

SLA-based, Energy-Efficient Resource Management in

Cloud Computing Systems

by

Hadi Goudarzi

__

A Dissertation Presented to the

FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(ELECTRICAL ENGINEERING)

December 2013

Copyright 2013 Hadi Goudarzi

ii

DEDICATION

To my family

for their everlasting love and support

iii

ACKNOWLEDGEMENTS

The completion of this doctoral dissertation has been a long journey made

possible through the inspiration and support of a handful of people.

First and foremost, I especially would like to thank my Ph.D. advisor and

dissertation committee chairman, Professor Massoud Pedram, for his enthusiasm,

mentorship, and encouragement throughout my graduate studies and academic research.

He has been a continuous source of motivation and support for me and I want to sincerely

thank him for all I have achieved. His passion for scientific discoveries and his dedication

in making technical contributions to the computer engineering community have been

invaluable in shaping my academic and professional career.

Special thanks go to my dissertation and qualification committees, including

Professor Sandeep K. Gupta, Professor Murali Annavaram, Professor Viktor K. Prasanna,

Professor Aiichiro Nakano, and Professor Mansour Rahimi for their time, guidance, and

feedback.

Special thanks to Dr. Shahin Nazarian with whom I have collaborated on some

projects. I truly appreciate his mentorship, priceless advices, feedback, and help.

I would like to thank those who have in many ways contributed to the success of

my academic endeavors. They are the Electrical Engineering staff at the University of

Southern California, particularly Annie Yu, Diane Demetras, and Tim Boston; the

iv

members of the System Power Optimization and Regulation Technology (SPORT)

Laboratory; and my best and dearest friends.

Last but not least, my deepest gratitude goes to my family for their unconditional

love, support, and devotion throughout my life and especially during my education. I

would not have been able to accomplish my goals without their support and

encouragement. I am much indebted to my mother and father, for believing in me and

encouraging me to pursue my goals. I would also like to thank my sister and brother,

Zahra and Hamid, who I love dearly. No matter how far away they may be physically,

they are never far from my heart and mind.

 v

TABLE OF CONTENTS

Dedication ... ii

Acknowledgements .. iii

List of Tables .. vii

List of Figures .. viii

Abstract .. xi

Chapter 1. Energy-efficient Datacenters ..1
1.1 Introduction ..1
1.2 Datacenter Organization ..6
1.3 Datacenter Management ..12
1.4 Resource Arbiter related work ...14
1.5 Power manager related work ...18
1.6 Thermal Management ..25
1.7 Geographical Load Balancing ..28
1.8 Structure of this thesis and parameter definition31

Chapter 2. SLA-based Optimization of Power and Migration Cost in Cloud Computing 34
2.1 Introduction ..34
2.2 System Model ..35

2.2.1 Datacenter Configuration ... 35
2.2.2 VM Management System ... 37
2.2.3 Performance Modeling ... 39
2.2.4 SLA model for the clients ... 42

2.3 Problem Formulation ...42
2.4 Cost Minimization Algorithm ..45

2.4.1 Initial Solution .. 46
2.4.2 Resource allocation adjustment .. 50
2.4.3 Turn OFF under-utilized servers .. 50

2.5 Simulation Results ...51
2.5.1 Simulation Setup .. 51
2.5.2 Heuristics for Comparison .. 52
2.5.3 Numerical Results .. 53

2.6 Conclusion ...55

 vi

Chapter 3. Hierarchical SLA-Driven Resource Management for Peak Power-Aware and
Energy-Efficient Operation of a Cloud Datacenter ...57

3.1 Introduction ..57
3.2 Cloud Datacenter and Key Parameters ..59

3.2.1 Cloud datacenter ... 60
3.2.2 Virtual machine characteristics .. 65

3.3 Cloud Datacenter Resource Management Problem68
3.4 Periodic optimization: VM assignment ...75
3.5 Periodic optimization: Local Search Method ..85
3.6 Methods to Deal with Emergencies ...89
3.7 Simulation framework and results ...97

3.7.1 Simulation framework .. 97
3.7.2 Base-line heuristics ... 99
3.7.3 Simulation results ... 101

3.8 Conclusion ...112

Chapter 4 . Geographical Load Balancing for Online Service Applications in
Distributed Datacenters ..113

4.1 Introduction ..113
4.2 Parameter definitions ...115
4.3 Problem Formulation for the Static Problem ...121
4.4 Algorithm for the Static Solution ...124
4.5 Formulation and Solution of the Dynamic Version of the Problem130
4.6 Simulation Results ...133
4.7 Conclusion ...142

Chapter 5. Conclusions and Future Work ..143

Bibliography ..145

Alphabetized Bibliography ..154

 vii

LIST OF TABLES

Table I. Notation and Definitions of Common Parameters in this Thesis 33

Table II. Notation and Definitions in Chapter 2 ... 36

Table III. Performance of SPMCM w.r.t. lower bound cost... 54

Table IV. Notation and Definitions in Chapter 3 .. 60

Table V. Notation and Definitions in Chapter 4 ... 116

Table VI. Normalized operational cost of the cloud during four days using different load
balancing algorithms .. 140

 viii

LIST OF FIGURES

Figure 1. High level view of key components of a datacenter. .. 6

Figure 2. Internal organization of a conventional (raised floor, hot/cold aisle) datacenter. 7

