proposed scheme in a typical datacenter without 

decreasing lifetime of the servers. 
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Some of the previous work focused on modeling techniques or tools for 

datacenter thermal management [55] and [56]. These work investigated the common 

raised floor hot aisle/cold aisle structure for cooling in datacenter.  

The effect of asymmetry in CRAC system is studied in [55]. After investigating 

thermal models for different datacenters with different sizes, authors presented some 

optimization techniques in cooling provisioning. For instance, they proposed using 

variable load CRAC units or different CRAC layout in datacenter to minimize the power 

required to satisfy the critical temperature constraint.  

A 3D computational fluid dynamic-based tool for thermal modeling of rack-

mounted datacenters is presented in [56] and evaluated with real-world system. This tool 

can be used in CRAC design process but because the tool has a long execution time, it is 

not possible to use it in dynamic decision makings. 

1.7 Geographical Load Balancing 

Datacenters are usually designed for the worst-case workload. At the same time, 

datacenter workload changes drastically depending on the time of the day and day of the 

week. Considering the dynamic energy pricing trend [57], price of the electrical energy 

purchased form the utility companies may be a function of time of day or the peak power 

consumed by the datacenter. Energy prices at different sites of a geographically 

distributed cloud system can be different due to local time differences and differences in 

local utility company’s energy prices. To reduce the reliance on brown sources of 

electricity and supplement/diversify the power generation sources for a datacenter, there 

is a trend to generate electricity from renewable sources such as wind and solar at the 
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datacenters’ site [58, 59]. Geographically distributed datacenters associated with a cloud 

system create load balancing opportunities that can result in a reduction in the total 

number of computing resources provisioned in datacenters (considering the time 

difference between peak workload times in different locations), as well as lowering 

operational cost of each datacenter by purchasing electrical energy at lower prices 

(considering dynamic energy prices at each site depending on the local time) and/or 

increasing the utilization of  the renewable power generated in some datacenters. 

Geographical load balancing (GLB) can be defined as a series of decisions about 

dynamic assignment and/or migration of virtual machines (VMs) or computational tasks 

to geographically distributed datacenters in order to meet the SLAs or service deadlines 

for VMs/tasks and to decrease the operational cost of the cloud system.  

The GLB can be seen as the high-level resource management problem in the 

cloud system. In the rest of this section, a review of the most relevant work to the GLB 

problem is provided. 

Some prior work has focused on reducing the operational cost of the cloud system 

by using the load balancing opportunity – see [60] and [61]. Model predictive control has 

been used to solve the GLB problem using the estimated future load, e.g., [30] and [62]. 

These studies consider homogenous datacenters (where all servers are identical), which is 

far from the real-world situations. Reference [63] considers heterogeneous datacenters 

(comprised of servers with different performance and power dissipation figures, and even 

instruction sets), which results in a more elaborate load balancing mechanism. 

Unfortunately, this work still ignores the heterogeneity of VMs, VM packing problem, 
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and realistic VM migration cost and can result in low performance under realistic 

scenarios. 

GLB increases the chances for effective utilization of renewable power sources in 

datacenters. For instance, a recent work in [64] investigates the feasibility of powering up 

a geographically distributed datacenter with only renewable power. A possible 

disadvantage of GLB is that the access to cheap electrical energy purchased from the 

local utility companies may result in an increase in the datacenter’s power consumption. 

Considering the environmental cost of energy usage (e.g., carbon emission) can eliminate 

this possibility. For example, reference [65] shows that if the electricity price is set based 

on the share of the brown energy to the total produced energy, GLB can reduce the brown 

energy usage. Similarly, Le et al. [66] present algorithms that reduce the brown energy 

usage in geographically distributed datacenters.   

Considering offline computation adds another perspective to the GLB problem i.e., 

the possibility of computation deferral. Computation deferral is only appropriate for batch 

jobs with loose deadlines and can be used in combination with online service application 

load scheduling to further reduce the total energy cost or brown energy consumption of a 

datacenter. Reference [67] focuses on computation scheduling in datacenters and 

computation deferral to minimize the energy cost. Reference [68] solves the GLB 

problem considering online service and batch applications and cooling supply selection in 

datacenters. The cooling supply choices considered in this paper are to use a chiller or 

outside air cooling. 
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1.8 Structure of this thesis and parameter definition 

This thesis integrates and extends our prior work. In particular have been 

investigating and advancing the state-of-the-art for energy-efficient and SLA-driven 

resource management in cloud computing systems and datacenters from different 

perspectives. Utility function-based SLAs were considered in reference [26] in order to 

assign VMs to server clusters and allocate resources to the VMs. A multi-dimensional 

resource allocation solution for multi-tier applications in a datacenter with heterogeneous 

servers was presented in reference [28] and [69]. In these works, we considered SLA 

contracts with some guarantee on the average response time of applications.  

SLA contracts with guarantees of rapid response time and/or penalties paid for 

violating the stipulated response time constraints were considered in references [70] and 

[71]. In particular, in reference [70], a centralized resource management system was 

presented that determines the amount of resource that must be allocated to VMs and 

subsequently assigns VMs to servers so as to reduce the operational cost of datacenters. 

A scalable, hierarchical resource management structure considerate of cooling-related 

power consumption and peak power availability in datacenters was presented in reference 

[71]. In reference [72], considering given VM resource requirements, we presented a VM 

replication and request forwarding solution that results in higher energy efficiency with a 

small performance degradation with respect to the case without VM replication.  

A geographical load balancing solution for a multi-datacenter cloud system was 

presented in reference [73] , which considers the heterogeneity of VMs and datacenters, 

cooling system inefficiency, and peak power constraint in each datacenter in order to 
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decide about VM assignment to datacenters or VM migration from one datacenter to 

another. This work was focused on interactive applications, which are response time-

sensitive. A solution for the assignment and scheduling of batch jobs in distributed 

datacenters to decrease the operational cost of the cloud system was presented in 

reference [74]. In this work, each batch job was modeled with a directed acyclic graph of 

heterogeneous tasks.   

In this thesis we present SLA-driven energy efficient resource management in 

datacenters and cloud systems with geographically distributed datacenters. First, a 

centralized VM placement solution to minimize energy and migration cost is presented in 

Chapter 2. The contribution of the presented solution in this chapter is to simultaneously 

determine the VM assignment and the amount of resource allocated to each VM. The 

presented approach results in higher energy efficiency and lower operational cost due to 

the flexibility of the resource allocation solution.   

Hierarchical SLA-based power/performance/cooling aware resource management 

in a cloud computing system is presented in [71]. The presented resource management 

structure resolves the scalability issue in periodic and reactive optimization procedures. 

Moreover, considering cooling-related power consumption and peak power constraints in 

the formulation of the resource management problem improves the performance of the 

presented solution with respect to previous work.  

 Resource management solution in a cloud system comprised of geographically 

distributed datacenters can be decomposed to two levels. The first resource manager is a 

cloud-level resource manager that decides about assigning VMs to datacenters whereas 
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the second resource manager deals with what is done inside each datacenter. Resource 

management in the cloud system, which is called geographical load balancing, is 

presented in [73]. Our contribution in this chapter is to introduce an algorithm that 

assigns heterogeneous VMs to heterogeneous datacenters considering of the (predicted) 

VM workload, the VM active period, dynamic energy prices, and the amount of locally 

generated renewable energy in a datacenter’ site.       

To increase the readability of the thesis, all notation used in each chapter is listed 

and precisely defined at the beginning of each chapter. Moreover, notation common to all 

chapters is presented in Table I. 

TABLE I. NOTATION AND DEFINITIONS OF COMMON PARAMETERS IN THIS THESIS 

Symbol  Definition 
  Predicted average request rate of the ith clientߣ
ܴ
௧, ݂ Contract target response time and penalty values for each request in the SLA contract 

݄ 
Hard constraint on the possible percentage of violation of the response time constraint 
in the SLA contract 

 ௦ Average service rate of requests of the ith client on a unit processing capacity of server sߤ
݉ Required memory for the ith client 

௦ܥ
, ܥ௦ Total processing  and memory capacities of server s 
݉ܿ Migration cost of the ith client 

௦ܲ
, ௦ܲ

 
Constant and dynamic (in terms of utilization) power consumption of server s 
operation.  

 Duration of the decision epoch in seconds ߠ
Ψ	 Energy price 

Pୢ୫ୟ୶ Peak power limitation of datacenter d 
 Peak to average power consumption ratio ܴܣܲ
	ܱܲܥ Coefficient-of-performance  

 ௦ A pseudo-Boolean integer variable to determine if server s is ON (1) or OF (0)ݔ

߶	
Resource allocation parameter, depending on chapter superscript ݉ and  are used to 
determine the type of resource and subscript ݏ is used to determine the server. 
Superscript ݀ and ݏ are used to identify the selected datacenter and servertype.  
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Chapter 2 . SLA-BASED OPTIMIZATION OF POWER AND 

MIGRATION COST IN CLOUD COMPUTING 

 

2.1 Introduction 

Operational cost and admission control policy in the cloud computing system are 

affected by its power and VM management policies. Power management techniques 

control the average and/or peak power dissipation in datacenters in a distributed or 

centralized manner. VM management techniques [75, 76, 77, 78, 20]  control the VM 

placement in physical servers as well as VM migration from a server to another one. In 

this chapter, we focus on the SLA-based VM management to minimize the operational 

cost in a cloud computing system. 

Optimal provisioning of the resources is crucial in order to reduce the cost 

incurred on the datacenter operators as well as minimize the environmental impact of 

datacenters. The problem of optimal resource provisioning is challenging due to the 

diversity present in the clients (applications) that are hosted as well as in SLAs. For 

example: some applications may be compute-intensive while others may be memory 

intensive, some applications may run well together while others do not, etc. In this 

chapter, we focus on online service applications in cloud computing systems. Our goal in 

this chapter is to minimize the total cost of the cloud computing system under 

performance-related constraints—in particular, upper bounds on the response times 

(service latencies) for serving clients’ requests. The operational cost in the cloud 
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computing system includes power and migration cost and the SLA violation penalty of 

serving clients. A lower bound on the total operational cost is presented, and the average 

effectiveness of the presented algorithm is demonstrated by comparing with previous 

works’ algorithms and lower bound value. Content of this chapter is presented in 

reference [70]. 

The outline of this chapter is as follows. In section  2.2, cloud computing system 

model is presented. The optimization problem and the proposed algorithm are presented 

in section  2.3 and  2.4. Simulation results and conclusions are given in the sections  2.5 

and  2.6. 

2.2 System Model 

An SLA-aware resource allocation method for a cloud computing system is 

presented to minimize the total operational cost of the system. The structure of the 

datacenter, the VM manager (VMM), as well as performance model and type of SLA 

used by the clients are explained in this section. To increase readability, Table II presents 

key symbols used throughout this chapter along with their definitions. 

2.2.1 Datacenter Configuration  

In the following paragraphs, we describe the type of the datacenter that we have 

assumed as well as our observations and key assumptions about where the performance 

bottlenecks are in the system and how we can account for the energy cost associated with 

a client’s VM running in a datacenter.  
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TABLE II. NOTATION AND DEFINITIONS IN CHAPTER 2 

Symbol  Definition 
  Predicted average request rate of the ith clientߣ
ܴ
௧, ݂ Contract target response time and penalty values for each request in the SLA contract 

݄ 
Hard constraint on the possible percentage of violation of the response time constraint in 
the SLA contract 

 ௦ Average service rate of requests of the ith client on a unit processing capacity of server sߤ

݉ Required memory for the ith client 
௦ܥ
, ܥ௦ Total processing  and memory capacities of server s 
݉ܿ Migration cost of the ith client 

௦ܲ
, ௦ܲ

 Constant and dynamic (in terms of utilization) power consumption of server s operation.  
 Duration of the decision epoch in seconds ߠ
Ψ	 Energy price 

௦ݕ
ఊ	 Pseudo Boolean parameter to show that if the ith client is assigned to server s in previous 

epoch (1) or not (0) 

 ௦ A pseudo-Boolean integer variable to determine if server s is ON (1) or OF (0)ݔ

	௦ݕ Pseudo Boolean parameter to show that if the ith client is assigned to server s (1) or not (0) 
 ௦ Portion of the ith client’s requests served by server sߙ

߶௦	 Portion of processing resources of server s that is allocated to the ith client  

A datacenter comprises of a large number of potentially heterogeneous servers 

chosen from a set of known and well-characterized server types. In particular, servers of a 

given type are modeled by their processing capacity (ܥ∗
) and main memory size (ܥ∗) as 

well as their operational expense (energy cost), which is proportional to their average 

power consumption. We assume that local (or networked) secondary storage (disc) is not 

a system bottleneck. Each server is identified by a unique id, denoted by index s. 

The operational cost of the system includes a term related to the total energy cost 

(in dollars) of serving clients’ request. The energy cost is calculated as server power 

dissipation multiplied by duration of each decision epoch in seconds (ߠ) and cost of 

energy consumption in US dollars (Ψ). The power of a server is modeled as a constant 

power cost ( ∗ܲ
 ) plus another variable power cost, which is linearly related to the 

utilization of the server (with a slope of ∗ܲ
). Note that the power cost of communication 
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resources and cooling and air conditioning modules are amortized over the servers and 

communication/networking gear in datacenter, and are thus assumed to be relatively 

independent of the clients’ workload. More precisely, these costs are not included in the 

equation for power cost of the datacenter in this chapter. Moreover, the server 

maintenance costs are not considered in our formulation.  

Each client is identified by a unique identifier, represented by index i. Each client 

produces one or more VMs, which are executed on some servers in the datacenter. Each 

client has also established an SLA contract with the datacenter owner.  

2.2.2 VM Management System 

Datacenter management is responsible for admitting the VMs into the datacenter, 

servicing them to satisfy SLAs, and minimizing the operational cost of the datacenter. 

We consider two main resource managers in the datacenter: VM manager (VMM) and 

power manager (PM). An exemplary architecture for the datacenter management system 

with emphasis on the VMM and per server PM is depicted in Figure 5. 

Power manager is responsible for minimizing the average power consumption and 

satisfying the peak power constraints (thermal or peak power capacity limitation) subject 

to providing the required performance to VMs. Power management system in datacenter 

includes hierarchical power provisioners and a power manager for each server. Power 

provisioners distribute the peak power allowance between lower level power consumers 

and make sure that these power budget constraints are met. Servers are located at the 

lowest level of this hierarchy. Power manager in each server tries to minimize the 

average power consumption subject to satisfying the peak power constraint and 
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performance requirements of the assigned VMs. This manager uses different dynamic 

power management techniques such as DVFS and clock throttling to minimize the power 

consumption.    

 

Figure 5. VM management structure in a datacenter 

VMM is responsible for assigning VMs to servers, determining their performance 

requirements and migrating them if needed. VMM performs these tasks based on two 

optimization procedures: periodic and reactive. In contrast to periodic optimization 

procedure, reactive optimization procedure is performed when it is needed.   

In the periodic optimization procedure, VMM considers the whole active set of 

VMs, the previous assignment solution, feedbacks generated from power, thermal and 

performance sensors, and workload prediction to generate the best VM placement 

solution for the next epoch. The length of the epoch depends on the type and size of the 

datacenter and its workload. In reactive optimization procedure, VMM finds a temporary 
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VM placement solution by migrating, admitting, or removing a number of VMs in order 

to respond to performance, power budget, or critical temperature violations.  

In this chapter, we focus on periodic optimization procedure in VMM. IN periodic 

optimization procedure, clients’ SLA, expected power consumption of servers, and 

migration cost of VMs are considered. Migrating a VM between servers causes a 

downtime in the client’s application. Duration of the downtime is related to the migration 

technique used in the datacenter. We assume that there is a defined cost in SLA contracts 

for these short but infrequent downtimes. In this chapter, ݉ܿ denotes the migration cost 

of the ith client’s VM in the datacenter. Previous assignment variable ݕ௦
ఊ  (=1 if the ith 

client was assigned to server s and 0 otherwise) is used to calculate the migration cost in 

the system. 

2.2.3 Performance Modeling  

Performance of each client in the cloud computing system should be monitored 

and necessary decisions should be taken to satisfy SLA requirements. We focus on the 

online service applications that are sensitive to latency. A client in this system is 

application software that can produce a number of requests in each time unit. To model 

the response time of clients, we assume that the inter-arrival times of the requests for 

each client follow an exponential distribution function similar to the inter-arrival times of 

the requests in e-commerce applications [22]. The minimum allowed inter-arrival time of 

the requests is specified in the SLA contract. However, the average inter-arrival time (ߣ) 

of the requests for each client is predicted for the optimization procedures. 
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Streams of requests generated by each client (application) may be decomposed 

into a number of different VMs. In case of more than one VM serving client ݅, requests 

are assigned probabilistically i.e.,  ߙ௦ portion of the incoming requests are forwarded to 

the server s (host of a VM) for execution, independently of the past or future forwarding 

decisions. Based on this assumption, the request arrival rate for each application in each 

server follows the Poisson distribution function.  

There are different resources in the servers that are used by VMs such as 

processing units, memory, communication bandwidth, and secondary storage. These 

resources can be allocated to VMs by a fixed or round-robin scheduling policy. In this 

work, we consider the processing unit and memory to have fixed allocation policy 

whereas others are allocated by round-robin scheduling. Our algorithm determines the 

portion of processing unit and memory allocated to each VM, which is assigned to a 

physical server. The amount of memory allocated to a VM does not significantly affect 

performance of the VM under different workloads as long as it is not less than a certain 

value [16]. Hence, we assign a fixed amount of memory (݉) to the ith client’s VM on 

any server that the client is assigned to. 

Share of a VM from the processing unit determines the performance of that VM 

in the cloud computing system. The portion of processing unit allocated to different VMs 

(߶∗௦ ) on a server is determined by VMM at the beginning of the decision epoch. 

However, these values can be changed in each server as a function of workload changes 

or power/performance optimization at the server. VMM considers the clients’ workload 
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to determine the resource allocation parameters to control the wait time of the processing 

queue for different applications based on SLA requirements.  

A multi-class single server queue exists in servers that have more than one VM 

(from different clients). We consider generalized processor sharing (GPS) model at each 

queue; GPS model approximates the scheduling policy used by most operating systems, 

e.g., weighted fair queuing and the CPU time sharing in Linux. Using this scheduling 

policy, multi-class single server queue can be replaced by multiple single-server queues. 

Note that the processing capacity of server s allocated to the ith client’s VM is calculated 

as ܥ௦
߶௦. 

The exponential distribution function is used to model the request service time of 

the clients. Based on this model, the response time (“sojourn time”) distribution of a VM 

(placed on server s) is an exponential distribution with mean: 

തܴ ൌ
1

௦ܥ
߶௦ߤ௦ െ ߣ௦ߙ

 (1)

where ߤ௦  denotes the service rate of the ith client on server s when the a unit of 

processing capacity is allocated to the VM of this client. 

The queuing model used in this chapter is M/M/c, which is simplified to M/M/1 

with probabilistic request assignment. In case of service times with general distribution, 

this model is an approximation. This approximation is not appropriate for M/G/1 queues 

with a heavy-tail service time distribution. However, since we defined SLA based on the 

response time constraint, these kinds of service time distribution functions are not 

encountered. A more general case than the model in (22) would be the M/G/c queuing 
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model. It is not possible to predict the response time distribution of these queues without 

a numerical approach unless for specific service time distributions. For this reason we 

believe that using the M/M/c model for this high-level decision making process is 

sufficient, and more complex models can be used in problems with smaller input size. 

2.2.4 SLA model for the clients 

We use soft SLA constraints, in which cloud provider guarantees that the 

response time constraint is satisfied for most of the time (݄∗ for example for 95 percentile 

point of the requests) and for each violation of constraint, the cloud provider pays back 

the client a fixed penalty value ( ∗݂).  Having defined the SLAs for clients enables the 

cloud provider to vary the VM resource size and improve the power efficiency in the 

system.  