Figure 3. An example of resource management architecture in a datacenter. 13

Figure 4. An example power management architecture and its relation to resource arbiter
and thermal manager ... 19

Figure 5. VM management structure in a datacenter .. 38

Figure 6. Normalized cost of the datacenter for different algorithms 54

Figure 7. Run-time of SPMCM on 2.8GHZ E5550 server from Intel for different number
of clients .. 55

Figure 8. Ratio of expected percentage of the response time constraint’s violation to the
maximum allowed percentage of violation ... 56

Figure 9 – An example of structure of container-based datacenter 61

Figure 10 – An example of presented cooperative hierarchical manager 74

Figure 11- Number of VMs and workload intensity in each epoch 101

Figure 12- Total cost of datacenter in each epoch .. 102

Figure 13- Run-time of the periodic optimization procedure in each epoch (run-time is
reported in logarithmic scales) .. 102

Figure 14- Run-time of the periodic optimization procedure in each epoch 103

Figure 15- Elements of the total cost: Energy cost. .. 104

Figure 16- Elements of the total cost: SLA violation penalty. 104

Figure 17- Elements of the total cost: Migration cost. .. 105

Figure 18- Elements of the total cost: SLA hard constraint violation penalty. 105

 ix

Figure 19- Total number of calls to the reactive optimization procedures in one day ... 106

Figure 20- Total VM movement cost for the reactive optimization procedure (SLA
violation emergency) ... 107

Figure 21- Total VM movement cost for the reactive optimization procedure (power cap
emergency) .. 108

Figure 22- (a) power and (b) temperature distribution in a container with heavy worklaod.
ݏܶ ൌ ݊݅ݍܶ	ݔܽ݉ and ܥ15 ൌ 109 .. ܥ30.2

Figure 23- (a) power and (b) temperature distribution in a container with light workload.
Ts ൌ 22oC and max	Tqin ൌ 29.9oC .. 109

Figure 24- Dynamic energy price and total cost of the datacenter in a full day 110

Figure 25- (a) percentage of the SLA violation penalty in the total cost and (b) average
predicted arrival rate for VMs in different epochs 111

Figure 26 – An exemplary figure for a geographically distributed cloud system 115

Figure 27 – Energy price in California datacenter (time in PST) 134

Figure 28 – Dependence of COP on average power consumption 134

Figure 29 – The intensity of the workload as a function of time of the day captured by the
total minimum resource requirement for active VMs 136

Figure 30 – Operational cost of the cloud in different epochs using different scheduling
algorithms .. 137

Figure 31 – Share of energy, SLA and migration cost in operational cost in different
epochs .. 138

Figure 32 – Normalized operational cost of the system using FDLB and baseline method
in the static setting ... 138

Figure 33 – Normalized operational cost of the system in the static setting with different
renewable energy generation capacities .. 139

Figure 34 – Normalized operational cost of the system using FDLB and baseline method
in the dynamic setting .. 141

 x

Figure 35 – Normalized operational cost of the system using FDLB and baseline method
in the dynamic setting with different prediction error having 100K VMs per
day ... 142

 xi

ABSTRACT

Cloud computing systems (e.g., hosting datacenters) have attracted a lot of

attention in recent years. Utility computing, reliable data storage, and infrastructure-

independent computing are example applications of such systems. Operational cost in

these systems is highly dependent on the resource management algorithms used to assign

virtual machines (VMs) to physical servers and possibly migrate them in case of power

and thermal emergencies. Energy non-proportionality of IT devices in a datacenter,

cooling system inefficiency, and power delivery network constraints should be

considered by the resource management algorithms in order to minimize the energy cost

as much as possible. Scalability of the resource assignment solution is one of the biggest

concerns in designing these algorithms. This thesis examines the resource management

problem in datacenters. First a centralized datacenter resource management is proposed,

which considers service level agreements (SLAs) in VM placement in order to minimize

the total operational cost of the datacenter. Second, a hierarchical SLA-based resource

management structure is proposed, which considers the peak power constraints and

cooling-related power consumption in addition to the scalability issue. The proposed

hierarchical structure fits the hierarchical resource distribution in datacenters. The

proposed structure is suitable to track and react to dynamic changes inside the datacenter

to satisfy SLA constraints and avoid emergencies. Third, a load balancing algorithm to

minimize the operational cost of a multi-datacenter cloud system is presented. Load

balancing creates an opportunity to reduce the operational cost of the cloud system

 xii

considering dynamic energy pricing and availability of green renewable power plants in a

datacenter site.

1

Chapter 1 . ENERGY-EFFICIENT DATACENTERS

1.1 Introduction

Demand for computing power has been increasing due to the penetration of

information technologies in our daily interactions with the world both at personal and

communal levels, encompassing business, commerce, education, manufacturing, and

communication services. At personal level, the wide scale presence of online banking, e-

commerce, SaaS (Software as a Service), social networking and so on produce workloads

of great diversity and enormous scale. At the same time computing and information

processing requirements of various public organizations and private corporations have

also been increasing rapidly. Examples include digital services and functions required by

various industries, ranging from manufacturing to housing, and from transportation to

banking. Such a dramatic increase in the computing resources requires a scalable and

dependable IT (information technology) infrastructure comprising of servers, storage,

network bandwidth, physical infrastructure, Electrical Grid, personnel and billions of

dollars in capital expenditure and operational cost to name a few.

Datacenters are the backbone of today's IT infrastructure. The reach of datacenters

spans a broad range of application areas from energy production and distribution,

complex weather modeling and prediction, manufacturing, transportation, entertainment

and even social networking. There is a critical need to continue to improve efficiency in

all these sectors by accelerated use of computing technologies, which inevitably requires

2

increasing the size and scope of datacenters. However, datacenters themselves are now

faced with a major impediment of power consumption. The energy consumption of the

datacenters is increasing and covers up to 2% of the total electrical energy consumption

in the united states in 2010 [1]. Power consumption of datacenters will soon match or

exceed many other energy-intensive industries such air transportation.

Apart from the total energy consumption, another critical component is the peak

power; According to an EPA report [2], the peak load on the power grid from datacenters

is estimated to be approximately 7 Gigawatts (GW) in 2006 in US, equivalent to the

output of about 15 base-load power plants. This load is increasing as shipments of high-

end servers used in datacenters (e.g., blade servers) are increasing at a 20-30 percent

CAGR.

A significant fraction of the datacenter power consumption is due to resource

over-provisioning. These solutions require well-provisioned servers in datacenters. More

precisely, today’s datacenters tend to be provisioned for near-peak performance since

typical service level agreements (SLAs) between clients and hosting datacenters

discourage the development of significant performance bottlenecks during peak

utilization periods. In order to achieve peak performance with minimum power

dissipation under given SLAs, we need to design computing systems with the least

energy consumption per instruction.

System-wide power management is another huge challenge in datacenters. First,

restrictions on availability of power and large power consumption of the IT equipment

make the problem of datacenter power management a very difficult one to cope with.

3

Second, the physical infrastructure (e.g., the power backup and distribution system and

the computer room air conditioning, or CRAC for short, systems) tends to account for up

to one third of total datacenter power and capital costs [3, 4, 5]. Third, the peak

instantaneous power consumption must be controlled. The reason for capping power

dissipation in the datacenters is the capacity limitation of the power delivery network

(PDN) in the datacenter facility. Fourth, power budgets in datacenters exist in different

granularities: datacenter, cluster, rack or even servers. A difficulty in the power capping

is the distributed nature of power consumption in the datacenter. For example, if there is

a power budget for a rack in the datacenter, the problem is how to allocate this budget to

different servers and how to control this budget in a distributed fashion. Finally, another

goal is to reduce the total power consumption. A big portion of the datacenter operational

cost is the cost of electrical energy purchased from the utility companies. A trade-off

exists between power consumption and performance of the system and the power

manager should consider this trade-off carefully. For example, if the supply voltage level

and clock frequency of a CPU are reduced, the average power consumption (and even

energy needed to execute a given task) is reduced, but the total computation time is

increased.

Cooling manager is responsible for keeping the inlet temperature of the servers

below a certain threshold called critical temperature that is dependent on the server. The

supply cold air from CRAC is shared between a collection of servers in datacenter. So,

the highest inlet temperature determines the supply cold air temperature for that

collection of servers. The supply cold air temperature determines the efficiency of the

4

cooling system. The cooling efficiency is a non-decreasing function of the supply cold air

temperature. So, the datacenter manager should try to decrease the highest temperature in

the system to increase the cooling system efficiency and decrease the total power

consumption.

Virtualization technology creates an application-hosting environment that

provides independence between applications that share a physical machine together [6].

Nowadays, computing systems rely heavily on this technology. Virtualization technology

provides a new way to improve the power efficiency of the datacenters: consolidation.

Consolidation means assigning more than one Virtual Machines (VM) to a physical

server. As a result, some of the servers can be turned off and power consumption of the

computing system decreases. This is because servers consume a big portion of their peak

power in the idle state and turning off a server improves the power efficiency in the

system. Again the technique involves performance-power tradeoff. More precisely, if

workloads are consolidated on servers, performance of the consolidated VMs (virtual

machines) may decrease because of the reduction in the available physical resources

(CPU, memory, I/O bandwidth) but the power efficiency will improve because fewer

servers will be used to service the VMs.

The IT infrastructure provided by the datacenter owners/operators must meet

various SLAs established with the clients. The SLAs may include guarantee on providing

compute power, storage space, network bandwidth, availability and security, etc.

Infrastructure providers often end up over provisioning their resources in order to meet

the clients’ SLAs. Such over-provisioning may increase the cost incurred on the

5

datacenters in terms of the electrical energy bill. Therefore optimal provisioning of the

resources is imperative in order to reduce the cost incurred on the datacenter operators.

Migrating a VM between servers causes a downtime in the client’s application.

Duration of the downtime is related to the migration technique used in the datacenter and

the communication distance between source and destination host of VM. For example,

live migration causes a downtime amount of less than 100ms [7] for servers inside a

chassis but this value can be in the order of minutes in case of migrating a VM from a

datacenter to another one.

The cloud computing system resources is often geographically distributed. This

helps with reducing the peak power demand of the datacenters on the local power grid,

allow for more fault tolerant and reliable operation of the IT infrastructure, and even,

reduced cost of ownership. A datacenter however comprises of thousands to tens of

thousands of server machines, working in tandem to provide services to the clients, see

for example [8] and [9]. These datacenters can be owned by the cloud provider or

federated by the cloud provider.