The constraint on the response time of the ith client may be expressed as: 

ሼܴܾݎܲ  ܴ
௧ሽ  ݄ (2)

where ܴ and ܴ
௧ denote the actual and target response times for the ith client’s requests, 

respectively. 

Using the model provided in the subsection  2.2.3, the response time constraint for 

each VM can be expressed as follows: 

݁ି൫ೞ
థೞఓೞିఈೞఒ൯ோ


 ݄ ⇒ ߶௦  ሺߙ௦ߣ െ ln ݄ ܴ

௧⁄ ሻ ௦ܥ௦ߤ
⁄  (3)

2.3 Problem Formulation 

In this work, we focus on an algorithm for solving periodic VM placement 

problem in datacenter. The goal of this optimization problem is to minimize the total 
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operational cost of the system including power and migration costs and expected SLA 

violation penalty. VMM uses different methods to achieve this goal, including turning 

on/off servers, migrating VMs, and changing the VM sizes. The cost minimization 

problem (P1) is provided next: 

௦ݔΨ	݊݅ܯ ௦ܲ
  ௦ܲ

߶௦


൩
௦

ߠ ݖ௦݉ܿ
௦

 

ߠ ݂
ߣߙ௦݁ି൫ೞ

థೞఓೞିఈೞఒ൯ோ


௦

 

(4)

Subject to: 

௦ݔ  ∑ ௦ߙ ,																																			 (5) ݏ∀

߶௦  ߣ௦ߙ௦൫ሺݕ െ ln ݄ ܴ
௧⁄ ሻ ௦ܥ௦ߤ

⁄ ൯,																																			 ∀݅, (6) ݏ

∑ ߶௦  1,																 (7) ݏ∀

∑ ௦݉௦ݕ  									,௦ܥ (8) ݏ∀

∑ ௦௦ߙ ൌ 1,		 ∀݅ (9)

௦ݕ  ,௦ߙ ௦ݕ  1  ௦ߙ െ ,ߝ ∀݅, (10) ݏ

௦ݖ  ௦ݕ െ ௦ݕ
ఊ	 ∀݅, (11) ݏ

௦ݔ ∈ ሼ0,1ሽ,	ݕ௦ ∈ ሼ0,1ሽ	,	ݖ௦ ∈ ሼ0,1ሽ ,					 ∀݅, (12) ݏ

߶௦  0, ௦ߙ  0,																			 ∀݅, (13) ݏ

where ߝ is a very small positive value, and, ݔ௦ is a pseudo-Boolean integer variable to 

determine if server s is ON (ݔ௦=1) or OFF (ݔ௦=0). We call ߙ௦’s and ߶௦’s assignment 

and allocation parameters, respectively throughout the chapter. 
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The first term in the objective function is the energy cost of the system, which is 

composed of the idle energy cost if the server is active (ݔ௦=1) plus a cost proportional to 

the utilization of the server. The second term in the objective function captures the 

migration costs whereas the third term represents the expected penalty that cloud provider 

will pay to the clients when SLA violations occur. 

Constraint (5) ensures that if a client is assigned to a server, this server will be 

active. Constraint (6) is the SLA constraint for the clients. Constraints (7) and (8) are the 

processing and memory capacity constraints in a server. Constraint (9) makes sure that all 

requests of each client are served in the system. Constraint (10) is used to generate a 

helping pseudo Boolean parameter (ݕ௦) which determines if the ith client is assigned to 

server s (ݕ௦=1) or not (ݕ௦=0). If the value of ߙ௦ is more than 0, the first inequality of 

(10) sets the value of ݕ௦ to one and if the value of ߙ௦ is zero, the second inequality of 

(10) force the value of ݕ௦  to be zero. Constraint (11) is used to generate a pseudo 

Boolean parameter (ݖ௦) which indicates whether the migration cost for the ith client from 

server s should be considered (ݕ௦=1 and ݕ௦
ఊ=0) or not. Finally, constraints (12) and (13) 

specify domains of the variables. 

P1 is a mixed integer non-linear programming problem. Integer part of problem 

comes from the fact that servers can be active or sleep (ݔ௦) and VMs can be placed on a 

physical machine or not (ݕ௦). 

The problem of minimizing the energy cost plus the expected violation penalty is 

an NP-Hard problem. It can be shown that the NP-hard bin-packing problem [79] can be 

reduced to P1. Indeed, even deciding whether a feasible solution exists for this problem, 
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does not have an efficient solution. So, we utilize a simple greedy algorithm (similar to 

First Fit Decreasing (FFD) heuristic [79]) to find a feasible solution to P1 for the given 

inputs. Another important observation about this problem is that number of clients and 

servers are very large; therefore, a critical property of any proposed heuristic should be 

its scalability. 

 Different versions of this problem are considered in the literature. The 

shortcoming of the presented solutions in the previous work is an assumption about 

knowing the size of VMs based on SLA requirements. Although this assumption is valid 

for Platform as a Service (PaaS), it is not completely true in case of Software as a Service 

(SaaS). There are two issues with this assumption in case of SaaS: First, SLA contracts in 

SaaS do not specify the amount of required resource and cloud provider needs a method 

to translate the target performance metric to the amount of resource for each client; 

Second, considering fixed resource requirement eliminates the fact that cloud provider 

may overbooked the datacenter and needs to sacrifice the performance of some of the 

clients to be able to provide performance guarantee for others. Based on these reasons, 

we consider the problem of determining the VM sizing and VM placement together. 

2.4 Cost Minimization Algorithm 

In this section, a heuristic for problem P1 is presented. The output of this heuristic 

is VM placement and request forwarding policy and the expected performance level of 

VMs in the next epoch.  

A two-step algorithm is proposed for this problem. In the first step, clients are 

ordered based on their status in the previous decision epoch and their estimated resource 
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requirements for the next decision epoch. Based on this ordering, VMs are placed on 

servers one by one using dynamic programming and convex optimization methods. This 

constructive approach may result in servers with low utilization or uncompetitive 

resource sharing policy within the server. So, in the second step of the algorithm, two 

local searches are executed to fix these issues. 

Details of the SLA-based Power and Migration Cost Minimization algorithm or 

SPMCM for short are presented below. 

2.4.1 Initial Solution 

To find an initial solution for P1, a constructive approach is used to assign clients 

to servers and allocate resources to them based on the assignment solution in the previous 

epoch. For this purpose, clients are divided into four groups. Clients that were served in 

the previous epoch are placed in one of the first three groups. The first group includes 

clients that leave the datacenter in the new epoch. The second group includes clients 

whose request arrival rates drop in the new epoch and the third group includes clients 

whose request arrival rates rise in the new epoch. Finally, the fourth group includes 

clients that were not served in the previous epoch. 

Clients within these groups are picked in the order of their average minimum 

processing requirement for VMs (biggest VM first) but the groups are processed in 

increasing order of their IDs. For clients in the first group, VMM releases their resources 

and updates the resource availabilities. Resource availability in each server is defined as 

the amount of processing and memory allocated to the existing VMs. 
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From other groups, the picked client is assigned to available servers to minimize 

the operational cost of the cloud computing system. After finding a solution, resource 

availabilities are updated and the next client is picked for the next assignment. The 

formulation below describes the operational cost minimization problem for a picked 

client (P2) (ith client). 

Ψൣ൫	݊݅ܯ ௦ܲ
  ௦ܲ

൯߶௦൧
௦

ߠ ݖ௦݉ܿ
௦

 ߠ ݂ߣߙ௦݁ି൫ೞ
థೞఓೞିఈೞఒ൯ோ



௦
(14)

subject to: 

߶௦  ߣ௦ߙ௦൫ሺݕ െ ln ݄ ܴ
௧⁄ ሻ ௦ܥ௦ߤ

⁄ ൯,																																			 (15) ݏ∀

߶௦  1 െ ߶௦
,																 (16) ݏ∀

௦݉ݕ  ሺ1 െ ߶௦ሻܥ௦,									 (17) ݏ∀

with the  addition of constraints (9)-(13). 

߶௦
  and ߶௦  denote the previously-committed portion of the processing and 

memory resources on server s, respectively.  

To eliminate the effect of integer parameter (ݔ௦ ) on the complexity of the 

problem, the constant energy cost is replaced by a cost linearly proportional to the CPU 

utilization of the server. Even with this relaxation, it can be shown that the Hessian 

matrix for P2 is not guaranteed to be positive or negative definite (or semi-definite). This 

means that the convex optimization methods cannot be directly applied to solve this 

problem. However, fixing the value of ߙ௦ (between zero and one) makes the problem P2, 

a convex optimization problem. More precisely, for a fixed ߙ௦, the allocation parameter 

߶௦ can be found using convex optimization methods to minimize the energy cost and 
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SLA violation penalty.  The complete solution for P2 called DPRA (dynamic 

programming resource assignment) can thus be found by applying a dynamic 

programming (DP) technique to examine different assignment parameters for different 

servers and find the best solution as explained next.  

Optimal solution of P2 for constant ߙ௦ values and for each server is calculated 

using Karush-Kuhn-Tucker (KKT) conditions. Using this method, the partial cost of 

assigning an ߙ௦ portion of the ith client’s requests to server s is calculated which includes 

the energy cost, migration cost (if the client was not assigned to the server s in the 

previous epoch) and expected SLA violation penalty value for this resource allocation. 

Then assignment on different servers should be combined to construct a complete 

solution for each client with the least total cost. DP technique is used to find the best VM 

placement for the client (determining best ߙ௦) such that constraint (9) is satisfied.  

Since we are dealing with cost minimization for one client at a time, there is no 

need to consider the complete set of servers for each DP calculation; Instead we can use a 

small number of servers from each server type plus servers that had served the client in 

the previous epoch to find the best VM placement solution. Decreasing the number of 

servers for each DP calculation decreases the time complexity of the solution.  

The set of selected servers for the DP technique is different for clients in different 

groups. In particular, for clients in the second group, only servers that served the client in 

the previous epoch are considered. For clients in the third and fourth groups, servers that 

served the client in the previous epoch, a set of servers from each server type with the 

most unallocated resources, and possibly some inactive servers (from each server type) 
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are considered. To differentiate between using active and inactive servers for VM 

placement, different slopes for energy cost for active and inactive servers are considered. 

More precisely, ௦ܲ
 and ௦ܲ

  ௦ܲ
 may be used as the slopes of energy cost for active and 

inactive servers, respectively. Note that, to change the slope of the energy cost for 

different servers, we need to change the first term in the objective function in (14). 

Algorithm 1 shows pseudo code of DPRA method. 

Algorithm 1: Dynamic Programming Resource Assignment 

Inputs: Ψ, ߠ, ݉ܿ, ߣ, ݂, ܥ௦
, ܴ

௧, ߤ௦, ௦ܲ
, ௦ܲ

, ߶௦
, ߶௦, ܥ௦, ܥ௦

, ݄ and ݉ 
Outputs: ߶௦, ߙ௦  (i is constant in this algorithm) 
 

1 ga= granularity of alpha; 
2 For (j = 1 to number of servers) 
3 For (ߙ௦ ൌ 1/ga to 1) 
4  ߶௦= optimal resource shares based on KKT conditions 
5 C(s,	ߙ௦) = ߠߖ൫ ௦ܲ

  ௦ܲ
൯߶௦  ௦݉ܿݖ  ߠ ݂ߙ௦ߣ݁ݔ൫െ൫ܥ௦

߶௦ߤ௦ െ ൯ܴߣ௦ߙ
௧൯ 

6 End 
7 End 
8 X = ga, and Y = number of servers 
9 For ( j =1 to Y) 
10 For  (x = 1 to X) 
11  Dሾx,yሿൌ	infinity;	//Auxiliary	XൈY	matrix	used	for	DP	
12 For	ሺz	ൌ	1	to	xሻ	
13 Dሾx,yሿൌminሺDሾx,yሿ,Dሾx‐1,y‐zሿ	Cሺj,	z/gaሻሻ	
14 Dሾx,yሿൌminሺDሾx,yሿ,	Dሾx‐1,yሿሻ	
15 End 
16 End 
17 Back-track to find best ߙ௦’s and ߶௦’s to minimize cost 

To improve the initial solution, we have used two local search methods; the first 

one fixes the resource allocation parameters and the second one tries to make under-

utilized servers inactive and service their clients with higher energy efficiency on other 

active or inactive servers.  
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2.4.2 Resource allocation adjustment  

If more than one client is assigned to a server, constructive resource allocation 

may not generate the global optimum allocation policy. We formulate resource allocation 

problem in a server with fixed assignment parameters (ߙ௦) to minimize the energy cost 

and SLA violation penalty as a convex optimization problem (P3): 

Ψ	݊݅ܯ ௦ܲ
߶௦
∈ூೞ

 ݂ߙ௦ߣ݁ି൫ೞ
థೞఓೞିఈೞఒ൯ோ



∈ூೞ

	 (18) 

subject to: 

߶௦  ߣ௦ߙ௦൫ሺݕ െ ln ݄ ܴ
௧⁄ ሻ ௦ܥ௦ߤ

⁄ ൯,																																			 ∀݅ ∈ ௦ (19)ܫ

∑ ߶௦∈ூೞ  1,																  (20)

where ܫ௦ denotes the set of VMs assigned to server s. 

P3 is a convex optimization problem and the solution can be found using KKT 

optimality conditions. Note that this part of the VM placement algorithm is parallelizable 

and can be implemented in power managers of the servers. 

2.4.3 Turn OFF under-utilized servers 

To decrease the total cost in the system, it may be possible to turn off some of the 

under-utilized servers (after finding the initial solution) to reduce the idle energy cost of 

the servers at the expense of more migration cost (for clients that were assigned to these 

under-utilized servers in the previous epoch) or more SLA violation penalty.  

An iterative method is presented to find the minimum cost solution based on the 

results of the previous steps. In each iteration, a server with utilization less than a 

threshold (e.g., 20%) is chosen and its VMs are removed. To assign the removed VMs to 
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other servers, DPRA method is used. Considering the high energy cost for inactive 

servers, the DPRA method encourages the VMM to choose more SLA violation penalty 

or pay for the migration cost instead of turning on a server. Note that these iterations do 

not always decrease the total cost in the system; therefore, the global lowest total cost is 

compared to the total cost after turning off a server, and the move is rejected if it is not 

beneficial. 

This iterative method is continued until all servers with low utilization have been 

examined. 

2.5 Simulation Results 

To evaluate the effectiveness of the presented VM placement algorithm, a 

simulation framework is implemented. Simulation setups, baseline heuristics and 

numerical results of this implementation are explained next. 

2.5.1 Simulation Setup 

For simulations, model parameters are chosen based on true-to-life cloud 

computing systems. The number of server types is set to 10. For each server type, an 

arbitrary number of servers are placed in datacenter. Processors in server types are 

selected from a set of Intel processors (e.g. Atom and Xeon) [80] with different number 

of cores, cache, power consumptions and working frequencies. Active power 

consumptions for different server types (excluding processor power consumption) are set 

to vary uniformly between three to six times the power consumption of their fully-

utilized processor. Memory capacities of the servers are selected based on cache size of 
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the processors with a constant scaling factor of 1,500. Energy cost is assumed to be 15 

cents per KWhr at all times. Request arrival rates of the client are chosen uniformly 

between 0.1 and 1 request per second. The memory requirements for clients are also 

selected uniformly between 256MB and 4GB. These parameters are borrowed from the 

simulation setup of [27].  

In each simulation, five different client classes are considered. Each client is 

randomly picked from one of the client classes. The amount of penalty for different client 

classes is selected based on the on-demand rates of Amazon EC2 cloud service [81]. 

Migration costs are set to be equal to downtime penalty of 65ms for each client. In 

addition, ߤ௦’s are set based on the highest clock frequency for the servers. 

Each simulation is repeated at least 1000 times to generate acceptable average 

results for each case. In each simulation, a number of clients are assigned to the servers 

for the first decision epoch. At the end of each epoch, an arbitrary number of clients leave 

the datacenter while an arbitrary number of clients join the datacenter. Less than 10% of 

current clients join or leave the datacenter at the beginning of each epoch. Moreover, 

inter-arrival rate of the remaining clients in the system are chosen uniformly between 0.1 

and 1 request per second for the next epoch. To account for the physical infrastructure 

overhead, energy cost of the servers in the datacenter is multiplied by a factor of 1.3 as a 

typical power usage effectiveness of current datacenters [11].  

2.5.2 Heuristics for Comparison 

We implemented a slightly modified version of the FFD [79] for VM placement, 

called FFDP, and PMaP heuristic [7] as baseline. These approaches consider VMs that 
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have fixed processing size. We choose 1 2⁄ ݄∗ as the expected violation rate of the SLA 

response time constraints for each client. From (23) the amount of processing units 

required for different VMs on different physical servers were calculated. 

The FFDP method picks clients based on the size of their VM (highest to lowest) 

and assigns them to the first server with available resources from the server type that has 

the lowest execution time for the client’s requests. The PMaP method is a VM placement 

heuristic that tries to minimize the power and migration cost. PMaP computes the amount 

of resources that VMs need, determines the active servers and place the VMs on the 

servers. After these steps, a power and migration-aware local search is done to find the 

final solution. Details of PMaP may be found in [7]. 

2.5.3 Numerical Results 

Table III shows the performance of the SPMCM method for different number of 

clients with respect to the lower bound on the total cost. This lower bound is the 

summation of the lowest cost VM placement solution for each client. This table shows 

that SPMCM generates a near optimal solution for VM placement that minimizes the 

power and migration cost. Note that increasing the number of clients decreases the 

distance between the total cost of SPMCM and the lower bound because of higher 

consolidation possibility with higher number of clients.  

Figure 6 demonstrates the normalized total cost of the datacenter using SPMCM, 

FFDP and PMaP heuristics. It can be seen that the SPMCM algorithm generates solutions 

with total cost, which is on average 35% less than FFDP solutions and 18% less than 

PMaP solutions. 



54 
 

TABLE III. PERFORMANCE OF SPMCM W.R.T. LOWER BOUND COST 

# of clients Average performance Worst-case performance
250 1.15 1.36 
500 1.14 1.23 
1000 1.12 1.20 
1500 1.09 1.21 
2000 1.10 1.24 
3000 1.09 1.19 
4000 1.10 1.18 

 

 

Figure 6. Normalized cost of the datacenter for different algorithms 

Figure 7 shows the average run-time of SPMCM, FFDP and PMaP methods for 

different number of clients. Average number of servers in each configuration is equal to 

the 1.5 times the number of clients. It is clear that SPMCM is more complex than the 

baseline and PMaP algorithms and hence the run-time of SPMCM is greater than two 

other algorithms. SPMCM solution is found in less than 25 seconds when the number of 

clients is equal to 1,000 and the number of servers in the datacenter is 1,500. Note that, 
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the VM placement algorithm is called only a few times in each charge cycle (one hour in 

Amazon EC2 service [81]), e.g., 2-3 times per hour. 

Figure 8 shows the average ratio of the expected violation rate of the response 

time constraint to the maximum allowed violation rate under different penalty values 

after VM placement using SPMCM. As expected, this ratio decreases by increasing the 

penalty so as to avoid paying a large penalty cost. In other words, increasing the penalty 

value forces the cloud provider to provision more resources for the client so that the 

violation rate (and expected penalty) goes down. 

2.6 Conclusion 

In this chapter we presented a centralized VM placement to minimize the power 

and migration cost in a cloud system. Soft SLA constraints on response time were 

considered for the clients in this system. We presented an algorithm based on convex  

Figure 7. Run-time of SPMCM on 2.8GHZ E5550 server from Intel for different number of clients 
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optimization method and dynamic programming. Simulation results demonstrated the 

effectiveness of our algorithm with respect to a lower bound and other well-known 

solutions. Based on the results of this chapter, it can be seen that considering SLA with 

effective VM placement can help to minimize the operational cost in the cloud computing 

system.  