In this thesis, we focus on SLA-based, energy-efficient resource management in

cloud computing systems. High-level picture of the datacenters and related work are

presented in the chapter 1.2 to 1.6. Moreover, description and related work for the

resource management in a multi datacenter setting which is called geographical load

balancing is presented in section 1.7. A short summary of our work and contributions are

presented in section 1.8.

6

1.2 Datacenter Organization

Figure 1 shows the cyber physical components of a hosting center. Many of the

public or private hosting centers, e.g., Amazon’s, Google’s, have been known to use

containerized datacenter architecture can accommodate 1000-1500 servers per container.

Figure 1. High level view of key components of a datacenter.

As shown in the figure, such a container or the leased space (room) may contain

multiple server pools, a storage area network (SAN), and CRAC units. All servers within

each server pool are identical in terms of their processor configuration, amount of

memory and hard drive capacity, and network interface card. These server pools are

connected to a storage area network (SAN) via an internal network. Server pools are

arranged in rows where each row contains a number of racks. In some cases Global

distributed file system (GFS) is used. GFS manages the disk drives that are connected to

each individual server directly. This approach is tend to be more complicated but it can

provide better performance in some distributed searches such as Google web search [10].

7

Figure 2. Internal organization of a conventional (raised floor, hot/cold aisle) datacenter.

Figure 2 shows such rows arranged in hot aisle/cold aisle structure. Each rack,

depending on its physical configuration, i.e., 42U or 24U, can host a number of chassis

(A, …, E in this figure). Each chassis can contain a number of servers. All servers in a

chassis obtain their power via Power Delivery Unit (PDU) of the chassis. Therefore each

chassis contains one PDU that is responsible for providing power to all the servers in that

chassis.

Based on the design of the datacenter different network fabrics are used. Intra-

rack network fabrics have more bandwidth than inter-rack network fabrics because of

cost. For example each server can have a Gbps link for intra-rack communication but a

rack with 40 servers may have only four to eight Gbps links for communication with

servers in other racks [11].

Apart from the IT infrastructure, the datacenter also contains cooling

infrastructure such as CRACs. Typically CRACs depend on the chiller, generally located

outside the datacenter facility, in order to cool the returned hot air. The cold air is passed

8

through raised floor plenums or through ceiling attached ones. In order to reduce the hot

air recirculation, the cooling infrastructure may impose hot aisle or cold aisle

containment which efficiently isolates the hot air from cold air and is known to improve

the cooling efficiency.

Power system in the typical datacenters contains uninterrupted power supply

(UPS) systems to switch between the normal electricity and secondary electricity feed

which is generated by a set of diesel generators (in datacenter location) in case of

interruption in the first electrical feed from electrical grid. These UPS contain batteries

to provide the electricity to the datacenter between failure and availability of the

generators. Moreover, UPS system removes power spikes from the electricity feed.

There are different sources of energy inefficiency in datacenters. The first factor

is Power Usage Effectiveness (PUE) [12]. This factor reflects the effectiveness of the

datacenter building structure and captures the ratio of the total power consumption in

datacenter to total IT power. Chillers, CARC and UPS system contribute in increasing

PUE factor in datacenters [11]. Different techniques including change of temperature to

increase the efficiency of CARC units and selecting high-efficiency gear are presented to

reduce the PUE metric.

The second inefficiency factor in datacenters is measured by Server PUE (SPUE).

This metric captures the ratio of total power delivered to server to the useful power.

Power supply, voltage regulator module and fan power losses affect SPUE parameter.

Ratio of total power consumption to the useful power in servers can be calculated by

9

PUE×SPUE. New techniques for server design and more efficient datacenter designs

improved this factor a lot in the past years [11].

The last term in calculating the energy-efficiency of a datacenter is to calculate

the energy consumption of the servers per computation unit. We do not discuss details of

these calculations but it is shown that the power efficiency metric is improved by

increasing the load of servers [11]. The most important reason behind having the best

energy efficiency at 100% load in servers is the energy non-proportional behavior of the

servers [13]. This means that servers with idle status consume a big portion of their peak

power consumption. The fact that most of the times, servers are utilized with between 10

to 50% of their peak load and discrete frequent idle times of servers [11] amplify this

issue in the datacenters.

Importance of designing servers with low idle power consumption (to save the

power consumption in frequent idle times) and with maximum energy efficiency in 30 to

50% utilization (to optimize the frequent case) is discussed in [11] and [13]. Effects of

using energy proportional servers in datacenters are studied in [14]. The authors report

50% energy consumption reduction by using energy proportional servers with idle power

of 10% of peak power instead of typical servers with idle power consumption equal to

50% of the peak power. Increasing the energy efficiency of the disk, memory, network

cards and CPU with exploring different design techniques may help in having energy

proportional servers. Different Dynamic Power Management (DPM) techniques such as

dynamic voltage scaling (without latency penalty) and sleep mode for Disk and CPU

components (with latency penalty) can increase the energy proportionality of the servers.

10

The process of power management in datacenters includes at least three main

steps [11]: (i) estimating or measuring the power consumption profile of the computing

systems, (ii) scheduling the job or placing the VMs on the physical server by determining

consolidation potentials, and, (iii) understanding the effect of the statistical behavior of

the workload on the power consumption of servers to plan for serving workloads on a

group of servers with a power less than the required peak power. Because of this effect,

efficient power provisioning for the datacenter is a big challenge and should be addressed

in design process [14].

A datacenter may host clients of dissimilar nature, e.g., high performance

computing clients or multi-tier internet application, such as e-commerce, clients. Clients

requiring simple computing infrastructure may view hosting center as one big pool of

servers whereas clients running multi-tier applications may view hosting center as a pool

of servers arranged in many tiers, each with its own unique functionality.

Similar to a computer, datacenter needs Operating System (OS) software to

manage the resources and provide service to applications. This OS is composed of

different parts like a desktop OS. For example, important roles of a datacenter OS is

described in [11] including resource management, hardware abstraction, deployment and

maintenance and programming frame work. The following paragraphs describe these

roles with more details from [11].

The complexity of resource management and providing service to application in a

datacenter is much higher than the complexity of resource management in a desktop

computer because datacenter is composed of thousands of computers, networking and

11

storage devices. Resource manager in datacenter OS maps the user tasks to hardware and

provide task management services. This resource manager can provide SLA-based

resource management or power-aware resource management if needed based on the

specified users’ needs in terms of processing, memory capacity and network bandwidth.

Hardware abstraction role of datacenter OS provides basic services for tasks like

message passing, data storage and synchronization in cluster level.

Software image distribution and configuration management, monitoring service

performance and quality, and triaging alarms for operators in emergency situations are

examples of tasks done in deployment and maintenance part of datacenter OS.

Monitoring service performance in datacenter is composed of application performance

monitoring and debugging tools and platform-level monitoring tools. For each

application, datacenter OS receives the performance metrics like response time and

throughput regularly. These massages can help to correct the resource management

decisions made and to avoid more disruption in the application performance.

Performance debugging tools provide details of interaction between applications running

on the servers. These data can help the datacenter resource manager to make decision

when needed. Also platform-level monitoring tools monitor the operation of servers in

datacenter to avoid software failure and decide in case of hardware failure.

To ease the developing of software for software developers for datacenter

applications and to hide the complexity of a large computing system, programming

framework like MapReduce are used. These frame work automatically handle the data

partitioning, distribution, and fault tolerance.

12

In addition to datacenter-level software, platform-level and application-level

software are employed in datacenter. Platform-level software provides service to the

application assigned to servers. These services include providing common kernels,

libraries and OS expected to be present in each server. On the other hand, Application-

level software implements a specific service in datacenter. Online service and offline

computation (batch applications) are two categories of the services provided in

datacenters. Online services like web search are sensitive to response time of the

application but batch applications like creating index for web search are throughput

sensitive. This means that these categories need different resource types and different

resource management approach in datacenter.

1.3 Datacenter Management

A datacenter resource management system is comprised of three main

components: a resource arbiter, a power manager, and a temperature manager.

An exemplary architecture for the datacenter resource management system with

emphasis on the resource arbiter is depicted in Figure 3. In this architecture, the resource

arbiter handles the application placement and application migration.

To assign tasks to resources in a datacenter, one must monitor the resource

availability and performance of the physical servers in the datacenter. In addition, the

resource arbiter must interact with the power and thermal managers. For example, if the

power manager has limited the peak power consumption of a server (or a group of

servers), the resource arbiter should consider this limitation when assigning a new task to

13

the server(s). On the other hand, the power manager tries to minimize the average power

consumption in servers while considering the performance constraints for tasks assigned

to servers as set forth by the resource arbiter. Similarly, the resource arbiter must use the

information provided by the thermal manager to decrease the workload of hot servers. At

the same time, the thermal manager tries to control the temperature of active servers

while meeting the per-task performance constraints set forth by the resource arbiter.

Related work for each part of the datacenter manager is presented in the following

sections.

Figure 3. An example of resource management architecture in a datacenter.

14

1.4 Resource Arbiter related work

Several versions of the resource management problem have been investigated in

the literature. Some of the prior work focuses on maximizing the number served tasks in

a datacenter (or total revenue for the datacenter operator) without considering energy

cost. Example references are [15] and [16], where the authors present heuristic periodic

solutions based on network flow optimization to find a revenue maximizing solution for a

scenario in which the total resource requirement of tasks is more than the total resource

capacity in the datacenter. The resource assignment problem for tasks with fixed

memory, disc, and processing requirements is tackled in [17], where the authors describe

an approximation algorithm for solving the problem of maximizing the number of tasks

serviced in the datacenter.

Another version of the resource management problem is focused on minimizing

the total electrical energy cost. The constraints are to service all incoming tasks while

satisfying specified performance guarantees for each task. A classic example of this

approach is the work of Chase et al. in [18] who present a resource assignment solution in

a hosting datacenter with the objective of minimizing the energy consumption while

responding to power supply disruptions and/or thermal events. Economics-based

approaches are used to manage the resource allocation in a system with shared resources

in which clients bid for resources as a function of delivered performance. The presented

mechanism of accepting bids by the hosting datacenter considers the IT power cost in the

15

datacenter. In this paper, the CPU cycle count is used as the only (unified) resource in the

datacenter.