  

Figure 8. Ratio of expected percentage of the response time constraint’s violation to the maximum 
allowed percentage of violation 
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Chapter 3 . HIERARCHICAL SLA-DRIVEN RESOURCE 

MANAGEMENT FOR PEAK POWER-AWARE AND ENERGY-

EFFICIENT OPERATION OF A CLOUD DATACENTER 

 

3.1 Introduction 

There are a number of different resource managers in the datacenter. A VM 

manager (VMM) performs VM assignment and migration. A power manager (PM) 

manages the power and performance state of servers whereas a cooling manager (CM) 

manages the cooling and air conditioning units. In order to achieve the minimum 

operational cost, coordination between these managers is necessary. Coordination 

between VMM with one of the other managers in datacenter is presented in a number of 

previous works, including [36] and [52].   

The resource management policy in the cloud system is the key to determine the 

operational cost, client admission policy, and quality of service. Considering a given set 

of clients having signed appropriate SLAs with the cloud service provider, the resource 

management problem in the cloud system can be described as the problem of optimizing 

any of the aforesaid objective functions subject to the given SLAs. The resource 

management decisions include assigning VMs to servers, allocating resource to each VM 

and migrating them to address SLA violations, peak power constraints or thermal 

emergencies. 
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To manage resources in a cloud system, a central manager (commissioned by the 

cloud service provider) can cause reliability (single point of failure) and face scalability 

issues. Regarding the latter point, the number of servers and VMs in a cloud system can 

be in the order of tens of thousands to hundreds of thousands. This underlines scalability 

as one of the key conditions that any resource management solution for the cloud system 

should satisfy. In addition to the large scale of the problem, the number of performance 

counters and power and temperature measurement signals from different parts of the 

datacenter that should be monitored to make timely decisions (for example decision about 

VM migration made at the millisecond rate) is huge and aggregating and analyzing this 

amount of data in a centralized manager may result in low performance and large energy 

overhead. Finally, there are certain management decisions that should be done very fast, 

and hence, they must be made locally (instead of relaying the data to a central manager 

and waiting for a command from that manager).  

In this chapter, we present a hierarchical and decentralized decision making 

architecture for resource management (VMM, PM and CM) in cloud datacenters. The 

presented solution employs a set of decentralized decision makers (managers) who are 

trying to solve a complex, large-scale, constrained, optimization problem with 

cooperation. This cooperation involves making hierarchical decisions and exchanging 

requests for VM assignment/migration and temperature/power capacity adjustments 

among different managers. In best of our knowledge, there is no work in the literature 

that presents this structure or considers all of these factors in its resource management 

algorithm. 
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To show the effectiveness of the presented management scheme, a cloud system 

simulation software tool has been developed. The simulator can model and do 

performance evaluation of both centralized and decentralized resource management 

architectures. Simulation results demonstrate that  the decentralized resource 

management algorithm reduces the operational cost of a datacenter by about 40% and 

decreases the run-time of the algorithms up to 7 times with respect to a centralized 

management structure presented in previous work. 

This chapter is organized as follows. The cloud system configuration and 

cost/performance metrics are presented in section  3.2. The resource management problem 

is described in section  3.3. The periodic optimization strategy, a local search strategy to 

improve the objective function, and algorithms to handle emergency cases are presented 

in sections  3.4,  3.5 and  3.6 respectively. Simulation framework and results are presented 

in section  3.7 whereas the chapter is concluded at the last section. 

3.2 Cloud Datacenter and Key Parameters 

In the following paragraphs, the assumed architecture of the cloud datacenter is 

described. Next some key observations and assertions about where the system’s 

performance bottlenecks are provided. Finally, we explain how to account for the 

operational cost associated with a client’s VM running in the system. To increase 

readability, Table IV presents key symbols used throughout this chapter along with their 

definitions. 
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TABLE IV. NOTATION AND DEFINITIONS IN CHAPTER 3 

Symbol  Definition 
 ,ௗ, ܴ, ܳܥ

ܵ 
Set of containers, racks, chassis and servers insider datacenter, container, rack and 
chassis, respectively 

௦ܥ
, ܥ௦ Total processing  and memory capacities of server s 

௦ܲ
, ௦ܲ

 
Constant and dynamic (in terms of utilization) power consumption of the server s 
operation.  

ܲ
, ܲ

 Idle power consumption of chassis ݍ and rack ݎ 

 Duration of the decision epoch in seconds ߠ
Ψ Electrical energy price 

∗ܲ
ே Peak power capacity of PDN at a location in the datacenter 

ௗܲ
௫ Peak power limitation of datacenter ݀ 
 Peak to average power consumption ratio ܴܣܲ

ܶ
௨௧, ܶ

 Outlet and inlet temperature of chassis ݍ 

ܶ
௦	 Supply cold air temperature in container ܿ 

ܶ௧	 Critical temperature in datacenter 
 Coefficient-of-performance ܱܲܥ
݉ Required amount of memory bandwidth for VM ݅ 

݉ܿ
∗ 

Migration cost of VM ݅ in different levels (∗ can be chassis, rack, container or 
datacenter) 

ܴ
௧, ݂ Contract target response time and penalty values for each request in the SLA contract 

݄ 
Hard constraint on the possible percentage of violation of the response time constraint 
in the SLA contract 

  Predicted average request rate of the ith clientߣ

߶௦
  ,	߶௦

 
Portion of processing resources or memory bandwidth of server s that is allocated to 
VM i 

 is ON (1) or OF (0) ݏ ௦ A pseudo-Boolean integer variable to determine if the serverݔ

  A pseudo-Boolean integer variable to determine if a chassis or rack is ON (1) or OFݔ ,ݔ
(0) 

3.2.1 Cloud datacenter 

In this chapter, container-based (as opposed to the older raised-floor) cloud 

datacenters [11] are assumed. This type of datacenter relies on containment, close-

coupled cooling, and modularity to improve the datacenter’s energy efficiency. An 

example of container-based datacenter structure is shown in Figure 9.  
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Figure 9 – An example of structure of container-based datacenter 

In these datacenters, containers act as separate rooms for servers. Each container 

includes a number of racks. Inside each rack, a number of chassis exist and each chassis 

comprises of a number of blade servers. d denotes the cloud datacenter. Each container, 

rack, chassis and blade server is identified by unique id throughout cloud datacenter, 

denoted by c, r, q and s respectively. The set of containers inside datacenter, set of racks 

inside container c, set of chassis inside rack r, and set of servers inside chassis q are 

denoted by ܥௗ, ܴ, ܳ and ܵ respectively. We use notation |∗| to denote the cardinality 

of each set. 

We assume that containers may be different from each other in terms of their rack 

configurations or type of blade servers deployed. However, each container is internally 

homogenous i.e., it employs the same blade server throughout. Servers deployed in the 

datacenter are chosen from a set of known and well-characterized server types. In 

particular, servers of a given type are modeled by their processing capacity or CPU 
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cycles per second (ܥ௦
) and memory bandwidth (ܥ௦) as well as their average power 

consumption as a function of their utilization factor. We assume that local (or networked) 

secondary storage (disc) is not a system bottleneck (although our model can easily be 

modified to consider this resource). The power consumption of a server is modeled as a 

constant power consumption term ( ௦ܲ
) plus another variable power consumption term, 

which is linearly related to the utilization of the server (with slope of ௦ܲ
). Similar to 

servers, each chassis and each rack consume a constant power if they are idle. These 

power consumptions are denoted by ܲ
 (accounting for the fans and power regulators 

inside each chassis) and ܲ
 (accounting for fan, power regulators and networking gears 

inside rack).  

A network of high-efficiency uninterruptable power supply (UPS) units is used to 

connect the power supplies (from utility companies or generated in datacenter’s site) to 

the datacenter’s PDN. Electric power is fed to the datacenter using a PDN, which is 

structured in a hierarchy similar to the one used to organize servers in the datacenter. As 

a result, each chassis, each rack, and each container have specified peak power capacities 

(cap).  

Ψ determines the electrical energy price for the datacenter in the current epoch, 

which is used to translate the average power consumption in each datacenter to energy 

cost. 

Power provisioning is an important responsibility of the resource managers in a 

datacenter. Efficient power provisioning helps increase the performance and get the 
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highest profit from serving clients in the datacenter. There are two different sources for 

power unavailability at some location in the datacenter: 1) PDN bottleneck and 2) 

limitation on the total provided power to the datacenter. The first problem is much more 

serious than the second one [14]. The peak power capacity of PDN at a location in the 

datacenter is shown by ∗ܲ
ே  where ∗  denotes the whole datacenter, some container, 

some rack, or some chassis. The peak power limitation imposed by the UPS inadequacy, 

local electricity generation constraint, or limitation on the provided power by utility 

companies is shown by ௗܲ
௫. Determining the peak power consumption for a mix of 

applications in a server, chassis, rack, container or the whole datacenter is even more 

arduous. There are different studies focused on this issue to determine the power 

provisioning policy in a datacenter e.g. [14] and [37]. In this work, we assume that the 

peak power consumption at each granularity level of a datacenter can be estimated by 

multiplying the average power consumption and a factor related to the mix of running 

applications at that level. This factor can be large in case of homogenous workload mixes 

but it decreases if the heterogeneity of the workload in the mix goes up [14]. This factor 

can be calculated based on profiling and/or prediction methods, as suggested in [14]. We 

call this factor the peak to average ratio, (ܴܲܣሻ . It is calculated for each level of 

granularity, ranging from chassis, rack, and container to datacenter.    

Cooling in each container is accomplished in at least one of three of ways: 

overhead Cooling, in-row cooling, and circular in-row cooling [82]. A big portion of the 

total power consumed in a datacenter (up to 30% in older datacenters [48]) is related to 

cooling infrastructure. The cooling power consumption is non-linearly proportional to the 
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total power usage in the container/datacenter. We assume that the air flows in different 

containers are isolated from each other and each container has its own CRAC unit. The 

temperature spatial granularity considered in this work is at the chassis level. Cold air is 

drawn to each chassis with temperature ܶ
  and exits from the other side with 

temperature ܶ
௨௧ . ܶ

  is a function of the supply cold air temperature ( ܶ
௦ ) of the 

container and recirculation of the heat from other chassis in that container. Similar to the 

work by Tang et al. [16], the recirculation of heat can be described by a cross-

interference matrix, which is shown by ࣘ ൌ ൣ߶൧ேൈே
 in which ܰ  is the number of 

chassis in container c. According to reference [16], the vector of input cold air 

temperatures ( ሬܶԦ) in a container can be calculated based on the following formula. 

ሬܶԦ ൌ ܶ
௦  ࡰ ሬܲԦ, ࡰ ൌ ሾሺࡷ െ ሻିଵࡷ்ࣘ െ  ଵሿ (21)ିࡷ

where ሬܲԦ  vector denotes power consumption of chassis in container c, and ࡷ  is an 

ܰ ൈ ܰ diagonal matrix whose entries are thermodynamic constants of different chassis. 

The cooling manager in datacenter makes sure that ܶ
 for each chassis is less than a pre-

specified critical temperature ( ܶ௧). Note that, supply cold air temperature is determined 

based on this constraint. Coefficient of performance (COP), which determines the 

efficiency of the cooling system, is a monotonically decreasing function of of ܶ
௦. Due to 

high efficiency of transmission and conversion efficiency in PDN of today’s datacenters, 

we consider 1  ሺܱܲܥ/1 ܶ
௦ሻ  to represent the power usage effectiveness for each 

container. 
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3.2.2 Virtual machine characteristics 

In this work, we consider virtualized datacenters. Each client of the cloud system 

owns a virtual machine (VM) that typically runs one or more applications. Each VM is 

identified by a unique identifier, represented by index i. These VMs can be classified into 

different priority classes, ranging from the cloud service provider’s own VMs at the 

highest priority level to pay-as-you-go VMs at the lowest priority level.  

The applications running in a cloud system may be identified as online 

(interactive) service or batch processing jobs [11]. Online service applications (e.g., web 

hosting and online banking) are usually I/O intensive and response time-sensitive. On the 

other hand, batch jobs (e.g., weather forecast and big data analytics) are compute or 

memory intensive jobs that are throughput sensitive. The workload intensity of these 

applications can change with time in periods ranging from milliseconds to hours. Based 

on the type of the application, quality of service (QoS) is defined on specific performance 

parameters such as the response time for online services and the throughput for batch 

applications.  

Different resources in servers such as the processing cores, memory, 

communication bandwidth, and secondary storage can be allocated between assigned 

VMs by a fixed or round-robin scheduling policy. The amount of allocated resource to a 

VM is a function of the VM type and the client’s SLA contract. In this work, we consider 

the processing unit and memory bandwidth to have fixed allocation policy. ߶௦
  denotes 

the portion of the processing capacity of server s that is allocated to VM ݅. The amount of 

memory allocated to a VM does not significantly affect performance of the VM under 
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different workloads as long as it is no less than a specified value [16]. Hence, we assign a 

fixed amount of memory (݉) to the ith client’s VM on any server that the VM is assigned 

to. 

Migrating a VM between two servers causes a downtime in the client’s 

application. Duration of the downtime is related to the migration technique used in the 

datacenter and the communication distance between the source and destination of the 

move. We assume that there is a defined cost in SLA contracts for these short but 

infrequent service outages based on the length of the downtime. In this chapter, ݉ܿ
∗ 

denotes the part of the migration cost of the VM ݅ related to the level of the migration 

where ∗ can be chassis, rack, container or datacenter. Note that VM migration has the 

lowest cost in case of intra-chassis migration and the highest cost in case of inter-

container migration. In case of intra-chassis migration, ݉ܿ
ொ denotes the migration cost. 

However, in case of other migration types, a summation of migration cost provides the 

final migration cost, e.g., the cost of migrating VM ݅ from one rack to another rack inside 

one container can be calculated as ݉ܿ
ொ  ݉ܿ

ோ  ݉ܿ
. 

In this work we focus on response time-sensitive applications. Clients in a cloud 

system have specific SLAs with the cloud service provider. Although different types of 

SLAs can be adopted for clients in cloud system, a common SLA is to set a target 

performance for the client’s instances of the application runs and requires that the cloud 

service provider meet that target performance for no less than a certain percentage of the 

runs (e.g. 95%). Furthermore, the service provider has to pay a penalty for any 
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application run that violates its performance target. ܴ
௧ , ݄  and ݂  denote the target 

response time, the maximum tolerable constraint violation rate, and the penalty value for 

each SLA violation of client i.  

To estimate the response time of an application, a performance model must be 

considered. To model the response time, we assume that the inter-arrival times of the 

requests for each application follow an exponential distribution function similar to the 

inter-arrival times of the requests in the e-commerce applications [22]. The maximum 

allowed inter-arrival rate of the requests is specified in the SLA contract between a client 

and the cloud owner. Although the maximum inter-arrival rate is part of the SLA 

contract, the average inter-arrival rate (ߣ) of the requests for each client in each time 

window is predicted for the optimization procedures.  

A multiclass single-server (MCSS) queue exists in servers that provide service to 

more than one VM. We consider generalized processor sharing (GPS) model at each 

queue; The GPS model approximates the scheduling policy used by most operating 

systems, e.g., weighted fair queuing and the CPU time sharing of Linux. Using this 

scheduling policy, MCSS queue can be replaced by multiple single-server queues. Note 

that the processing capacity of server s allocated to VM i is calculated as ܥ௦
߶௦

 . 

Furthermore, it is assumed that client service times follow an exponential distribution. 

Let ߤ௦ denote the average service rate of the VM i on server ݏ when it has a unit of the 

server’s processing capacity. Now then, the response time of a VM follows an 

exponential distribution function with a mean value, which is calculated as follows: 
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തܴ௦ ൌ
1

௦ܥ
߶௦ߤ௦ െ ߣ

 (22)

We assume that ߤ௦ for all servers of the same type are equal. To determine ߤ௦, 

we consider an offline profiling mechanism which collects service rates for different 

types of VMs running on different types of servers. These values indeed capture the 

compatibility of certain client types to certain server types.  

Considering these models for request arrival and service rate, the response time 

constraint for each VM can be expressed as follows: 

݁ି൫ೞ
థೞ

 ఓೞିఒ൯ோ

 ݄ ⇒ ߶௦

  ሺߣ െ ln ݄ ܴ
௧⁄ ሻ ௦ܥ௦ߤ

⁄  (23)

In addition to parameters for cloud system and clients, there are a number of 

decision parameters that are used to optimize the operational cost of the system. The most 

important parameter is ݔ௦, which is a pseudo-Boolean variable that determines whether 

the server is on or off. This value can be found from ߶௦
  and ߶௦

 , which are the 

processing and memory bandwidth allocation parameters for each server. Pseudo-

Boolean parameters ݔ and ݔ, which can be determined based on ݔ௦, show whether or 

not a chassis is active. Moreover, pseudo-Boolean parameter ݕ௦ determines if VM ݅ is 

assigned to server ݏ or not. 

3.3 Cloud Datacenter Resource Management Problem 

The resource management problem in cloud systems is the key to determining the 

client admission policy, the operational cost, and the quality of service.  
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One of the most important problems for the cloud service provider is whether to 

admit a client. In particular, a client’s service requirements may be too demanding or the 

cloud resources are already committed to other clients that are paying more. This 

problem, which is known as the admission control problem, falls outside the focus of the 

present chapter.  

Considering a set of clients with their own SLAs with the cloud provider, the 

resource management problem in a cloud system can be described as the problem of 

minimizing the total operation cost of the cloud and the SLA violation penalties subject 

to performance and resource availability constraints. The biggest part of the operation 

cost of a datacenter is the electrical energy cost, which must be paid to the utility 

companies providing the electricity. To minimize the power consumption in each 

datacenter, the number of active or idle servers should be reduced and at the same time, 

the power consumption of the active servers should be balanced as much as possible in 

order to reduce the cooling system’s power consumption.  

Notice that from the resource assignment solution, an expected quality of service 

(QoS) provided to each client is calculated. Based on this QoS, expected SLA violation 

penalties for all clients can be computed. The other type of penalty that should be paid to 

the customers is the result of VM migration between different servers, which can result in 

service outage for a short time.  

Various resource managers in cloud datacenters perform their jobs by interacting 

with each other. The VMM performs the resource management interacting with the PM 

and the CM. The PM reduces the power consumption in the system and uses control-
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theoretic solutions to ensure that the peak power of each component remains below that 

the given peak power capacity. The CM reduces the cooling system power consumption 

subject to keeping the temperature below a critical threshold at every location inside 

datacenter. 

The common approach used for the resource management in a cloud system is to 

perform optimization periodically (such a period is called epoch with duration ߠ) and 

modify the solution during each epoch only in case of SLA, peak power or temperature 

emergencies or dramatic workload changes. These processes are called periodic and 

reactive optimizations, respectively. In periodic optimization, prediction of workload 

statistics for each VM in addition to VMs’ expected behavior upon assignment to 

different types of servers is used to determine the VM assignment and resource allocation 

solution.  

To assign VMs to datacenters in a multi-datacenter cloud system, the whole 

application run-time, which can last for multiple decision epochs, should be considered. 

Therefore, the cloud manager needs to consider the workload trend for each client as well 

as the energy price during the day in order to decide how to assign VMs to datacenters in 

a multi-datacenter cloud system. These decisions are usually made based on cloud service 

provider’s policy that aims to achieve some kind of geographical load balancing [65]. In 

this work we focus on the resource management problem in one cloud datacenter, 

considering only the resource assignment solution in the previous epoch to minimize the 

operational cost for the current epoch. Resource assignment parameters related to the 

previous epoch are marked with superscript ߛ.  
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Periodic resource management problem can be formulated as follows: 

Ψߠ		݊݅ܯ  ܲ

∈

 ݂ߣߠ ௦݁ݕ
ି൫ೞ

థೞ
ఓೞିఒ൯ோ



௦
  ݉ܿ

ݖ∗
∗

∗∈ሼொ,ோ,,ሽ


	

subject to: 

௦ݔ  ∑ ߶௦


 ݔ  ,  
∑ ௫ೞೞ∈ೄ

หௌห
ݔ ,  

∑ ௫∈ೂೝ
|ொೝ|

∗ݔ ,  ∈ ሼ0,1ሽ (24)

߶௦
 ൌ ∑ ߶௦


  , ߶௦ ൌ ∑ ߶௦


  , 0  ߶௦∗  1 (25)

߶௦
  ௦ݕ ሺߣ െ ln ݄ ܴ

௧⁄ ሻ ௦ܥ௦ߤ
⁄  , ߶௦

  ௦ (26)ܥ/௦݉ݕ

൞

௦ݕ  ߶௦
 	, ௦ݕ  1  ߶௦

 െ ߝ , ∑ ௦௦ݕ ൌ 1
ݕ ൌ ∑ ௦௦∈ௌݕ 	 , ݕ ൌ ∑ ∈ொೝݕ

ݕ ൌ ∑ ∈ோݕ 	 , ∗ݕ ∈ ሼ0,1ሽ
  (27)
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ܶ
  ܶ௧ (30)

where ߝ  denote a very small positive value and ሺܣሻା captures the maximum value 

between A and 0. 
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There are three main terms in the objective function: (i) IT and cooling energy 

cost, (ii) SLA violation penalty, and, (iii) SLA penalties related to service outage caused 

by VM migration. 

Constraint (24) determines whether or not the server, chassis or rack is active. 

Constraint (25) determines the utilization of each server and forces them to be less than 

one. Constraint (26) determines the lower bound on the processing and memory 

bandwidth share of a VM from their host machine based on SLA constraint.  Constraint 

(27) determines the assignment parameters (assignment of a VM to a server, chassis, rack 

and container). Although the assignment parameter for chassis to container can be 

determined directly from the assignment parameter for servers, these parameters are 

derived to be used in constraint (28) to capture the VM migration cost. Results of these 

constraints are ݖ
∗ parameters that determine whether or not a VM is migrated in chassis 

level, rack level or container level. Constraint (29) calculates the average power 

consumption of the chassis, rack, container and datacenter and limits the corresponding 

power consumption to be less than the power provisioning capacity in PDN. This 

constraint also limits the peak power consumption of the datacenter to the maximum 

provided power. Constraint (30) forces the inlet temperature of each chassis to be lower 

than the critical temperature. 

Periodic resource management problem is a mixed-integer non-linear 

programming problem. By some simplification, bin-packing problem and generalized 

assignment problem can be reduced to this problem. So, this problem is an NP-hard 

problem.  
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Periodic resource management represents a combination of optimization actions 

made by VMM, CM and PM. The separation of VMM and other resource managers can 

lead to inefficient use of resources and instability in creating a feasible solution. 

Cooperation between the VMM and one of the other managers in a datacenter have been 

proposed in a number of previous work such as [36] and [52] but, to the best of our 

knowledge, our work is the first one to present using a combination of VMM, CM, and 

PM for resource management.   

A set of hierarchical and decentralized decision makers fit the distributed nature 

of resources in cloud systems. Hierarchical structures for power management and reactive 

management have been presented in the previous work, c.f. [36] and [83]. In addition, a 

centralized manager can cause reliability (single point of failure) and scalability issues. 

The big number of servers and VMs in large datacenters emphasizes scalability as one of 

the most important factors in designing resource managers. In addition to big scale of the 

problem, the number of performance counters and power and temperature measurement 

signals from different parts of a datacenter is huge and aggregating this amount of data in 

a centralized manager may result in low performance and large overhead. Finally, there 

are certain management functions (e.g., doing VM migration in case of power or 

temperature emergencies) that are best handled by local managers.  

In this work, we present hierarchical resource management (HRM for short) 

solution (VMM, PM and CM) in a cloud system. A figurative architecture for this 

manager is shown in Figure 10. This hierarchy includes a cloud manager, datacenter 

managers, container managers, rack managers and chassis managers. The hierarchical 
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managers collectively try to solve a constrained optimization problem with cooperation. 

This cooperation involves exchanging requests of resource assignment, temperature 

adjustment, power capacity increase or VM migration between resource managers in 

different levels. 

In the presented management architecture, periodic optimization is done by two 

consecutive procedures: VM assignment and local search. To assign new VMs to servers, 

the status of previous VM assignment solution after proper modification is used. Instead 

of assigning VMs directly to servers, each resource manager distributes the VMs between 

its lower level resource managers and this process continues until the chassis manager 

assigns VMs to servers. In each resource manager, distribution of new VMs between 

lower level resource managers is performed based on resource availability, peak power 

capacity, temperature distribution, and COP of the lower level resource managers. Due to 

constructiveness of this approach, a bottom-up local search procedure is used to modify 

 

Figure 10 – An example of presented cooperative hierarchical manager 
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the solution after assigning every VM to a server. In local search step, priority of 

performing a VM movement is set based on its effectiveness in reducing the cost.  

Note that, the size of the problem tackled by each resource manager is much 

smaller than original resource assignment problem. Moreover, the assignment or local 

optimization in all resource managers that do not interact with each other can be executed 

in parallel. These two factors reduce the time complexity of the periodic optimization 

solution drastically. This means that this hierarchical solution makes the optimization 

solution more scalable without sacrificing the performance of the solution. 

In case of peak power or temperature emergency, some kind of reactive 

optimization procedure is performed. Similar to the periodic optimization procedure, the 

proposed reactive optimization solution is performed in a hierarchal manner to avoid long 

decision making time.  

VM assignment and local optimization steps in periodic optimization and reactive 

optimization algorithms are presented in the following sections. 

3.4 Periodic optimization: VM assignment 

The objective in the periodic optimization is to assign new VMs to servers and re-

assign active VMs to servers based on their expected workload in the next epoch so as to 

minimize the summation of total energy cost, the expected SLA violation penalty paid to 

the clients, and the migration cost subject to resource, power and temperature constraints. 

The solution is strongly dependent on the existing server assignments for active VMs. 



 

76 
 

To start the periodic optimization, VM workload should be predicted for the next 

decision epoch. These predictions are based on the current VM workload and the 

workload history in addition to the SLA contract.  

After finding the workload prediction for all VMs, active VMs in the previous 

epoch can be divided into three groups: 1) VMs that will not be active the next epoch; 2) 

VMs with expected lighter workload in the next epoch; and 3) VMs with expected 

heavier workload in the next epoch. Allocated resources to VMs in the first category can 

be released. Next, resource allocation parameter (߶௦
 ) for VMs with lighter workload is 

updated. Finally, the resource allocation parameter for VMs with heavier workload is also 

determined based on their current assignment although the resource requirements for 

some of these VMs may violate the resource constraints. Such VMs must be migrated to 

a different server with more available resources.  

To create a feasible initial solution for new VM assignments, we use a greedy 

technique for these VM migrations. For this purpose, each chassis manager examines the 

available servers in the chassis to find a new host for the target VM. If this manager 

cannot find any server satisfying the VM resource requirement, it asks the parent rack 

manager to look for a server to host that VM and this process continues until a high-level 

resource manager can find a server to host the VM in question. Note that, the generated 

initial solution will be improved by local search after assigning every new VM to a 

server. 

After finalizing the VM assignment for active VMs, each manager reports its 

current state to its (higher-level) parent resource manager. For this purpose, the chassis 
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manager gathers current states of all of its servers. A compacted form of this information 

is reported to its rack manager to model the chassis. Similarly the container manager, the 

datacenter manager and cloud manager can use an appropriate abstraction of the gathered 

information by their lower-level managers to model them in their resource management 

problem. Note that the set of important parameters changes from one level to another. For 

example, application to server type compatibility and COP are the most important factors 

for the datacenter resource manager whereas energy proportionality and temperature 

distribution are the most important factors for the container and rack resource managers. 

An important factor in gathering information from different manager is to account 

for power provisioning capacity at each level of the hierarchy. For instance, if the peak 

power consumption of the currently assigned VMs to a chassis is equal to the peak power 

capacity for that chassis, the amount of resource available on that chassis should be 

accounted as zero even though there are some inactive servers on that chassis. We call 

this amount of resource, effective resource. This modification helps to avoid peak power 

capacity violation in resource management.  

The problem of deciding VM to datacenter assignment, which is known as 

geographical load balancing [65] in the literature, falls outside the scope of the present 

chapter. In particular, we assume that VM assignment to datacenters is done based on a 

pre-determined policy in the cloud manager. 

Considering VM to datacenter assignment, to assign new VMs to servers, starting 

from the datacenter manager, each resource manager assigns a subset of the new VMs to 

each one of its lower level resource managers. For example, datacenter manager assigns 
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each VM to a container manager and each container manager assigns each of the received 

VMs to a rack manager. This process continues until each chassis manager receives a set 

of VMs to assign to its servers. The number of possible hosts for VMs in each resource 

manager is small and this makes the problems less computationally expensive. This 

process is effective in decreasing the decision making time with respect to a centralized 

resource manager that assigns VMs directly to servers. The abstracted VM assignment 

problem and solution for each resource manager is presented in the following paragraphs. 

In order to start periodic optimization, workload associated with the active and 

incoming VMs needs to be predicted for the next epoch. We assume that the probability 

distribution function of ߣ (ܲܨܦሺߣሻ) for VM i in the next epoch can be predicted based 

on the current workload and the workload history. To account for SLA violation penalty 

and VM migration cost, the predicted workload (ߣప ) can be different from the expected 

workload (ߣపഥ ൌ   ሻ). In case of a large SLA violation penalty or VM migrationߣሺܨܦܲߣ

cost, over-provisioning (ߣప  పഥߣ ) becomes useful. In contrast, in case of small SLA 

violation penalty or VM migration cost, under-provisioning (ߣప ൏ పഥߣ ) may result in total 

cost reduction.  

The predicted ߣ is the value that minimizes the expected cost in the next decision 

epoch: 

పߣ ൌ min
ఒ

ሻߣሺܥሻߣሺܨܦܥ  ൫1 െ ሻ൯൫݉ܿపതതതതതߣሺܨܦܥ  ߣሺܥ
୫ୟ୶ሻ൯ (31)

where ܨܦܥ denotes the cumulative distribution function and ܥሺߣሻ denotes the minimum 

cost (energy cost plus SLA violation penalty) of assigning the target VM with workload 
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intensity equal to ߣto a server, ݉ܿపതതതതത ൌ ݉ܿ
ொ  1 3⁄ ൫݉ܿ

ோ  ݉ܿ
  ݉ܿ

൯ is the average 

migration cost for the VM, and ߣ
௫notes the maximum tolerable ߣ based on the SLA 

contract. In this formulation, we assume that if a VM is migrated, the maximum amount 

of resource is allocated to it in order to avoid another migration in the near future. Notice 

that function ܥሺߣሻ and ܨܦܥሺߣሻ are both monotonically increasing functions of ߣ. 

This optimization problem tries to find the best balance between the energy cost, 

the SLA penalty cost,  and the expected VM migration cost – if ܨܦܥሺߣሻ ൎ 0 , the 

expected migration cost dominates whereas if ܨܦܥሺߣሻ ൎ 1, the VM assignment cost 

dominates the objective function. Because CDF and ܥሺߣሻ are monotonically increasing 

functions between 0 and ߣ௫, at most one ߣ value exists that makes the gradient of the 

expected cost function in (31) equal to zero. The expected cost function for this ߣ value 

is compared to the expected cost function having ߣ ൌ 0 and  ߣ ൌ  ௫ in order to findߣ

the optimum ߣ. 

The VM assignment problems in datacenter, container, rack and chassis resource 

managers are similar. In each resource manager, new VMs are distributed between low 

level resource managers to achieve the highest energy efficiency in servers and cooling 

system and minimize SLA violation penalty subject to resource and peak power 

constraints. Before stating the problem formulation in each resource manager, two 

important parameters that can be used to model low level resource managers are 

presented. 
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The first parameter is power dissipation to server utilization ratio (PUR) 

parameter, which captures the energy non-proportional behavior in servers, chassis and 

racks, depending on the status of the server, chassis and rack. Equations (32) to (35) 

determine PUR parameter for an active server, an inactive server in an active chassis, an 

inactive server in an inactive chassis in an active rack and an inactive server in an 

inactive rack, respectively. 

ܷܴܲ ൌ ܲ  ܲ  ܲ
 หܵหൗ  ܲ

 |ܳ| หܵห⁄ൗ  (32) 

ܷܴܲ ൌ ܷܴܲ  ܲ൫1 ߶ത௦
⁄ െ 1൯ (33) 

ܷܴܲ ൌ ܷܴܲ  ܲ
 หܵหሺ1 ⁄௦ഥݔ െ 1ሻൗ  (34) 

ܷܴܲ ൌ ܷܴܲ  ܲ
 ሺ|ܳ| ൈ หܵหሻ൫1 ⁄തതതݔ െ 1൯ൗ  (35) 

where parameter ߶ത௦
, หܵห ൈ ௦ഥݔ  and |ܳ| ൈ หܵห ൈ  തതത denote the statistical averageݔ

CPU utilization in a server from the target server type, statistical average number of 

active servers in an active chassis, and statistical average number of active chassis in an 

active rack, respectively. These values are used to account for the idle power 

consumptions of the server, chassis and rack. For example, if we want to assign a VM 

that needs 40% of CPU utilization of an inactive server having ߶ത௦
 ൌ 0.3, we need to 

account for the whole idle power consumption of the server for that VM because the 

probability of assigning another VM to that server is low.  

The second parameter is temperature slack in container ܿ (ܵ) which is used to 

determine the state of the cooling system in a container. Temperature slack parameter can 

be defind as follows: 
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ܵ ൌ ∑ ∑ ൫ ܶ௧ െ ܶ
൯∈ொೝ∈ோ   (36)

In addition to ܵ , another term is needed to capture the sensitivity of the 

temperature slack to the power increase (Δܵ Δܲ⁄ ). This parameter can be directly defined 

for a chassis. Rack and container version of this parameter can be defined as a weighted 

average of the same parameter in their covered chassis.  For instance, sensitivity of the 

temperature slack to the power increase in a container can be defined as follows: 

Δܵ Δ ܲ⁄ ൌ
∑ ∑ ௌ ൫ುವಿି൯⁄∈ೂೝೝ∈ೃ

∑ ∑ ൫
ುವಿି൯∈ೂೝೝ∈ೃ

  (37)

The VM assignment problem in datacenter manager may be formulated as 

follows: 

Ψߠ		݊݅ܯ  ܲ

∈

 ݂ߣߠ  ݁ݕ
ି൫ೞ

థ
 ఓೞିఒ൯ோ



∈


 

subject to resource availability and: 

ܲ ൌ ቀ1  ଵ

ைሺ ்
ೞሻ
ቁ ൬


ം

ଵାଵ ை൫ ்
ೞം൯⁄
 ∑ ߶

ܷܴܲ ൰  (38) 

∑ ݕ ൌ ݕ ,1 ∈ ሼ0,1ሽ (39) 

߶
  ݕ ሺߣ െ ln ݄

 ܴ
⁄ ሻ ௦ܥ௦ߤ

⁄ , ߶
  ௬

ೞ
 , ߶

∗  1 (40) 

ܲ  ܲ
ே ⁄ܴܣܲ  (41) 

∑ ߶
ܷܴܲ Δܵ Δ ܲ⁄  ܵ  (42) 

∑ ܲ∈ ൏ ௗܲ
௫ ⁄ௗܴܣܲ    (43) 

In this problem, ܴܲܣ  parameter is estimated by its measured value from last 

epoch. Note that, constraint (42) determines a varying temperature-related power cap on 
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the added power to each container. Parameter ܷܴܲ  is the weighted average of ܷܴܲ 

values for servers inside the container. For this calculation, the weight for PUR value for 

each server is set to 1 െ ߶௦
, which shows the amount of remaining processing resource 

in that server. 

Based on this problem, cost of assigning a VM to a container can be found as 

follows: 

ܥ
 ൌ Ψሺ1ߠ  1 ሺܱܲܥ ܶ

௦ሻ⁄ ሻ߶
ܷܴܲ  ߠ ݂ߣ݁

ି൫ೞ
థ

 ఓೞିఒ൯ோ

 

Ψߠ
௱ௌ ௱⁄ థ

 ோ
ௌ

ሺଵ ைሺ ்
ೞషሻ⁄ ିଵ ைሺ ்

ೞሻ⁄ ሻ

ଵାଵ ைሺ ்
ೞሻ⁄

	
(44) 

where ܶ
௦ିdenotes the highest feasible temperature below ܶ

௦. 

The first and second term in this cost is the energy cost and expected SLA 

violation penalty. The third term in this cost function captures the expected effect of this 

assignment on the cooling power consumption. Finding the allocation parameter that 

results in minimum cost value for assigning a VM to a container is a convex optimization 

problem and can be solved by a closed form formulation.  

To solve the assignment problem based on these cost metrics, a constructive 

approach can be used. In this approach, VMs are ranked based on the difference between 

their minimum and second minimum cost of assigning to containers. Based on this 

ranking, VMs are assigned to containers having minimum assignment cost until one of 

the resources (CPU cycles, memory bandwidth, peak power, temperature related power 

cap) of any container is exhausted. In case of exhausting CPU cycle count, memory 

bandwidth, or peak power limit, the container in question is removed from the list of 
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containers with extra capacity. If, however, the temperature related power cap of a 

container becomes zero, ܶ
௦  is decreased and ranking parameters are updated (but the 

container is kept as one with some extra capacity to be utilized). This process continues 

until all VMs are assigned to a container or resources in the datacenter are completely 

exhausted. In the latter case, the remaining VMs are reported to the cloud manager for re-

assignment. This approach results in balanced resource utilization to reduce the power 

consumption with focus on COP, server energy efficiency and VM to server 

compatibility.  

In container manager, due to homogenous set of servers, energy proportionality 

and temperature distribution are the most important factors. The problem formulation in 

this manager is similar to the one for datacenter manager. Thus, a similar VM assignment 

algorithm used in datacenter manager can be used in the container manager. In this 

manager, ܷܴܲ  and Δܵ Δ ܲ⁄  parameters for each rack, which are calculated using 

similar weighted averaging approaches, are used. Moreover, instead of constraint (42), a 

temperature-related power capacity for each rack (ܶܲܥ ) is defined as the maximum 

extra power consumption in the rack until an inlet temperature in the container reaches 

the critical temperature. A greedy process using binary search can be used to find ܶܲܥ 

values.  

Similarly, in rack manager, energy proportionality and temperature distribution 

are the most important factors. Similar to container manager, a temperature-related power 

capacity for each chassis (ܶܲܥ) is defined which can be found using binary search. Due 

to importance of the energy non-proportionality nature of the servers, two ܷܴܲ values 
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represent each chassis in rack manager VM assignment problem: (i) ܷܴܲ represents 

active servers in the chassis, and, (ii) ܷܴܲor ܷܴܲ depending on the status of the 

target chassis represents inactive serves in the chassis. Therefore, instead of one 

assignment cost, two assignment costs are calculated for VM assignment to each chassis 

and the minimum one represents the cost of VM assignment to the chassis. Note that, the 

resource availability for active and inactive servers inside each chassis should be captured 

separately. Due to the similarity of the VM assignment problem in this manager to the 

one in datacenter manager, a similar assignment algorithm can be applied. 