Yet another version of the resource management problem considers the server and

cooling power consumptions during the resource assignment problem. A good

representative of solution approaches to this problem is reference [19], in which

Pakbaznia et al. present a periodic solution for concurrent task assignment and server

consolidation. In this paper, workload prediction is used to determine the resource

requirements (and hence the number of ON servers) for all incoming tasks for the next

decision epoch. Next considering the current datacenter temperature map and using an

analytical model for predicting the future temperature map as a function of the server

power dissipations, locations of the ON servers for the next decision epoch are

determined and tasks are assigned to the ON servers so that the total datacenter power

consumption is minimized.

Considering the effect of consolidation on the performance and power

consumption of servers is the key to reducing the total power consumption in a datacenter

without creating performance problems. For example, Srikantaiah et al. [20] present an

energy-aware resource assignment based on an experimental study of the performance,

energy usage, and resource utilization of the servers while employing consolidation. Two

dimensions for server resources are considered in this paper: disk and CPU. Effect of

consolidation on performance degradation and energy consumption per transaction is

studied. The authors recommend considering consolidation carefully so as not to over-

utilize servers in any resource dimension. The problem of application placement into a

16

minimum number of ON servers, which is equivalent to the well-known bin-packing

problem, is discussed and a greedy algorithm for solving it is described.

A good example of considering server power consumption and migration cost in

the resource assignment problem is reference [7], which presents power and migration

cost aware application placement in a virtualized datacenter. In particular, the authors

present a power-aware application placement controller in a system with heterogeneous

server clusters and virtual machines. For this problem, all VMs can be served in the

datacenter and each VM has fixed and known resource requirements based on the

specified SLA. This work tries to minimize power and migration cost. An architecture

called pMapper and a placement algorithm to solve the assignment problem are

presented. Various actions in pMapper algorithm are categorized as: (i) soft actions like

VM re-sizing, (ii) hard actions such as Dynamic Voltage Frequency Scaling (DVFS), and

(iii) server consolidation actions. These actions are implemented by different parts of the

implemented middleware. There is a resource arbiter, which has a global view of the

applications and their SLAs and issues soft action commands. A power manager issues

hard action commands whereas a migration manager triggers consolidation decisions in

coordination with a virtualization manager. These managers communicate with an

arbitrator as the global decision making part of the system to set the VM sizes and find a

good application placement based on the inputs of different managers. SLA revenue loss

due to performance degradation as a result of the VM migration is used as the migration

cost. To optimally place VMs onto servers, the authors relay on power efficiency metric

to rank the servers because creating a model for all mixes of all applications on all servers

17

is infeasible. A heuristic based on a first-fit decreasing bin-packing algorithm is presented

to place the applications on servers starting with the most power-efficient server.

The problem of resource allocation is more challenging in case of having clients

with SLA contracts with the datacenter owner who would like to maximize its profit by

reducing the SLA violations, decreasing the operational cost and maximizing the profit

by increasing the customers without having to increase the physical assets (resource

overbooking) [21].

Many researchers in different fields have addressed the problem of SLA-driven

resource assignment. Some of the previous works consider probabilistic SLA constraints

with violation penalty, e.g. [22] and [23]. Some other works consider utility function-

based SLA [24, 25, 26, 27]. In [28], we adopt a SLA with a soft constraint on the average

response time and solve resource assignment problem for multi-tier applications.

Different approaches like reinforcement learning [29] and look-ahead control theory [30]

are also presented to use in the resource assignment problem considering SLA

constraints. Along with these periodic SLA-based resource assignment solutions, some

reactive resource assignment solutions to avoid SLA constraint violation are presented in

the literature [31] and [32].

Modeling the performance and energy cost is vital for solving the resource

assignment problem. Good examples of theoretical performance modeling are [33] and

[34]. Benani et al. [33] present an analytical performance modeling based on queuing

theory to calculate the response time of the clients based on CPU and I/O service times.

Urgaonkar et al. [34] present an analytical model for multi-tier internet applications based

18

on the mean-value analysis. An example of experimental modeling of power and

performance in servers is presented in [35].

1.5 Power manager related work

Power management is one of the key challenges in datacenters. The power issue is

one of the most important considerations for almost every decision in a datacenter. In this

context, the power issue refers to power distribution and delivery challenges in a

datacenter, electrical energy cost due to average power consumption in the IT equipment

and the room air conditioning, and power dissipation constraints due to thermal power

budgets for VLSI chips.

Figure 4 depicts a distributed power management architecture composed of

server-level power managers, plus blade enclosure and rack-level and datacenter-level

power provisioner, denoted as SPMs, EPPs, and DPP, respectively. There is one SPM per

server, one EPP per blade enclosure, and a single DPP for the whole datacenter. This

architecture is similar to the four-layer architecture presented in [36]. The only difference

with the architecture presented in [36] is that the authors in [36] present two server-level

power managers. The first one reduces the average power consumption and the second

one avoids power budget violation in the server.

A number of dynamic power provisioning policies have been presented in the

literature, including [14], [36] and [37], where the authors propose using dynamic (as

opposed to static) power provisioning to increase the performance in datacenter and

decrease power consumption. From another perspective the problem can be seen as

predicting how many computing infrastructure can be safely deployed with a given power

19

budget. In the following paragraphs reference [14] is explained as the representative work

in this area.