The final VM assignment occurs at the chassis level. Due to rather small effect of 

the VM assignment at this level on the temperature distribution inside the container, this 

chassis manager does not consider temperature. The most important factor in VM 

assignment at this level is to minimize SLA violation penalty and increase the energy 

proportionality of the assignment. To determine the assignment cost for a VM to an 

active (or inactive) server, cost function in (44) can be used by replacing ܷܴܲ  with 

ܷܴܲ  (or ܷܴܲ ) and ignoring the third term. Due to similarity of the VM 

assignment problem in this manager to bin-packing problem, a solution based on First Fit 

Decreasing (FFD) solution can be applied. In this solution, VMs are sorted based on their 

minimum assignment cost to an inactive server. Starting from the VM with the highest 

cost, the cost of assigning the VM to every active server that has enough available 

memory bandwidth and CPU cycle count to satisfy SLA constraints is calculated. The 

selected VM is assigned to the server with the lowest assignment cost (considering all 
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active and inactive servers) and resource availabilities are updated. Moreover, in case of a 

tie, the VM is assigned to the server with the highest ߶௦
. 

Note that, the provided resource allocation parameters for each server are not 

fixed and power/performance manager module in each server changes these values based 

on the set of assigned VMs and their instantaneous workload. A convex optimization 

solution to determine the resource allocation parameters can be set up in each server. 

3.5 Periodic optimization: Local Search Method 

Before finalizing VM assignment solution in the periodic optimization procedure, 

a hierarchical local search algorithm is performed to decrease the operational cost.  

In the local search procedure, resource managers move VMs between servers in 

order to decrease SLA violation penalty or reduce the power consumption by increasing 

the energy proportionality or reducing the cooling power consumption. To limit the time 

complexity of the local search, the number of VM movement attempts is bounded. For 

this reason, VM movements are sorted based on their effectiveness in reducing the total 

cost. For each VM, a ranking metric is calculated based on the expected cost reduction 

from best possible movement. Depending on the resource manager, the ranking metric is 

found based on the most important factors on that level. SLA violation penalty, migration 

cost and energy proportionality are important factors in every resource manager but 

cooling system power consumption and temperature distribution are important factors in 

the rack and container managers. The local search procedure after sorting VMs is 

straight-forward: (i) select the first VM; (ii) find the best real cost reduction for that VM 
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movement; and (iii) try the VM movement if the cost reduction is positive and go to (i) if 

there is another VM with positive ranking metric. Note that, in case of moving a VM that 

was assigned to its current server in the previous epoch, VM migration cost is subtracted 

from the cost reduction value associated with that VM. After finishing VM movements in 

each resource manager, VMs associated with the highest cost reduction values are passed 

to the parent resource manager and that manager starts VM movements with a similar 

approach. Details of ranking metric for different resource managers are presented in the 

following paragraphs.  

To start the local search, every parameter in the system should be updated based 

on the current assignment solution, e.g. ܶ
௦  for each container and ܴܲܣ  parameter for 

each resource manager.  

In contrast to the VM assignment procedure, local search procedure starts from 

chassis managers. Each chassis manager tries to increase the energy proportionality and 

reduce the SLA violation penalty. Two cost values are calculated for each VM: (i) current 

total cost which can be found from equation (45); (ii) Minimum total cost in a typically 

utilized server which can be found from equation (46). 

ܥ ൌ Ψሺ1ߠ  1 ሺܱܲܥ ܶ
௦ሻ⁄ ሻ߶௦

൫ ௦ܲ
 ߶௦

⁄  ௦ܲ
൯  ߠ ݂ߣ݁

ି൫ೞ
థೞ

ఓೞିఒ൯ோ

 (45) 

ܥ
 ൌ Ψሺ1ߠ  1 ሺܱܲܥ ܶ

௦ሻ⁄ ሻ߶௦
൫ ௦ܲ

 maxሺ߶௦
 , ߶ത௦

⁄ ሻ  ௦ܲ
൯

 ߠ ݂ߣ݁
ି൫ೞ

థೞ
 ఓೞିఒ൯ோ


 

(46) 

where ߶௦
  is the optimal allocation parameter that results in the minimum value for ܥ

.  
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Ranking metric for chassis manager can be found from (ܥ െ ܥ
 െ ݉ܿ

ொ) for VMs 

that were assigned to the target server in the previous epoch or (ܥ െ ܥ
) otherwise. The 

pseudo code for local search procedure in chassis manager is presented in Algorithm 2. 

Algorithm 2: Chassis manager Local Search 

Inputs: ܫ set of assigned VMs 

Outputs: VM Movement inside chassis 

ܫ 1 ൌ ∅ 
2 Foreach (݅ ∈  (ܫ
ݏ 3 ൌ ∑ ௦௦ݕݏ  
4 Calculate ܥ based on (45) 
5 Calculate ߶௦

  to minimize (46)  
6 Calculate ܥ

 based on (46) 
ܥ݀ 7 ൌ ܥ െ ܥ

 
8 If (ݕ௦

ఊ==ݕ௦)   ݀ܥ ൌ ܥ݀ െ ݉ܿ
ொ 

9 If (݀ܥ  ܫ  (0 ൌ ܫ ∪ ሼ݅ሽ 
10 End 
11 Sort VMs in ܫ based on ݀ܥ (non-increasing) 
12 ݅ ൌ  ܥ݀	∈ூݔܽ݉݃ݎܽ
13 While (|ܫ|  0) 
14 Foreach (ݏ ∈ ܵ)     
15 Calculate ܥ௦ as the cost of assigning the target VM to server s 
ݏ 16 ൌ  ௦ܥ	݊݅݉݃ݎܽ
17 If (ݕ௦

ఊ! ൌ ௦ܥ  (1 ൌ ௦ܥ  ݉ܿ
ொ 

ᇱݏ 18 ൌ ∑ ௦௦ݕݏ  
19 If (ܥ௦ ൏    (ܥ
20 move VM from its current host to server s 
21 Update ܥ for ሼ݅|݅ ∈ ௦ݕሺ	&	ܫ ൌ ௦ᇲݕ	|	1 ൌ 1ሻሽ 
22 End 
ܫ 23 ൌ ܫ െ ሼ݅ሽ 
24 ݅ ൌ  ܥ݀	∈ூݔܽ݉݃ݎܽ
25 End 

The goal of the local search in rack managers is to increase the temperature 

balance in the rack in addition to move VMs to increase the energy proportionality and 

reduce SLA violation penalty. Each Rack manager receives the VM lists form chassis 

managers and subtract the rack level migration cost from ranking parameter associated 

with VMs that were assigned to their current chassis in the previous epoch. 
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The effectiveness of VM movement from chassis ݍ௦ to ݍௗ in decreasing the hot 

spot can be captured from (47) where ܶ
௦ା denotes the lowest possible supply cold air 

temperature that is higher than current ݐ௦ and ߶௦
  is the optimal allocation parameter that 

results in minimum total cost in a typically utilized server. 
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  (47) 

Parameter Δܵ௪ Δ ܲ⁄  denotes a weighted summation of chassis inlet temperature 

sensitivity to power increase and is calculated from equation (48). This parameter shows 

the effectiveness of reducing power consumption in a chassis in decreasing the hot spots 

in container. 

ௌ
ೢ


ൌ ∑ ∑

డ
்ᇲ


డ
݁
ିሺ்ೝି ்ᇲ

ሻ
ᇲ∈ொೝ∈ோ   (48) 

Considering fixed ݍ௦ , the effectiveness metric in (47) depends on the selected 

destination chassis. For each VM, the smallest Δܵ௪ Δ ܲ⁄  in the rack is used as the 

corresponding parameter for the destination chassis to calculate equation (47) to be added 

to the previously calculated ranking metric.  

In Container manager, the received VM lists form rack managers are ranked 

based on their chassis manager ranking metric minus the rack level and container level 

migration cost for VMs that were assigned to their current rack in the previous epoch plus 

a term similar to (47) to capture the effectiveness of VM movement on resolving hot 

spots in container. Similar to rack manager, the smallest value for Δܵ௪ Δ ܲ⁄  in the 

container is used as the destination chassis parameter to create the ranking metric. Note 
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that, the number of reported VM from a lower level manager to the higher level manager 

can be bounded by selecting only a small number of high ranked VMs from each low-

level manager. This selection helps to reduce the complexity of the local search 

mechanism as we go up in the resource management hierarchy.  

In datacenter manager, the value of ܥ
 for each VM can be replaced by the best 

VM assignment cost to a typically utilized server in any container. The ranking metric for 

each VM can be found from ܥ െ ܥ
 . For VMs that were assigned to their current 

container in the previous epoch, ∑ ݉ܿ
∗

∗∈ሼொ,ோ,ሽ  should be subtracted from their ranking 

metrics.  

A similar approach also can be used in the cloud manager if there is a possibility 

of changing the geographical load balancing solution based on the feedback from each 

datacenter before finalizing the VM assignment solution.  

This hierarchical local search method tries to decrease SLA violation penalty and 

power consumption and increase the cooling system efficiency considering the migration 

cost. This approach speeds up the local search method by parallel execution of local 

search in each level and also ranking VM movements based on their expected cost 

reduction capability. 

3.6 Methods to Deal with Emergencies 

The periodic optimization solution cannot guarantee SLA constraint satisfaction, 

peak power capacity and critical temperature constraint satisfaction due to hardware 

failure and dynamic nature of the VM workload. A costly way of providing a 
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performance guarantee in the cloud system is VM replication and resource over-

provisioning, which are necessary for some clients (e.g., an e-commerce client) but 

wasteful for many others. Periodic monitoring of performance, power and temperature 

can be used to make reactive VM migration decisions or resource allocation adjustments 

in order to guarantee the satisfaction of the constraints. In this section, reactive VM 

migration and resource allocation adjustment mechanisms are presented in the 

hierarchical resource management structure. 

Dynamic changes in VM workload is first detected by the server. 

Power/performance manager in each server monitors the workload of the assigned VMs 

and minimizes the SLA and energy cost by dynamically changing the allocation 

parameters or the state of the server (voltage and frequency). A decrease in VM workload 

creates power saving opportunity whereas an increase in VM workload forces the server 

to increase the power consumption to satisfy SLA constraints. Drastic increases in VM 

workload may not be responded by power increase and may require VM migration. Note 

that even if the power/performance manager module in the server can find a resource 

allocation solution that satisfies all of the VM SLA constraints within allowable power 

capacity, it is possible that migrating a VM results in lower total cost. These cases can be 

handled with periodic calls to local search procedure in each epoch. 

There are different changes in the cloud system requiring immediate response to 

avoid hardware damage and huge penalties. For these situations, different control 

hardware components are placed inside the datacenter to avoid events such as 

temperature run-away in servers or power capacity violations. Some prior work such as 
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[36] has studied the required control mechanisms. These control mechanisms can, 

however, result in violation of SLA constraints. The resource manager must, therefore, 

closely monitor the power and temperature sensors and performance counters in order to 

promptly migrate VM, change supply cold air temperature, or temporarily decrease the 

power consumption of some of the servers.  

In different emergency scenarios (SLA, peak power or temperature emergency), 

VM migration, resource allocation adjustment and limiting server power consumption 

and supply cold air temperature change are used to resolve the issue. In our proposed 

framework, a hierarchical procedure is used to choose and then perform the best action, 

which results in the lowest cost increase, to resolve the issue. Considering hierarchical 

resource management in the cloud computing system is completely in favor of 

implementing software control mechanism due to ability for making fast local decisions. 

Dynamic changes in the cloud computing system can cause SLA constraint 

violation due to a reason that can be classified in one of the following categories: 

 Hardware or software failure (server, OS, …) 

 Peak power emergency 

 Temperature Emergency 

 Resource capacity saturation  

Between these categories, HW or SW failure has the highest emergency factor. 

The decision to assign affected VMs to new servers should be made as soon as the 
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incident happens and the immediate resource manager that catches the problem is 

responsible for re-assignment decisions.  

For the other dynamic changes, a hierarchical procedure is used to perform the 

best actions to resolve the issue. These hierarchical procedures make sure that by 

changing VM assignment solution, another emergency is not created in the system.  

In case of SLA violation due to resource capacity saturation in a server, 

corresponding chassis manager sorts VMs and migrates them one by one until the 

resource contention in the target server is settled. VMs can be ranked based on the cost of 

movement plus total cost of the other VMs on the server assuming the VM is migrated. 

VM movement cost (total cost in destination server plus migration cost) can be found by 

searching between different servers in datacenter. These searches can be done in parallel 

using the resource managers in order to decrease the run-time of the solution. In these 

calculations, the total cost (energy cost plus SLA violation penalty) of remaining VMs on 

the server assuming a VM is migrated is set to a big value if an SLA violation exists even 

with assumption of the VM removal.   

To resolve SLA violations that happened due to peak power cap or temperature 

emergency, resource managers assume that power cap or temperature-related power cap 

constraint is violated and try to resolve that problem. This approach results in more 

global view of the problem and result in better solution than solving the SLA violation 

problem for some VMs. In these cases, different actions can be taken to solve the 

problem. These actions include migrating some of the VMs or reducing the power 

consumption for some servers, which may result in higher SLA violation penalties. In 
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case of temperature emergency, reducing the supply cold air temperature can also be 

deployed.  

To find the cost of decreasing servers’ power consumption to satisfy peak power 

or temperature-related power constraint, a metric that captures the effect of reducing 

power consumption on total cost of serving VM (energy cost plus SLA violation penalty) 

can be used. This metric can be represented by the derivative of VM cost with respect to 

power consumption as follows:  
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Finding the minimum cost of satisfying a power cap by increasing SLA penalty 

can be seen as a water-filling problem. In this water-filling problem, the volume of the 

water is determined by the amount of power that needs to be cut. For each VM, area of 

the corresponding water tank is a function of ߶௦
 . The initial water level in each tank is 

specified by the value of equation (49). The height of each tank (highest water level 

possible) is a function of the minimum ߶௦
  that satisfy SLA constraint (߶௦

ሺ୫୧୬ሻ). Using 

iterative water-filing method, it is possible to find any approximation of the minimum 

cost of satisfying the power cap without VM migration. Note that, in some cases, it is not 

possible to satisfy the power cap constraint solely by limiting power consumption in 

servers. 

The other way of resolving peak power or temperature emergency is to change 

VM assignment solution. To find the minimum cost of resolving the power emergency 

with VM migration, a process similar to the local search method is deployed. This 
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process should select a set of VMs to be migrated from the entity with power or 

temperature emergency. In addition to VM migration outside the target entity, we can 

consolidate VMs inside the target entity to reduce the power consumption. To select the 

set of VMs to be migrated, the ranking mechanism which is presented in the local search 

procedure can be used. In order to find the best host for VM migration, ranking metrics 

from different resource managers are gathered and the maximum ranking metric 

represents the VM ranking metric in the target resource manager. Having the ranking 

metrics for each VM, the problem of finding the best VM set can be shown to be an NP-

hard problem. It can be shown that Knapsack problem [79] can be reduced to this 

problem. Due to dynamic nature of these procedures, we cannot use approaches like 

dynamic programming to solve the problem. Instead, dividing the ranking metric by the 

power decrease in the target entity due to migration can create a new ranking metric that 

is appropriate for this problem. For the case of consolidating VMs inside the entity, the 

power reduction due to this consolidation is used to create the new ranking metric. Based 

on the sorted list of VMs, the target manager can migrate a set of VMs to resolve the 

peak power or temperature emergency with minimum movement cost. 

Supply cold air temperature reduction is another solution to the temperature 

emergency. The cost of this action can be determined by the new supply cold air 

temperature ( ܶ
௦ሺሻ) and is dependent on the total power consumption in the container: 

Ψߠ ܲሺ1 ሺܱܲܥ ܶ
௦ሺሻሻ െ 1 ሺܱܲܥ ܶ

௦ሻ⁄⁄ ሻ ሺ1  1 ሺܱܲܥ ܶ
௦ሻ⁄ ሻൗ . 
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To resolve the temperature emergency with a solution from combination of VM 

migration, limiting servers power consumption and lowering ܶ
௦, the ranking solution can 

be modified. In addition to the sorted list of VMs based on their modified ranking 

metrics, another entry is added for each VM with metric equal to ݉ (eq. (50)) which 

captures the effectiveness of the power reduction without VM migration. 
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  (50)

In addition to these elements, another entry with a metric equal to the negative 

cost of decreasing supply cold air temperature divided by the total power to be cut is 

added to the sorted list. The entry in the sorted list with the highest metric is picked, the 

migration or power reduction is done and this process continues until the temperature 

emergency is resolved. If the entry related to the supply cold air temperature is selected, 

the supply cold air temperature is changed and the optimization is concluded. Note that 

with selection of migration for a VM, the other entry related to that VM is removed from 

the list. In contrast, if the power reduction entry is selected for a VM, the metric for the 

VM migration entry is appropriately modified. In addition to one of these modifications, 

the metric for the entry related to supply cold air temperature change should be modified 

based on the power reduction in the chassis.  

If the final solution includes a set of power reduction in servers, the total cost can 

be reduced by replacing these power reduction with the iterative water-filing solution. 

Pseudo code for reactive optimization algorithm for temperature emergency in a chassis 

manager is shown in Algorithm 3. 
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Algorithm 3: Reactive Optimization – Temperature Emergency in chassis 

Inputs: ܫ set of assigned VMs and ܲ௨௧ 
Outputs: VM Movement, power cap for server and ܶ

௦ሺሻ  
 

ܫ 1 ൌ ∅, Calculate ܶ
௦ሺሻ to resolve temperature emergency 

ோܥ 2 ൌ Ψ ܲ൫1 ⁄௦ሻݐሺܱܲܥ െ 1 ݐ൫ܱܲܥ
௦ሺሻ൯⁄ ൯ ሺ1  1 ⁄௦ሻݐሺܱܲܥ ሻൗ /ܲ௨௧ 

ܫ 3 ൌ ܫ ∪  ܥܣܴܥ
4 Ask Rack, container, datacenter and cloud manager to find ܥ

ሺ∗ሻ  
5 // current cost minus best total cost in destination minus mig. cost  
6 Foreach (݅ ∈  (ܫ
7 Find ܥ

ሺொሻ, ܲ
ሺሻ added power in the host //consolidation inside chassis 

8 ܲ ൌ ߶௦


௦ܲ
 

9 If (∑ ௦ݕ ൌൌ 1) ܲ ൌ ܲ  ௦ܲ
 

ܣ 10 ൌ 1/ ܲ max∗∈ሼோ,,ሽ ܥ
ሺ∗ሻ 

11 If ( ܲ  ܲ
ሺሻ)  ܤ ൌ max	ሼܣ, ܥ

ሺொሻ ሺ ܲ െ ܲ
ሺሻሻൗ ሽ 

ܦ 12 ൌ ௦ܲ
ሺ߶௦

 െ ሺߣ െ ln ݄
 ܴ

⁄ ሻ ௦ܥ௦ߤ
⁄ ሻ  

ܦ 13 ൌ ሺ ݂ߣ ቀ݄
௧ െ ݁ି൫ೞ

థೞ
ఓೞିఒ൯ோ


ቁ െ Ψܦሻ ൗܦ  

ܥ 14 ൌ max	ሼܦ,  ሽܤ
ܫ 15 ൌ ܫ ∪ ሼ݅ሽ 
16 End 
17 Sort the elements in ܫ based on ܥ∗ (non-increasing) 
18 While (ܲ௨௧  0) 
19 ݅ ൌ  ∗ܥ	ூ∋∗ݔܽ݉݃ݎܽ
20 If (݅! ൌ  (ܥܣܴܥ
21 If (ܥ ൌൌ  (ܦ
22 ܲ௨௧െൌ ௦ܲ

ሺ߶௦
 െ ሺߣ െ ln ݄

 ܴ
⁄ ሻ ௦ܥ௦ߤ

⁄ ሻ 
ܦ 23 ൌ െ݂݅݊ and recalculate ܲ, ܤ and ܥ 
24 Else 
25 ܲ௨௧=ܲ௨௧ െ ܲ 
ܫ 26 ൌ ܫ െ ሼ݅ሽ 
27 End 
28 Calculate ܶ

௦ሺሻ and update ܥோ 
29 Else 
30 ܶ

௦ ൌ ܶ
௦ሺሻ	

31 ܲ௨௧ ൌ 0 
32 End 
33 End 

 

If the entry related to supply cold air temperature change is removed from the 

presented algorithm, it can be used to solve the peak power cap emergency. 
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3.7 Simulation framework and results 

3.7.1 Simulation framework 

To show the effectiveness of the presented resource management solution, a 

complete datacenter simulation framework is implemented in C++. 

The focus of the presented periodic and reactive resource management algorithms 

are datacenter resource managers. So, only one container-based datacenter is modeled in 

the simulation framework.  

The structure of the implemented datacenters is based on the definitions in 

section  3.2. Different parameters in the system are set based on real-world parameters.  

We consider a heterogeneous datacenter with 16 containers and 500 servers per 

container. We use hourly decision epochs. Four different server types are considered in 

this datacenter. Processors in server types are selected from a set of Intel processors (e.g. 

Atom and Xeon) [80] with different number of cores, cache sizes, power consumptions 

and clock frequencies. 

For each virtual machine in the system, a VM type from four different pre-defined 

VM types is selected. The virtual machine type determines the average characteristics of 

VM. The type also specifies variance from the mean for the matching VMs. For example, 

a given VM type sets ߤ௦
  for each server type and each VM has this service rate per unit 

capacity plus or minus a deviation that is solely dependent on the VM. Similarly, the 

average request arrival rate (which in turn determines the VM workload in each epoch) is 

determined by its VM type. However, the exact probability distribution function, PDF, 
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(and thus, the variance of the distribution) depends on the specific VM. We assume that 

this PDF can be predicted in the cloud system and is used to determine the best workload 

to avoid over-provisioning or under-provisioning. Moreover, workload of VM is changed 

during an epoch based on this PDF. The frequency of VM workload changes in each 

epoch is also determined based on a parameter dependent on VM type and a parameter 

specific to VM. To reduce the simulation time, we assume that workload changes only 

change the average inter-arrival time but the inter-arrival time and service time follow the 

exponential distribution at all time. This means that in each time, the request response 

time for each virtual machine can be determined based on M/M/1 queuing formulation. 

Without this assumption, the long convergence time to determine the response time for 

each VM does not allow us to simulate a datacenter with thousands of servers and VMs 

in a reasonable amount of time. The VM lifetime is set randomly based on uniform 

distribution between one and 8 hours.  

In response to VM workload changes, the host server changes the resource 

allocation parameters after a small delay. For this period of time, if SLA constraint is 

violated, SLA violation penalty for 100% of the arriving requests is added to the cost of 

the datacenter. Moreover, if the server is not able to determine the resource allocation 

parameters such that SLA constraints for VMs or power or temperature constraint are 

satisfied, reactive optimizations are performed.   

To simulate the datacenter, we implemented an event-driven simulator. After 

processing any VM workload changes, an event is generated to modify the resource 

allocation parameters in the server after some delay. If this resource allocation 
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modification results in SLA violation or peak power or temperature violation, another 

event regarding the reactive optimizations is added to the event queue. After each event, 

the total cost is updated. 

SLA for each VM is dependent on its VM type. The maximum tolerable request 

arrival rate, target response time, SLA violation penalty, maximum tolerable SLA 

violation rate, and migration penalties are determined based on the selected VM type 

which is set based on EC2 pricing schemes [81].  

Cooling system parameters for each container are set based on the provided data 

in reference [52]. Peak power capacities for each component inside the datacenter 

(chassis, rack, and container) are pre-set as fixed parameter values. These parameters 

capture the ratio of the theoretical peak power consumption of each component to the 

actual peak power capacity. For example if this ratio is 0.8 for a chassis, it means that the 

peak power in that chassis cannot be more than 80% of the power consumption of an 

active chassis with fully-utilized servers. These ratios can be the same in different levels 

of the cloud system hierarchy or change depending on the aforesaid level. Energy cost for 

regular cases is set to 15¢ per KWhr.     

3.7.2 Base-line heuristics         

To compare the results of the HRM with previous work, a power and migration-

aware VM placement algorithm (periodic optimization) called pMapper [84] is modified 

and implemented. pMapper borrows FFD heuristics from bin-packing problem to find the 

amount of resource needed from each server. After this step, VMs are sorted based on 



 

100 
 

their required processing size and assigned to the first available server with the least 

power to the processing capacity ratio. To avoid high migration cost, VM migrations are 

sorted based on a metric which is the power decrease to the migration cost. VM 

migrations are performed based on this ranking metric if their metric is greater than one.  

Note that pMapper is a centralized VM placement approach, which does not 

consider the peak power capacity and CRAC efficiency in its algorithms.  We thus 

modified pMapper to address these two issues as follows: (i) When calculating the 

ranking metric for servers, the effective power consumption of the server in the previous 

epoch considering the CRAC efficiency factor is used; (ii) A utilization capacity is 

considered for each server to decrease the possibility of having power capacity violation. 

Furthermore, after finalizing the VM assignment, the same reactive optimization 

procedure that we use for handling any peak power capacity violations is applied. With 

these two changes, pMapper can serve as a good baseline against which one can compare 

the presented methods in this chapter. 

Moreover, to show the performance loss of using HRM instead of a centralized 

periodic optimization algorithm with the same decision criteria, we implemented another 

centralized periodic resource management algorithm called CRM. In this algorithm, VMs 

are sorted based on their processing requirement size. Starting from the VM with the 

biggest resource requirement size, servers are sorted based on their associated VM 

assignment cost (calculated from equation (44)) and the VM is assigned to the server with 

minimum assignment cost. After any assignment, resource, peak power and supply cold 

air temperature is updated.    
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Note that, the presented reactive optimization technique is applied to the case with 

pMapper and CRM algorithms as periodic optimization technique. 

To compare our reactive optimization procedure, a centralized reactive 

optimization method for SLA violation or power or temperature-related power violation 

is also implemented. The implemented method is also based on FFD heuristic. 

Considering the set of VMs related to the dynamic event, servers in datacenter are sorted 

based on their power efficiency and starting from the smallest VM in the set, the best VM 

migration is performed. This process continues until the power/temperature/SLA 

emergency is resolved. The reason behind selecting the smallest VM in each try is that 

smaller VMs typically have smaller migration costs.    

3.7.3 Simulation results 

Total number of active VMs and workload intensity (calculated as the summation 

of minimum resource requirement of active VMs from a reference server type) in each 

epoch is shown in Figure 11. During the full-day simulation, nearly 1,000,000 workload 

changes are generated in our simulator.  

Figure 11- Number of VMs and workload intensity in each epoch 
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The total costs of the datacenter by applying HRM, CRM or pMapper algorithms 

are presented in Figure 12. As it can be seen, considering flexible SLA, cooling system 

efficiency, and peak power capacity in datacenter makes HRM algorithm better than 

pMapper (by an average of 43%) in terms of the total cost of the system. Moreover, 

performance loss of HRM method with respect to CRM approach is less than 2% which 

shows the effectiveness of the hierarchical management.   

 

Figure 12- Total cost of datacenter in each epoch 

 

Figure 13- Run-time of the periodic optimization procedure in each epoch (run-time is reported in 
logarithmic scales) 
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One of the key motivations for considering a hierarchical resource manager is to 

reduce the run-time of the periodic optimization procedures and improve the solution 

scalability. Run-time of HRM, CRM and pMapper periodic optimization procedures are 

shown in Figure 13. As it can be seen, the presented hierarchical method has a very short 

run-time compared to the centralized approaches. In fact, HRM is in average 7 times 

faster than pMapper and 27 times faster than CRM. 

Calculating the arrival rate for each VM based on the prediction about its 

workload significantly affects the periodic optimization solution. Moreover, due to 

migration cost, effect of periodic optimization solution does not disappear even in case of 

very dynamic workloads. To show this effect, we considered over-provisioning (20% 

increase in predicted arrival rate) and under-provisioning (20% decrease in predicted 

arrival rate) with respect to HRM algorithm for calculating the arrival rate. The results of 

these two scenarios in addition to the HRM results are shown in Figure 14. 

 

Figure 14- Run-time of the periodic optimization procedure in each epoch 
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total cost results in higher SLA hard constraint violation (low user satisfaction) and 

significantly higher number of reactive optimization calls in each epoch due to SLA 

emergencies.  

To understand the operational cost of the datacenter, different elements of the 

total cost having different periodic optimization techniques are shown in Figure 15 to 

Figure 18. 

 

Figure 15- Elements of the total cost: Energy cost. 

 

Figure 16- Elements of the total cost: SLA violation penalty. 
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Figure 17- Elements of the total cost: Migration cost. 

Figure 18- Elements of the total cost: SLA hard constraint violation penalty. 
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this approach but this approach results in the lowest hard SLA constraint violation. 

Moreover, pMapper algorithm does not consider the cooling system efficiency and may 

result in uneven temperature distribution inside containers and higher power usage 

effectiveness. CRM approach results in lower energy cost with respect to HRM solution 

but SLA violation penalty, VM migration cost and SLA hard constraint violation penalty 

are higher in CRM approach. CRM approach results in higher consolidation level than 

HRM solution due to global search between all servers for each VM assignment in CRM 

approach which results in lower energy cost and possibly higher resource contention 

between VMs and higher probability of forced VM migration due to emergencies.  

Figure 19 reports the total number of calls to reactive optimization procedures in 

one day considering different management strategies.  

 

Figure 19- Total number of calls to the reactive optimization procedures in one day 
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pMapper scenario has two important reasons: (i) usual power capacity violation due to 

issues in periodic solution, and (ii) dynamic calls to solve SLA violation problems due to 

inflexibility of the resource allocation procedure. 

In case of using HRM as the periodic optimization procedure, less than 4% of the 

workload changes results in reactive optimization procedure call. The total cost of VM 

movement cost for the presented reactive optimization procedure for SLA emergencies is 

shown in Figure 20. In this figure, the total VM movement cost for reactive optimization 

procedure in the centralized management structure is also shown. As can be seen, the 

expected cost of solving SLA violation using the presented algorithm is smaller than the 

expected cost of solving the issue with a centralized approach for most of the cases. This 

is because the centralized approach does not consider the migration cost and only finds 

the best server in the system as the host. Another drawback for the centralized approach 

is the greedy VM selection strategy. 

 

Figure 20- Total VM movement cost for the reactive optimization procedure (SLA violation 
emergency)   
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The number of calls to reactive procedure for power or temperature-related power 

cap violation is much smaller than the number of calls for SLA violation in hierarchical 

management scenario. This is because the power cap violation happens in chassis, rack or 

container but SLA violation happens in the servers. The total expected cost of solving 

power cap violations using the presented algorithms in hierarchical and centralized 

management scenarios is presented in Figure 21. Negative expected cost in this figure 

means expected gain. 

 

Figure 21- Total VM movement cost for the reactive optimization procedure (power cap emergency)  

As can be seen, the expected cost of solving power cap violation using the 

presented algorithms are less than expected cost of solving power cap violation using the 

centralized approach. The expected gain in the presented approach is the result of lower 

energy cost and SLA violation penalty in the selected hosts for the set of migrated VMs. 

Similar to the previous case, the centralized approach does not consider the migration 

cost and cannot select the best set of VMs to migrate. 
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The complexity of the presented algorithm for solving the power cap or 

temperature emergency is mostly dominated by communication cost between different 

managers in the system. The run-time of the presented reactive optimization algorithms is 

negligible in our implementation due to the fact that there is no communication latency 

between resource management instances in a unified software. The number of resource 

managers involved in solving the problem can be limited in order to reduce the run-time 

with possible expected cost increase.  

  

(a) (b) 

Figure 22- (a) power and (b) temperature distribution in a container with heavy worklaod. ࢙ࢀ ൌ
 and ࢞ࢇ ࢀ ൌ .  

  

(a) (b) 

Figure 23- (a) power and (b) temperature distribution in a container with light workload. ܛ܂ ൌ ۱ܗ 
and ܠ܉ܕ ܖܑܙ܂ ൌ ૢ.  ۱ܗૢ
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To show the effectiveness of HRM algorithms in reducing the cooling system 

power consumption, Figure 22 and Figure 23 show two instances of power and 

temperature distribution in 10-rack containers. In these containers, two rows of racks 

(five racks in each row) are placed in parallel. Each rack has five chassis (A on bottom to 

E on top).  

Figure 22 shows a case with heavier workload having supply cold air temperature 

equal to 15oC and maximum temperature of 30.2oC. Figure 23 shows a case with lighter 

workload having supply cold air temperature equal to 22oC and maximum temperature of 

29.9oC. In both cases, it can be seen that the resource manager tries to decrease heat 

recirculation which is the main results of the literature in temperature-aware task 

scheduling in datacenter such as [52]. Note that this is not always possible because the 

resource managers also consider three important factors in the resource management 

solution which are energy proportionality, VM migration cost and peak power cap.  

 

Figure 24- Dynamic energy price and total cost of the datacenter in a full day  
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Energy price has a big impact in determining the total cost of the system. Energy 

price is an important factor in determining the resource allocation strategy in datacenters. 

All of the presented algorithms in this chapter consider the energy price to decide about 

the amount of resource allocated to each VM. To examine the effect of energy price on 

the result of the presented algorithms, we considered a scenario with 5000 VMs and 

different energy prices for each epoch. The energy price and total cost of the datacenter in 

a full day is shown in Figure 24. As can be seen in this figure, the total cost in datacenter 

has a similar pattern to the energy price in the system.  

 

(a) 

 

(b) 

Figure 25- (a) percentage of the SLA violation penalty in the total cost and (b) average predicted 
arrival rate for VMs in different epochs 
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Figure 25 shows the share of the SLA violation penalty in the total cost and 

average predicted arrival rate for VMs in different epochs. 

As can be seen in Figure 25(a), the share of SLA violation penalty does not 

significantly change with energy price. This means that in case of low energy price, 

resource manager tries to lower the SLA violation penalty and in case of high energy 

price, it tries to reduce energy consumption by decreasing the resource allocated to each 

VM. Another proof for this observation is Figure 25(b) which shows that by increasing 

the energy price, the resource manager decreases the size of each VM (under-provision) 

to reduce the energy cost.  

3.8 Conclusion  

In this chapter, a hierarchical resource management structure for cloud system is 

presented. The presented structure shows scalability and higher performance compared to 

a centralized structure suggested in the literature. Moreover, the performance loss of the 

decentralized approach with respect to the centralized version of the algorithm is less 

than 2% having 27 times shorter run-time. 

The presented algorithm results in higher energy proportionality in the overall 

datacenter, lower SLA violation penalty and migration cost and higher cooling system 

efficiency. The presented management structure is appropriate for localized VM 

migrations and allocation adjustment to avoid temperature, peak power and SLA 

emergencies. The effect of over and under-provisioning approaches in this algorithm is 

studied in the simulation results.  
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Chapter 4 . GEOGRAPHICAL LOAD BALANCING FOR ONLINE 

SERVICE APPLICATIONS IN DISTRIBUTED DATACENTERS 

 

4.1 Introduction 

Geographical load balancing (GLB) can be defined as a series of decisions about 

dynamic assignment and/or migration of virtual machines (VMs) or computational tasks 

to geographically distributed datacenters in order to meet the SLAs or service deadlines 

for VMs/tasks and to decrease the operational cost of the cloud system.  

Most of the previous work that has focused on the GLB problem for online 

service applications, e.g., [63, 65, 66], simplify the VM placement and migration problem 

to a request forwarding problem for a VM type or a collection of VMs. This 

representation ignores the heterogeneity of VMs, the VM packing problem, and real VM 

migration cost and can thus result in low performance in a real cloud system. 

In this work, we focus on the GLB problem for heterogeneous online service 

applications that are response time-sensitive. Communication latency, queuing and 

service delays, and VM migration penalty are the most important factors for determining 

the VM to datacenter assignment solution. The availability of each type of resource in a 

datacenter, peak power capacity, and varying PUE factor are considered in modeling each 

datacenter. There are two versions of the GLB solution: (i) static solution, which 
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considers every input parameters to be determined deterministically in order to derive a 

complete VM placement and migration solution for a long period of time, and (ii) 

dynamic solution, which uses prediction of the input parameters for the future to derive 

VM placement and migration for a the current time. In contrast to dynamic solution 

which can be used in cloud-level resource management, the static solution can be used 

during the design of geographically distributed datacenters to reduce the initial capital 

expenditure and expected operational cost of the datacenter.  

This chapter presents a novel algorithm based on force-directed scheduling [85] to 

solve the static version of the problem. This solution is subsequently extended to a 

dynamic one to perform periodic VM placement and migration management for online 

service applications based on the prediction of application active periods, workload types 

and intensities, electrical energy prices, and potential generation of renewable energy in 

the near future. The effectiveness of the presented solutions is demonstrated by 

comparison them to a solution that does not consider the GLB capability. 

This chapter is organized as follows. Parameter definition and precise problem 

formulation for the static scenario are given in sections  4.2 and  4.3. The static version of 

the solution is presented in section  4.4 while dynamic problem formulation and solution 

are presented in section  4.5. Simulation results are presented in section  4.6 and chapter is 

concluded at section  4.7. 
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4.2 Parameter definitions 

The GLB solution for online service applications is a periodic VM assignment to 

and/or VM migration across geographically distributed datacenters if necessary. The 

objective of the GLB problem is to minimize the operational cost (the electrical energy 

bill plus SLA penalty) of the cloud system while satisfying resource, peak power 

capacity, and SLA constraints. Note that the decisions in the GLB solution are focused on 

the cloud-level VM assignment and migration. Each datacenter has its own VM 

management that assigns VMs to its servers and migrates VMs. The datacenter-level VM 

management and migration have studied in previous two chapters. An exemplary figure 

for a geographically distributed datacenter is shown in Figure 26.  

 

Figure 26 – An exemplary figure for a geographically distributed cloud system 
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To increase readability, Table V presents key symbols used throughout this 

chapter along with their definitions. 

TABLE V. NOTATION AND DEFINITIONS IN CHAPTER 4 

Symbol  Definition 
 Duration of the decision epoch in seconds ߠ
࣮ Set of consecutive epochs considered for the static version of the GLB 

 ሺ߬ሻ Set of active VMs in each epochܫ

 Set of geographically distributed datacenters ܦ
Ψௗሺ߬ሻ Energy price in datacenter d during epoch ߬ 
 ߬ ௗሺ߬ሻ Average generated power in renewable power plant in datacenter d during epochܩ

ௗܲ
௫ Peak power limitation of datacenter ݀ 
 Peak to average power consumption ratio ܴܣܲ
 ݀ ௗ Uninterrupted power supply (UPS) efficiency in datacenterߩ
	ܱܲܥ Coefficient-of-performance  
ܵௗ	 Set of server types in datacenter d 
 ݀ in datacenter ݏ ௗ,௦ Number of servers of typeܥ
߶ത௦ Average utilization of a server from server type ݏ 

௦ܲ
, ௦ܲ

 Constant and dynamic power consumption of server type s operation.  

݉ܿ
ௗ,ௗᇲሺ߬ሻ VM migration cost between datacenter ݀ and ݀ᇱ 

ݎ
ௗ,௦ሺ߬ሻ 

The least amount of the computing resource needed in order to guarantee satisfaction 
of the SLA constraint for VM ݅ in server type ݏ datacenter ݀ in epoch ߬ 

݂ሺ߶
ௗ,௦ሺ߬ሻሻ Expected SLA cost of VM i in epoch ߬ with allocation parameter ߶

ௗ,௦ሺ߬ሻ 

߶
ௗ,௦ሺ߬ሻ Amount of resource in server type j in datacenter d allocated to VM ݅ in epoch ߬ 

ݕ
ௗሺ߬ሻ Pseudo Boolean parameter to show that if VM ݅ is assigned to server s (1) or not (0) 

In this chapter, we focus on solving the GLB problem in case of heterogeneous 

VMs and heterogeneous servers in each datacenter. We present two versions of the 

solution to this problem: (i) static solution considering predicted workload, known 

renewable power generation capability, and dynamic electrical electricity prices; (ii) 

periodic dynamic solution to decide about the VM placement and migration for the 

current time based on the immediate information and predictions about the future. Note 

that the assumption in the static version of the problem is simplistic but the static solution 

can be used in capacity provisioning for datacenters, determining datacenter site 
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locations, or the amount of renewable power source construction near each datacenter. 