Fan et al. [14] present the aggregate power usage characteristics of a large

datacenter for different applications over a long period of time. These data can be

deployed to maximize the use of the deployed power capacity in datacenters and reduce

the risk of power budget or performance constraint violation. The results show a big

difference between theoretical and practical power consumption of server clusters. This

Figure 4. An example power management architecture and its relation to resource arbiter and
thermal manager

20

difference grows by increasing the size of the cluster. This shows that the opportunity of

minimizing the power budget or increasing the number of servers with fixed power

budget increases as we go higher in the datacenter hierarchy (e.g. from rack to

datacenter.)

For example, it is reported that considering a real Google datacenter, ratio of the

theoretical peak power consumption to maximum practical power consumption is 1.05,

1.28 and 1.39 for rack, Power Distribution Unit (PDU) and cluster, respectively. The

authors discussed two approaches usually used for power and energy saving which is

DVFS and reducing the idle power consumption in servers and enclosures. Provided

results suggest that employing DVFS technique can result in 18% peak power reduction

and 23% energy reduction in real datacenters. Moreover, decreasing the idle power

consumption of the servers to 10% of their peak power can result in 30% peak power and

50% energy reduction in the whole datacenter.

Based on the provided measurements and results, the authors outline a dynamic

power provisioning policy in datacenters to increase the possibility of over-subscription

of available power and protect the power distribution hierarchy against overdraw. The

authors mention that over-subscribing power in racks is not safe but in PDU and cluster

(between 7 to 16% more machines) is safe and efficient. Also it is desirable to mix the

applications to increase the gap between theoretical and practical peak power to be able

to increase the over-subscription of power.

SPM is perhaps the most researched power management problem in the literature.

Various Dynamic Power Management (DPM) techniques that solve versions of this

21

problem have been presented by researchers. These DPM approaches can be broadly

classified into three categories: ad hoc [38], stochastic [39], and learning based methods

[40].

DPM techniques focus on putting the power consuming components to idle mode

as frequently as possible to maximize the power saving. Studies on different datacenter

workloads [13], [14] and [41] show frequent short idle times in workload. Because of

short width of these idle times, components cannot be switched to deep sleep modes

(with approximately zero power consumption) considering performance penalty of

frequent go-to-sleep and wakeup commands. On the other hand, idle power modes for

usual servers have relatively high power consumption with respect to the sleep mode

power consumption. Consolidation can be an answer to this problem to reduce the total

power consumption which is the result of stochastic overlap between idle times of

different applications on server. Recently, a number of new architectures have been

presented for hardware with very low (approximately zero) idle mode power

consumption (energy proportional servers) to be able to reduce the average power

consumption in case of short idle times [14] and [3].

Different work in literature proposed different power management architectures

and algorithms for datacenter. Distributed provisioning and management of power and

high energy consumption of the clusters are big challenges in the datacenter power

management. Control theory, coordinated, hierarchical and distributed management, and

ad-hoc approaches are presented in different papers. Most of the previous work use static

power provisioning policy and try to minimize the total energy required to satisfy the

22

performance requirements or minimize the task or application or VM migration cost in

coordination with resource arbiter.

As explained in the previous sections, resource assignment problem is strongly

tied to the power management problem. For example, the most effective method of power

saving which is turning a server off is solely decided by the resource arbiter. Also power

manager feedbacks can help the resource arbiter to correct some of the performance

requirement violations. Moreover, resource arbiter uses some of the current and historical

data from power management (e.g. power budget violation statistics and approximated

power budget for servers and racks) as an input for resource assignment decisions.

Therefore, many work proposed resource and power management together. In the

following paragraphs, a brief overview of the datacenter power (and performance)

management architectures proposed in previous work is presented. Note that most of the

presented approaches propose structures or algorithms for resource assignment and power

management together with more focus on power management and saving techniques.

The hierarchical power management structure presented in Figure 4 is similar to

the hierarchical and coordinated power management presented by Raghavendra et al.

[36]. In addition to the presented power managers, VM controller is designed to decrease

the average power (operational cost) in the system by consolidating the VM and turning

off unused servers. This controller uses the resource utilization of the servers as input to

decide about VM assignment to decrease the power consumption in racks or datacenter.

In this paper, the authors proposed a greedy heuristic for this controller. The Proposed

23

power management is validated from correctness, stability, and efficiency aspects in a

simulation based environment.

Control theory has been applied to manage power and performance in datacenters.

Chen et al. [42] proposed an autonomic management system for application placement

and energy management in hosting datacenters. Two different techniques for power

management are used in the proposed model: (i) turning off inactive servers, and, (ii)

dynamic voltage scaling. Energy consumption of the servers and wear-and-tear cost (cost

of turning on/off a server) are considered in that model. Two different approaches to

minimize the power consumption of the datacenter constrained to satisfying SLA

requirements (average response time constraint) are presented based on queuing theory

models and feedback control theory. Moreover, a hybrid method is proposed to use both

of these approaches in different decision makings in the system.

Wang et al. [43] proposed a coordinated architecture that includes a cluster-level

power control loop and a performance control loop for every VM. These control loops

are configured to achieve desired power and performance objectives in the datacenter.

Cluster-level power control monitors the power consumption of the servers and set the

DVFS state of the servers to reach the desired power consumption. VM performance

control loops dynamically controls the VM performance by changing the resource (CPU)

allocation policy. Moreover, a cluster-level resource coordinator is designed to migrate

the VMs in case of performance violation.

Decision making in the power manager can be distributed or coordinated.