Moreover, as shown in this chapter, the static solution can be extended to the dynamic 

version, which can be used in VM management in a cloud system.  

The time axis in the GLB problem is divided into time slots called epochs. Each 

epoch is identified by a unique id, denoted by ߬. ߠ denotes the duration of each epoch, 

which is in the order of a few minutes to as much as one hour. New VMs are only 

admitted at the beginning of each epoch. Similarly, decisions about VM migration and 

placement are only applied at the beginning of each epoch. In addition to this decision 

making process, a reactive manager migrates VMs between different datacenters in the 

case of drastic workload changes, which may create SLA, peak power, or thermal 

emergencies.  

The solution to the GLB problem involves information about (or prediction of) 

the dynamic energy prices, renewable power generation capability, VM workload, and 

VM active period. The quality of these predictions determines the quality of the presented 

solution to the GLB problem. In the first part of this chapter, we consider a static version 

of the problem that assumes perfect prediction of these parameters and determines a 

complete VM placement and migration solution for a long period of time e.g., a full day. 

Definitions of parameters for the static version of the problem are given next.  

࣮ denotes the set of consecutive epochs that we consider for the static version of 

the GLB. Similar to the dynamic solution, the static solution changes the VM assignment 

solution only at the beginning of each epoch. Each VM and each datacenter are identified 
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by a unique id, denoted by i and d respectively. ܫሺ߬ሻ denotes the set of active VMs in 

each epoch and ܦ denotes the set of geographically distributed datacenters. 

A time-of-use (TOU) dependent energy pricing scheme is considered for each 

utility company. The energy price is assumed to be fixed for each epoch. Ψௗሺ߬ሻ denotes 

the energy price in datacenter d during epoch ߬. TOU-dependent energy pricing scheme 

(in contrast to peak-power dependent energy pricing) enables one to ignore the time 

variation of renewable power generated in local renewable power facilities during an 

epoch and model the amount of generated renewable power by the average generated 

power in that epoch, which is denoted by ܩௗሺ߬ሻ. The allowed peak power consumption 

of a datacenter is determined by the power delivery network in the datacenter and is 

denoted by ௗܲ
௫. To translate the average power consumption to ௗܲ

௫, peak to average 

power ratio (ܴܲܣௗሺ߬ሻ) is used. This parameter depends on the resource capacity of the 

datacenter and the set of VMs assigned to the datacenter.  

The PUE factor of a datacenter, which is defined as the ratio between total power 

consumption of the datacenter to the power consumed by the IT equipment in the 

datacenter, is dependent on the datacenter design (including facility planning and 

management and cooling technology) and the amount of instantaneous power 

consumption. We consider the PUE factor to be decomposed to a constant factor (ߩௗ), 

which accounts for the uninterrupted power supply (UPS) inefficiencies within the 

datacenter, and a load-dependent factor ( 1  ௗሺ߬ሻܱܲܥ/1 ), which captures the 

inefficiency of the air conditioning units in the datacenter. In the load-dependent factor, 
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the coefficient-of-performance (ܱܲܥௗሺ߬ሻ), which models the amount of power consumed 

by the air conditioning units, depends on the temperature of the supplied cold air, which 

is in turn a function of the IT equipment power dissipation in the datacenter. Optimal 

 ௗሺ߬ሻ is a monotonically decreasing function of the average power consumption inܱܲܥ

the datacenter.  

We consider only the processing capacity as the resource in each datacenter 

(consideration of other resource types such as the storage or network bandwidth falls 

outside the scope of present chapter). To model each datacenter more accurately, we 

consider datacenters with heterogeneous servers. Each server type is identified by a 

unique id ݏ in each datacenter and the set of server types in each datacenter is shown by 

ܵௗ. ܥௗ,௦ denotes the number of servers of type ݏ in datacenter ݀. Different server types 

have different characteristics in terms of their processing speed (CPU cycles per second) 

and power consumption.  

Due to non-energy proportional behavior of the servers [13], it is important to 

translate the amount of resources required in the server pool to the number of active 

servers. To capture the VM packing effect, we assume that any active server of type s, is 

utilized by an average value (smaller than one, e.g., 0.8) denoted by ߶ത௦. The rationale is 

that considering any resource requirement value, server-level power management 

strategies including server consolidation or dynamic voltage and frequency scaling 

methods are employed in the datacenter ensuring that an active server is utilized at a high 

level so that we avoid having to pay the penalty associated with the non-energy 

proportionality behavior of the servers. This average utilization level for different server 



 

120 
 

types may not be the same because the characteristics and configuration of each server 

type in terms of its power consumption vs. utilization level curve as well as the amount of 

memory, local disk size, network interface bandwidth are generally different.  

The average power consumption of each of these resource types in datacenter can 

be found by multiplying the average power consumption of a typically utilized server of 

given type (߶ത௦ ௦ܲ
  ௦ܲ

) by the number of servers needed to support the assigned VMs in 

the datacenter. In this formula, ௦ܲ
  and ௦ܲ

  denote the idle and utilization-dependent 

power consumption of a server of type	ݏ. 

Each client of the target cloud system creates one VM to execute its application. 

The SLA for online service application determines a target response time for requests 

generated by the VM. The cloud provider must guarantee the satisfaction of this response 

time constraint for a percentage of incoming requests (e.g. 95%) and agrees to pay a fixed 

penalty for any request violating the response time constraint. Moreover, SLAs determine 

VM migration cost, which is the penalty for service outage due to VM migration. 

݉ܿ
ௗ,ௗᇲሺ߬ሻ denotes the VM migration cost between datacenter ݀ and ݀ᇱ. 

Let ߶
ௗ,௦ሺ߬ሻ denote the amount of servers of type s in datacenter d allocated to 

VM ݅  in epoch ߬ . To determine this resource allocation parameter for each VM, a 

performance model must be considered. Each VM will have different resource 

requirements and exhibit different response time behavior if it is assigned to different 

server types. Moreover, dependence of a VM’s request response time in a host datacenter 

can be determined based on the communication distance between the VM’s origination 
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point and the host datacenter, the data rate in dedicated communication channels, the 

packet size of the incoming requests and outgoing response.    

Performance models presented in the literature can help translate the resource 

allocation parameter to specific SLA violation cost or price based on the client’s SLA 

requirements, VM workload in the epoch, execution behavior of VM on the specific 

server type, and the communication latency. The performance model can be abstracted by 

parameter ݎ
ௗ,௦ሺ߬ሻ and function ݂ሺ߶

ௗ,௦ሺ߬ሻሻ that denote the least amount of the computing 

resource needed in order to guarantee satisfaction of the SLA constraint and the expected 

SLA cost of VM i in epoch ߬ with allocation parameter ߶
ௗ,௦ሺ߬ሻ, respectively. According 

to definition, ݂ሺ0ሻ ൌ 0. Ignoring ߶
ௗ,௦ሺ߬ሻ ൌ 0, this function is monotonically decreasing 

with respect to ߶
ௗ,௦ሺ߬ሻ. If the communication latency of assigning a VM to a datacenter 

violates the SLA response time constraint, parameter ݎ
ௗ,௦ሺ߬ሻ will be equal to infinity in 

order to avoid such assignments.   

Note that constraint ߶
ௗ,௦ሺ߬ሻ  ݎ

ௗ,௦ሺ߬ሻ guarantees that the SLA constraint will be 

satisfied based on the assumed performance model but in order to satisfy the SLA 

constraints, the host server monitors the performance of the application and in case of 

SLA violation increases the amount of resource allocated to it or requests VM migration 

from the datacenter-level resource manager. 

4.3 Problem Formulation for the Static Problem 

The static version of the GLB problem can be formulated as follows:  
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Ψௗሺ߬ሻቀܲௗሺ߬ሻߠ		݊݅ܯ െ ௗሺ߬ሻቁܩ
ା

ௗ∈ఛ∈࣮

  ൭݉ܿሺ߬ሻ   ݂ሺ߶
ௗ,௦ሺ߬ሻሻ

௦∈ௌௗ∈

൱
∈ூሺఛሻఛ∈࣮

 

subject to: 

ܲௗሺ߬ሻ ൌ ଵ

ఘ
ቀ1  ଵ

ைሺఛሻ
ቁ∑ ቀ൫߶ത௦ ௦ܲ

  ௦ܲ
൯∑ ߶

ௗ,௦ሺ߬ሻ ߶ത௦ൗ∈ூሺఛሻ ቁ௦∈ௌ   (51)

∑ ݕ
ௗሺ߬ሻ ൌ 1ௗ∈ 			∀݅ ∈ ݕ , ሺ߬ሻܫ

ௗሺ߬ሻ  0 , 

ݕ
ௗሺ߬ሻ  ∑൫݊݃݅ݏ ߶

ௗ,௦ሺ߬ሻ௦∈ௌ ൯ , ݕ
ௗሺ߬ሻ ∈ ሼ0,1ሽ 

(52)

1  ߶
ௗ,௦ሺ߬ሻ  0,  

∑ ∑ ൫߶
ௗ,௦ሺ߬ሻ ݎ

ௗ,௦ሺ߬ሻൗ െ 1  ߳൯
ା

௦∈ௌௗ∈  0     ∀݅ ∈  ሺ߬ሻܫ

(53)

∑ ߶
ௗ,௦ሺ߬ሻ∈ூሺఛሻ  ݀∀  ௗ,௦ܥ ∈ ܦ & ݏ∀ ∈ ܵௗ (54)

݉ܿሺ߬ሻ  ݉ܿ
ௗ,ௗᇲݕ

ௗሺ߬ሻݕ
ௗᇲሺ߬ െ 1ሻ      ∀݀, ݀ᇱ ∈ (55) ܦ

ܲௗሺ߬ሻܴܲܣௗሺ߬ሻ  ௗܲ
௫  (56)

where ሺܣሻା denotes the max	ሺܣ, 0ሻ and Parameter ߳ is a very small positive value. Note 

that ݊݃݅ݏሺ0ሻ is equal to 0.  

The optimization parameters in this problem include the assignment parameters 

ݕ)
ௗሺ߬ሻ) and the allocation parameters (߶

ௗ,௦ሺ߬ሻ). The objective function includes three 

terms: (i) the energy cost paid to the utility companies, (ii) the VM migration cost, and, 

(iii) the SLA cost of VMs based on the VM assignment and amount of resources 

allocated to them. 
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Equation (51) determines the average power consumption of each datacenter 

based on the allocated resource to VMs. Constraint (52) determines the pseudo-Boolean 

assignment parameter for each VM in each epoch. Constraint (53) forces the amount of 

resources allocated to each VM to be greater than ݎ
ௗ,௦ሺ߬ሻ. Resource capacity constraint 

for each server type in each datacenter is captured by constraint (54). Constraint (55) 

determines the migration cost associated with each VM. The migration cost is equal to 

zero unless the VM is migrated from datacenter ݀ᇱ to ݀ in epoch ߬. In the latter case, the 

migration cost is equal to ݉ܿ
ௗᇲ,ௗ. In order to consider the initial VM assignment solution, 

if VM ݅ is initially assigned to datacenter ݀, ݕ
ௗሺെ1ሻ is set to one. Finally, constraint (56) 

captures the peak power capacity constraint in each datacenter. 

The GLB problem is an NP-hard optimization problem. Most of the previous 

work [63, 65, 66, 60] has focused on solving the GLB problem with continuous workload 

approximation. The problem can subsequently be solved using convex optimization 

methods. The continuous approximation of the GLB problem is acceptable in case of 

homogenous VMs or simple request forwarding scenarios in a cloud system. This 

simplification cannot, however, accurately capture the VM migration cost and may result 

in poor performance due to the necessity of deciding about the actual VM placement after 

finalizing the load balancing solution. In this work, we present a dynamic and static 

solution to the GLB problem for online service applications in the cloud system. 
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4.4 Algorithm for the Static Solution  

As explained in section  4.2, in the static version of the problem, we assume that 

every input parameter is known as opposed to a dynamic scenario in which these 

parameters are only predicted with certain confidence. The input parameters in this 

problem are the VM arrival time and active period, the VM workload in each epoch, 

energy price and generated power in the renewable power plant for each datacenter. We 

consider these parameters to be fixed during each epoch. Making this assumption means 

that the frequency of drastic changes in the system is considered to be greater than the 

frequency of applying the optimization solution.  

The GLB problem involves a resource allocation problem for VMs assigned to 

each datacenter at each epoch. To determine the optimal amount of resources that need to 

be allocated to a VM to minimize the summation of energy and SLA costs, we need to 

know the effective energy price and the PUE of a datacenter. It is obvious that these 

values cannot be determined without knowing the average power consumption in the 

target epoch but we can estimate ܱܲܥௗሺ߬ሻ and ܲௗሺ߬ሻ by using their typical values in 

previous epochs with similar conditions. The problem of finding the best resource 

allocation parameter for VM ݅ if it is assigned to server type ݏ in datacenter ݀ may be 

formulated as follows: 

Ψௗሺ߬ሻߠ		݊݅ܯ
ቀ ܲௗሺ߬ሻ െ ௗሺ߬ሻቁܩ

ା

ܲௗሺ߬ሻ

1
ௗߩ

ቆ1 
1

ܲௗሺ߬ሻܱܥ
ቇ ሺ߶ത௦ ௦ܲ

  ௦ܲ
ሻ
߶
ௗ,௦ሺ߬ሻ

߶ത௦
 ݂ሺ߶

ௗ,௦ሺ߬ሻሻ 

subject to: 
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߶
ௗ,௦ሺ߬ሻ  ݎ

ௗ,௦ሺ߬ሻ  (57) 

In this formulation, ܲௗሺ߬ሻ  and ܱܥܲௗሺ߬ሻ  denote the estimated average power 

consumption and COP, respectively. Considering a non-increasing SLA cost function, the 

problem has only one solution in which ߶
ௗ,௦ሺ߬ሻ ൌ ݎ

ௗ,௦ሺ߬ሻ, ߶
ௗ,௦ሺ߬ሻ ൌ 1 or it satisfies the 

following equality (KKT conditions): 

߲݂ ቀ߶
ௗ,௦ሺ߬ሻቁ

߲߶
ௗ,௦ሺ߬ሻ

ൌ െߠΨௗሺ߬ሻ
ቀ ܲௗሺ߬ሻ െ ௗሺ߬ሻቁܩ

ା

ܲௗሺ߬ሻ

1
ௗߩ

ቆ1 
1

ܲௗሺ߬ሻܱܥ
ቇ ሺ ௦ܲ

  ௦ܲ


߶ത௦
ሻ (58) 

Considering a constant communication delay for assigning a VM to a datacenter, 

a closed form solution can be found for (58) by using the M/M/1 queuing model, cf. [70]. 

In case of more complicated SLAs or queuing models, it may not be possible to obtain a 

closed form solution for this problem, but a numerical solution can be used in such cases. 

In the rest of this chapter, ߶
ௗ,௦ሺ߬ሻ denotes the solution of (58) or zero depending on the 

value of ݕ
ௗሺ߬ሻ. Note that, at any point of the algorithm where all VMs are assigned to a 

datacenter for an epoch, the value of ߶
ௗ,௦ሺ߬ሻ can be updated based on real values of 

ܲௗሺ߬ሻ and ܱܲܥௗሺ߬ሻ. 

The GLB problem considering VMs with lifetimes greater than single epoch is 

more complicated than finding the best VM placement solution for each epoch because a 

VM may cost less if it is not assigned to its best datacenter in the current epoch so as to 

avoid having to pay for costly VM migration in a next epoch. To be able to find an 

efficient and high-performance solution for the GLB problem, we present a force-directed 
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load balancing (FDLB) algorithm, which determines VM placement solution based on 

force-directed scheduling (FDS) [85].  

FDS is one of the notable scheduling techniques in high-level synthesis. It is a 

technique used to schedule directed acyclic task graphs so as to minimize the resource 

usage under a latency constraint. This technique maps the scheduling problem to the 

problem of minimizing forces in a physical system which is subsequently solved by 

iteratively reducing the total force by task movements between time slots. In reference 

[86], we applied this technique to the task scheduling in demand response problem. 

To solve the GLB problem using the FDS technique, |࣮|  instances of each 

datacenter (one for each epoch) and an instance of each VM for each epoch in its active 

period are created. Note that, the instance of a VM in epoch ߬ only has interactions with 

datacenter instances in that epoch and the VM instances in epoch ߬ െ 1 and ߬  1 (if they 

exist). Forces in this system are defined based on different terms in the objective 

functions and resource and peak power capacities in datacenters. Assigning an instance of 

VM ݅  in epoch ߬  to server type ݏ  in datacenter ݀  creates the following force in the 

system: 

݁ܿݎܨ
ௗ,௦ሺ߬ሻ ൌ ܨ ܱ

ௗ,௦ሺ߬ሻ  ሺ߬ሻܯܨ  ܥܨ
ௗ,௦ሺ߬ሻ  ܨ ܲ

ௗ,௦ሺ߬ሻ  ܴܨ
ௗ,௦ሺ߬ሻ  (59)

where: 

ܨ ܱ
ௗ,௦ሺ߬ሻ ൌ Ψௗሺ߬ሻ

ቀሺఛሻିீሺఛሻቁ
శ

ሺఛሻ
ߠ ቀ1  ଵ

ைሺఛሻ
ቁ ൈ  

																						 ଵ
ఘ
ቀ ௦ܲ

  ೞ
బ

థഥೞ
ቁ߶

ௗ,௦ሺ߬ሻ  ݂ ቀ߶
ௗ,௦ሺ߬ሻቁ  

(60)
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ሺ߬ሻܯܨ ൌ ∑ ݉ܿ
ௗ,ௗᇲሺݕ

ௗᇲሺ߬  1ሻ  ݕ
ௗᇲሺ߬ െ 1ሻሻௗᇲ∈   (61)

ܥܨ
ௗ,௦ሺ߬ሻ ൌ ିଵ

ைሺఛሻమ

డைቀሺఛሻቁ

డሺఛሻ

ଵ

ఘ
ௗሺ߬ሻܲߠ ൈ  

Ψௗሺ߬ሻ
ቀሺఛሻିீሺఛሻቁ

శ

ሺఛሻ
ቀ ௦ܲ

  ೞ
బ

థഥೞ
ቁ߶

ௗ,௦ሺ߬ሻ   

(62)

ܨ ܲ
ௗ,௦ሺ߬ሻ ൌ ቀ1 െ ݁ିாሺೞ

ାೞ
బ/థഥೞሻ௫

,ೞሺఛሻቁ ݁ቀ
ሺఛሻோሺఛሻି,ೌೣሺఛሻቁ  (63)

ܴܨ
ௗ,௦ሺ߬ሻ ൌ ቀ1 െ ݁ିథ

,ೞሺఛሻቁ ݁ቀ∑ థ
,ೞሺఛሻ∈ሺഓሻ ି,ೞቁ  (64)

It can be seen that different force elements are defined for different parts of the 

objective function or constraints in the GLB problem as explained next. ܨ ܱ
ௗ,௦ሺ߬ሻ 

captures the energy and SLA costs based on the amount of resources allocated to the VM. 

ܥܨ		ሺ߬ሻ captures the VM migration cost whereasܯܨ
ௗ,௦ሺ߬ሻ captures the energy cost of the 

cooling power consumption change due to the average power consumption change. 

ܨ ܲ
ௗ,௦ሺ߬ሻ and ܴܨ

ௗ,௦ሺ߬ሻ capture the pressure on the peak power and server type ݏ resource 

capacity constraints in the datacenter. Note that ܨ ܲ
ௗ,௦ሺ߬ሻ  and ܴܨ

ௗ,௦ሺ߬ሻ  do not have 

corresponding cost meaning, but are added to the force calculation to make sure the 

capacity constraints are satisfied. 

Finding a feasible solution to minimize the objective function is equivalent to 

minimizing the summation of forces applied to VM instances. Starting from any solution, 

we can identify the VM instance movements (from a server type in a datacenter to 

another server type in a datacenter) that results in reducing the force and execute these 

movements to reach a lower operational cost. The order of these movements affects the 
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final results because executing a movement changes the forces applied to some other VM 

instances.  

The initial solution has a significant impact on the quality of the final solution for 

the GLB problem. To be able to perform gradual VM movement to reduce the total force, 

we consider an initial solution in which, each VM instance is cloned and uniformly 

distributed between possible resource types in different datacenters related to the target 

epoch. Let ܰሺ߬ሻ denote the number of instances for VM ݅ in epoch ߬. The amount of 

resources allocated to new VM instances is replaced by ߶
ௗ,௦ሺ߬ሻ/ ܰሺ߬ሻ  and force 

components are calculated based on this value. Note that the SLA cost for these VM 

instances should be calculated from ݂ሺ߶
ௗ,௦ሺ߬ሻሻ/ ܰሺ߬ሻ	while the migration cost-related 

force calculation should consider multiple VM instances in neighboring epochs with 

appropriate weights. More precisely, ܯܨሺ߬ሻ  for an instance of the VM should be 

replaced by the following term: 

ሺ߬ሻܯܨ ൌ
ଵ

ேሺఛሻ
∑ ݉ܿ

ௗ,ௗᇲሺ
௬
ᇲሺఛାଵሻ

ேሺఛାଵሻ


௬
ᇲሺఛିଵሻ

ேሺఛିଵሻ
ሻௗᇲ∈   (65)

Starting from the initial solution, we need to merge instances associated with each 

VM in each epoch to reduce the number of instances related to each VM to one for each 

epoch ( ܰሺ߬ሻ ൌ 1). Speed of the instance merging affects the run-time of the algorithm 

and the overall quality of the solution. We select a three-stage merging approach in which 

first we reduce the number of instances for each VM in each epoch to 4 and then reduce 

the number of instances to 2, and finally, determine the VM placement. In each stage, the 

best merging action (least force increase) between different VMs and different epochs is 
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selected and executed until there are no VMs with more than the target number of 

instances in each epoch. To calculate the best merging action and its associated force, the 

total force applied to VM instances is calculated and subtracted from the best total force 

if the instances are reduced to the target number of instances. Note that any VM instance 

movement results in changes in forces applied to VM instances associated with the 

datacenters in that epoch and its own VM instances in the neighboring epochs. These 

force changes are captured in equation (59) but to calculate the next best VM movement, 

the value of force for affected VM instances needs to be updated.  

After finalizing the VM placement solution, in case of resource or peak power 

capacity constraint violation in datacenters, the VM instance movement must be 

continued until a feasible solution is reached. In this stage, VM instances can select any 

destination resource type in a datacenter in the corresponding epoch in contrast to gradual 

VM instance merging, which was limited to select destination(s) between current VM 

instance hosts. In addition to this stage, even without any peak power capacity or 

resource constraint violations, the VM movement can be continued to further reduce the 

total cost with the restriction that no VM movement that results in any constraint 

violations should be tried.  

Considering this algorithm, we can formulize the datacenter and renewable power 

plant design problem to minimize the capital expenditure and operational cost. The 

presented algorithm can also be modified and used in the dynamic VM management in a 

cloud system comprised of geographically distributed datacenters. Details of this 

extension are given next.   
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4.5 Formulation and Solution of the Dynamic Version of the 
Problem 

VM placement in a cloud system comprised of geographically distributed 

datacenters is performed at the beginning of each epoch based on the prediction of the 

optimization parameters. The dynamic solution for the GLB problem determines the VM 

placement solution for the current epoch (denoted by ݐ  in this section ሻ  with the 

consideration of future epochs. To make a decision about a VM placement, we need to 

consider its active period, its workload in the next epochs, other VMs in the system 

including existing VMs and new VMs that will enter the cloud in the next epochs, and 

energy price and renewable energy generation for next epochs.  

The cloud system cost (ܥܥሺݐሻ) in epoch ݐ can be formulated as follows: 

ሻݐሺܥܥ ൌ Ψௗሺݐሻߠቀܲௗሺݐሻ െ ሻቁݐௗሺܩ
ା

ௗ∈

 

∑ ቀ݉ܿሺݐሻ  ∑ ∑ ݂ ቀ߶
ௗ,௦ሺݐሻቁ௦∈ௌௗ∈ ቁ∈ூሺ௧ሻ    

(66)

The dynamic version of the GLB problem tries to minimize the summation of 

ݐሺܥܥ) ሻ and the costs of the future epochsݐሺܥܥ  ߬ሻ) by VM placement for the current set 

of VMs. 

The dynamic GLB solution directly affects ܥܥሺݐሻ  but only indirectly affects 

ݐሺܥܥ  ߬ሻ . In contrast to straightforward calculation of ܥܥሺݐሻ  based on the VM 

placement solution (considering perfect information about input parameters in epoch ݐ), 

estimating ܥܥሺݐ  ߬ሻ is a difficult task due to the following missing information about 

epoch ݐ  ߬: 
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(i) Existence of VM ݅ (݅ ∈ ݐ ሻ) in epochݐሺܫ  ߬. A probability value denoted 

by ݎሺݐ  ߬ሻ is considered to determine the probability of the VM to be active in epoch 

ݐ  ߬. This probability is a decreasing function of ߬. 

(ii) VM ݅ Workload (݅ ∈ ݐ ሻ) in epochݐሺܫ  ߬. Considering SLA, workload in 

our problem formulation may be translated into resource allocation parameters. 

Therefore, we consider predicted resource allocation parameters in epoch ݐ  ߬, denoted 

by ߶
ௗ,௦ሺݐ  ߬ሻ. 

(iii) Energy price and average renewable power generation. We consider 

Ψௗሺݐ  ߬ሻ and ܩௗሺݐ  ߬ሻ to represent the predicted energy price and average renewable 

power generation in epoch ݐ  ߬. 

(iv) The rest of active VMs (ܫሺݐ  ߬ሻ െ  .ሻ) and their workload in that epochݐሺܫ

Instead of predicting a number of active VMs for epoch ݐ  ߬, resource utilization related 

to those VMs in datacenters can be used. These resource utilization parameters can be 

found based on the state of the datacenters in similar scenarios (same energy price, 

renewable power generation and workload) after removing the resource utilization related 

to VMs that existed in epoch ݐ. The amount of predicted background utilized resources 

for resource type ݏ in datacenter ݀ in epoch ݐ  ߬ is denoted by ܥመௗ,௦ሺݐ  ߬ሻ.  

Parameters ݎሺݐ  ߬ሻ and ߶
ௗ,௦ሺݐ  ߬ሻ can be estimated based on the historical 

data about the VM type and VM’s original location. Energy price can be predicted based 

on the historical data or information received from utility companies and average 

renewable energy generation can be estimated based on weather prediction.   
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Based on the predicted optimization parameters, the dynamic VM placement 

problem in a geographically distributed datacenter can be set up similar to the static 

problem. A maximum application lifetime is considered for every VM and SLA and 

migration cost and allocation parameters for VM ݅  in epoch ݐ  ߬  are dampened by 

probability ݎሺݐ  ߬ሻ. To simplify the formulation, in the following formulation, we 

consider the predicted parameters to be equal to their actual values for epoch ݐ and set 

ሻݐሺݎ ൌ 1. The dynamic GLB problem can thus be formulated as follows: 

	݊݅ܯ ݐΨௗሺߠ  ߬ሻ ቀܲௗሺݐ  ߬ሻ െ ݐௗሺܩ  ߬ሻቁ
ା

ௗ
ఛ∈బ

 

 ሺ߬ሻݎ  ൭݉ܿሺݐ  ߬ሻ ݂ቀ߶
ௗ,ሺݐ  ߬ሻቁ

௦ௗ

൱
∈ூሺ௧ሻ

ఛ∈బ
 

subject to constraints (52), (53), (55), (56) and 

∑ ݐሺݎ  ߬ሻ߶
ௗ,௦ሺݐ  ߬ሻ∈ூሺఛሻ  ௗ,௦ܥ െ ݐመௗ,௦ሺܥ  ߬ሻ   (67)

ܲௗሺݐ  ߬ሻ ൌ ଵ

ఘ
ቀ1  ଵ

ைሺ௧ାఛሻ
ቁ∑ ቆቀ ௦ܲ

  ೞ
బ

థഥೞ
ቁ ൈ ൫ܥመௗ,௦ሺݐ  ߬ሻ ௦∈ௌ

∑ ݐሺݎ  ߬ሻ߶
ௗ,௦ሺݐ  ߬ሻ∈ூሺఛሻ ൯ቇ  

(68)

This problem can be solved by using the presented force-directed VM placement 

algorithm for the static problem. Note that the number of VMs in this problem is limited 

to |ܫሺ߬ሻ|, which results in shorter execution time for this solution. It can be shown that, 

even starting from unsatisfactory background resource utilization, the dynamic solution 

converges to a good solution after a number of iterations of the solution because the 
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accuracy of the background workload will be improved by applying the dynamic 

solution. 

4.6 Simulation Results 

To show the effectiveness of the presented algorithms for the GLB problem, a 

simulation framework is implemented. 

In this simulation framework, we considered a US-based cloud system that has 

five datacenters in California, Texas, Michigan, New York, and Florida. The 

communication rate between these datacenters is assumed to be 1Gbps. Size of these 

datacenters ranges from 4,000 to 1,600 servers belonging to four different server types, 

selected from HP server types. Duration of epoch is set to one hour. The average 

utilization of servers is assumed to be 70%. Peak power capacity of each datacenter is set 

to 80% of the peak power consumption of the deployed servers and cooling system. 

Based on the weather patterns, each datacenter has a combination of solar and wind 

power plant with power generation capacity of up to 20% of its peak power consumption. 

The renewable power generation changes during the day based on type of the power 

plant.  

The average energy price in one day for each datacenter is set based on the 

reported average energy price [87] in datacenter’s location. Dynamic energy price for 

each one of the datacenters is assumed to follow the dynamic energy pricing pattern in 

reference [88] related to 5/23/2013 with appropriate time shift and average energy price. 
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Figure 27 shows the energy price pattern for the California datacenter with average 

energy price of 15.2 ¢ per KWhr.   

Figure 27 – Energy price in California datacenter (time in PST) 

To determine the relation between the COP and average power consumption in a 

datacenter, we applied the genetic-algorithm-based power provisioning policy presented 

in reference [52] to find the maximum COP for different range of power consumption in 

a two-row rack setting (250 blade servers with 110KW peak power) using hot-aisle/cold-

aisle cooling arrangement. The results are reported in Figure 28. 

Figure 28 – Dependence of COP on average power consumption 
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It can be seen that the COP can be modeled as a linear function of the average 

power consumption with acceptable error. To approximate the COP function for the 

whole datacenter, the power coefficient in this linear estimation is multiplied by ௗ,௫/

110KW. This assumption is based on having multiple server rooms with capacity of 

110KW each.   

Synthetic workloads are generated to be used in the GLB problem. Based on 

population distribution in US, applications are created in different time horizons and 

geographical locations. Application workload is changed according to the local time of its 

origination point. The application lifetime is set randomly based on uniform distribution 

between one and 16 hours. The SLA parameters and costs for these applications are set 

based on the Amazon EC2 pricing scheme [81]. We used the SLA model presented in 

[70] to determine the SLA cost based on the amount of resources allocated to each VM. 

The minimum resource requirement for each VM is determined considering a target 

response time, a tolerable response time violation rate, behavior of the VM on the target 

server type, the round-trip time between VM location and target datacenter location, and 

the time required to transmit a typical packet in the incoming requests and outgoing 

responses. The penalty for an under-serviced request is set to be equal to the service price 

for one hour divided by the maximum number of requests that can violate the response 

time in each charge cycle. The migration cost is considered to be linearly related to the 

migration latency. The linear coefficient is set to be equal to the service price for one 

charge cycle divided by the worst possible migration latency (New York to California.)  
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The baseline in our simulation is a case without geographical load balancing. For 

this scheme, each client is assigned to its nearest datacenter that has sufficient available 

resources. This scheme results in small VM migration cost if there are no resource 

contentions in the datacenters.  

Figure 29 – The intensity of the workload as a function of time of the day captured by the total 
minimum resource requirement for active VMs 

To show the effectiveness of the presented static algorithm, we created workload 

for more than 100,000 clients across the US for a full day and determined the GLB 

solution by using presented algorithm and baseline solution. The workload intensity, 

which is obtained by summing the minimum resource requirement for the active VMs, is 

reported in Figure 29. 

The operational cost of the cloud system with FDLB algorithm, the baseline 

algorithm, and FDLB-1 (a simplified version of FDLB) are presented in Figure 30. Note 

that FDLB-1 constructively (i.e., epoch-by-epoch) determines the VM placement solution 

in order to reduce the run-time of the original solution. 
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Figure 30 – Operational cost of the cloud in different epochs using different scheduling algorithms 

As can be seen, in the beginning of the day, performance of the baseline method 

is similar to that of FDLB algorithm but in peak workload hours, the total operational 

cost using the baseline algorithm increases significantly. The total operational cost of the 

cloud system for one day using FDLB algorithm is 35% less than that of the baseline 

algorithm and 4% better than that of the FDLB-1 solution. The run-time of FDLB, 

FDLB-1 and baseline on a 2.66GHz quad-core HP server are 466, 69 and 7 seconds, 

respectively. Share of different elements of the operational cost using FDLB algorithm is 

shown in Figure 31. As can be seen, FDLB solution avoids VM migration in light 

workload but VM migration is used under heavy workload situations to reduce PUE, 

increase the share of renewable energy, and decrease the energy cost. Moreover, it can be 

seen that the energy cost in the beginning of the day is very small due to light workload 

and availability of generated renewable energy in datacenters. 
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Figure 31 – Share of energy, SLA and migration cost in operational cost in different epochs 

Figure 32 shows the normalized operational cost of applying FDLB algorithm and 

baseline method to the static problem with different number of VMs per day.  

Figure 32 – Normalized operational cost of the system using FDLB and baseline method in the static 
setting 

As can be seen, the FDLB algorithm performs 6% to 77% better than the baseline 

algorithm which does not consider the GLB. The performance gap between FDLB and 

baseline solutions decreases as the number of VMs increases which is the result of 

exhausting the renewable energy generation and cheaper resources in peak times. 
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To more clearly illustrate the effect of resource availability on the performance of 

FDLB solution, Figure 33 shows the operational cost of the system in static setting with 

100K VMs in one day with varying peak renewable power generation capacity in each 

datacenter. As can be seen, the FDLB improvements w.r.t. baseline method increases by 

increasing the peak power generation capacity in datacenters’ site. 

Figure 33 – Normalized operational cost of the system in the static setting with different renewable 
energy generation capacities 

To show the effectiveness of the presented dynamic solution, we created a four-

day scenario. To be able to apply the prediction about the background workload from 

first day of the dynamic algorithm to the other days, we considered similar situations for 
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the dynamic and static FDLB algorithms and the baseline method are reported in Table 

VI. As can be seen, the dynamic version of the algorithm works 3% worse than the 

complete and perfect information scenario in the static version but it is 4% better than 

only considering the current epoch (FDLB-1) and 39% more effective than not 

considering the load balancing opportunity. Run-time of the dynamic algorithm (after 

background workload preparation) ranges from 10 to 80 seconds for each epoch on a 

2.66GHz quad-core HP server. 

TABLE VI. NORMALIZED OPERATIONAL COST OF THE CLOUD DURING FOUR DAYS USING DIFFERENT LOAD 

BALANCING ALGORITHMS 

Day 
Normalized total OPEX for full day 

Dynamic
FDLB Static FDLB Dynamic

FDLB-1 Baseline 

First day 1 0.997 1.075 1.426 

Second day 1 0.967 1.024 1.364 

Third day 1 0.977 1.043 1.388 

Fourth day 1 0.968 1.029 1.388 

Overall 1 0.977 1.042 1.391 

Figure 34 shows the normalized operational cost of the system having different 

number of VMs per day by applying different load balancing algorithms. Average added 

prediction error in this scenario is equal to 10%.    

 As can be seen, the performance of the dynamic FDLB is 32% to 46% better than 

the performance of the dynamic baseline method. Increasing the number of VMs per day 

increases the opportunity of utilizing green renewable power generated in datacenters’ 

site and increase the benefit of GLB. After 120K VMs in this setup, the resource 
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contention increases and it results in reduction of GLB advantage. Moreover, it can be 

seen that, performance of FDLB-1 solution with respect to original solution improves as 

we increase the number of VMs. This shows that, increasing the number of VMs reduces 

the benefit of considering future epochs in GLB decision making. With a similar pattern, 

the performance of dynamic FDLB with respect to static FDLB with perfect information 

is improving by increasing the number of VMs which is the result of exhausting 

resources in datacenter with cheap energy or generated renewable energy.    

Figure 34 – Normalized operational cost of the system using FDLB and baseline method in the 
dynamic setting 

Figure 35 shows the normalized operational cost of the system using FDLB and 

baseline method with different prediction error having 100K VMs per day. As can be 

seen, the performance gap between different solutions does not drastically change by 

increasing the prediction error. 
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Figure 35 – Normalized operational cost of the system using FDLB and baseline method in the 
dynamic setting with different prediction error having 100K VMs per day 

4.7 Conclusion 

This chapter was focused on the load balancing problem for online service 

applications considering a distributed cloud system comprised of geographically 

dispersed, heterogeneous datacenters. The problem formulation and a novel solution were 

presented and simulation results demonstrated the effectiveness of the presented 

algorithms. The effectiveness of GLB was shown to increase as the renewable energy 

generation capacity in datacenters increases. A possible future work is to combine the 

GLB problem for online applications with offline computation tasks scheduling problem 

to increase the benefit of the load balancing. Another possible future work is to consider 

GLB problem with multi-tier applications, which create multiple dependent VMs. 
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Chapter 5 . CONCLUSIONS AND FUTURE WORK 

 

In this thesis we presented SLA-driven energy efficient resource management in 

datacenters and cloud systems (comprised of geographically distributed datacenters). The 

presented centralized resource management solution in datacenters, which simultaneously 

determines the VM assignment and the amount of resource allocated to each VM was 

shown to result in an average 18% lower operational cost with respect to a solution that 

determines the amount of resource that must be allocated to a VM before assigning VMs 

to servers. Higher energy efficiency and lower operational cost were shown to be due to 

the flexibility of the resource allocation solution.   

The presented hierarchical resource management structure significantly shortened 

the run-time of the periodic and reactive optimization procedures.  Moreover, considering 

the energy non-proportionality of today’s servers, cooling-related power consumption, 

and peak power constraints in the formulation of the resource management problem was 

shown to improve the performance of the presented solutions with respect to previous 

work by an average of 43%.  

The presented geographical load balancing solution for interactive applications 

was shown to decrease the energy cost of the cloud system due to use of cheaper energy 

provided by utility companies during non-peak hours or use of generated renewable 

power in datacenter’s sites. We also showed that considering the whole active period of 
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VMs in load balancing decisions results in lower operational cost in the cloud system by 

avoiding costly VM migrations between geographically distributed datacenters.   

For future work, implementation of the presented algorithms in a real world setup 

may help fine tune the presented solutions and show the practical effect of these 

management algorithms in datacenters and cloud systems. Moreover, workload 

prediction is a critical task that can be pursued because all of the presented algorithms 

depend on some level of workload prediction and the accuracy of these predictions 

directly affects the accuracy of the presented solutions.  
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