Distributed decision making in some cases is forced by the specific hardware or software

24

used in the servers. For example, servers DVFS is usually implemented in hardware and

cannot be controlled from outside. Another difference between distributed and

coordinated decision making is decision epoch length at different levels (longer decision

epoch in the coordinated level). Different work in the literature explore different level of

decision making in the datacenter power (and performance) manager. For example,

individual and coordinated voltage and frequency scaling, turn on/off policy are proposed

and compared with each other from power saving perspective [44]. Considering the

average response time in servers, individual DVFS policy results in the least saving

(18%) and the policy that considers only turning on/off servers results in 42% saving in

power consumption. Moreover, 60% power saving is reported for a policy with

coordinated voltage and frequency scaling along with turning servers on/off based on the

workload.

Beloglazov and Buyya [45] propose a management architecture comprises

dispatcher, local and global managers. Local managers migrate the VMs in case of SLA

violation, low utilization of server resources, high temperature and high amount of

communication with another VM in a different server. Global managers receive

information from local managers and issue commands for turning on/off servers,

applying DVFS or resizing VMs.

Liu et al. [46] presented an architecture comprises migration manager and

monitoring services to reduce power consumption in datacenter considering SLA

requirements. Physical machine’s cost, VM status and VM migration cost are used as

inputs of the proposed algorithm. The algorithm searches between different possible VM

25

placement to minimize the total cost and execute the live migration moves that system

needs.

Using the power management capability of VMs in SPM is studied in [47]. The

proposed power management aims to control and globally coordinate the effect of the

diverse power management policies applied by the VMs supporting the isolation between

VMs and physical servers. With this management approach, isolation and independence

properties are maintained by sending power states to VMs. This enables VM to know the

power management capabilities independent of the physical hardware. Changes to power

state of the physical nodes are made considering the generated command by VMs as a

hint. These commands are ignored in a basic system wherein VMs do not know the

power management capabilities of the physical machine.

1.6 Thermal Management

Accounting for up to 30% of the total energy cost of a datacenter, the cooling cost

is one of the major contributors of the total electricity bill of large datacenters [48]. These

values are shrinking by introducing new cooling techniques and new structures for

datacenters. There has been several work attempting to reduce the energy required for

cooling in a datacenter. The “hot-aisle/cold-aisle” structure, which has become common

practice these days, is one of the attempts to improve the cooling efficiency of

datacenters.

The cooling system is changed in container-based datacenters. In these

datacenters, heat exchange and power distribution network are integrated into a standard

shipping container that contains servers. Chilled water is used in the container-based

26

datacenters to remove heat from flowing air in the datacenters similar to CRAC unit in

rack-based datacenters. The container-based datacenters show higher energy efficiency

(less power delivery loss and less cooling cost) compared to today’s typical datacenters

and it is predicted that this structure will be used for developing next generation

datacenters [11].

There are different approaches introduced for reducing the power consumption of

the cooling system in datacenter. Some works [49, 50, 51, 52, 53] considered

temperature-aware task placement to reduce the CRAC power consumption in

datacenters.

Sharma et al. [50] proposed a power provisioning scheme to reduce the datacenter

cooling power consumption. In this approach, the power provisioned for each server is

inversely related to the measured temperature of that server.

To decrease the maximum temperature in datacenter, and increase the supplied

cold air temperature for better energy efficiency in the cooling system, Moore et al. [51]

presented a temperature-aware workload placement. The proposed temperature-aware

workload placement is in fact a power provisioning policy based on the temperature

(status) measurement in the system. This means that a portion of the total power

requirement of workloads is assigned to each server based on the server temperature in

the previous measurement. The authors claimed that assigning power to servers based on

the measured temperature can minimize the maximum temperature in the system and then

the cooling system can provide the cool air with higher temperature resulting in higher

energy efficiency. A discrete-version of power provisioning policy which is proposed in

27

[50] is introduced in this work to consider discrete power modes in the servers. The

authors also proposed a method to minimize the maximum temperature in datacenter

based on minimizing the heat recirculation. Heat recirculation, which means using hot air

instead of cold air for cooling the servers, can occur because the cold air is not supplied

to the system or the separation between cold aisle and hot aisle is not perfect. A method

to minimize the heat recirculation is proposed which includes a calibration phase to find

the datacenter-related values of heat recirculation for different parts of the datacenter and

then use it with online measurements to decide about the power provisioning policy in the

datacenter.

The idea of minimizing heat recirculation using temperature-aware task

scheduling (application placement) is also proposed in [52]. The task scheduling policy in

this work focuses on making the inlet temperature as even as possible to decrease the

cooling system power consumption. Tang et al. [53] also proposed two different solutions

for minimizing heat recirculation in datacenters based on Genetic algorithm and

sequential quadratic programming.

A recent work [54] proposes using thermoelectric coolers as power management

mechanism inside the servers to allow the datacenter cooling system to increase the

supply cold air temperature to minimize the cooling system power consumption. The

proposal is evaluated with simulation and the authors report 27% cooling power

consumption reduction using the proposed scheme in a typical datacenter without

decreasing lifetime of the servers.

28

Some of the previous work focused on modeling techniques or tools for

datacenter thermal management [55] and [56]. These work investigated the common

raised floor hot aisle/cold aisle structure for cooling in datacenter.

The effect of asymmetry in CRAC system is studied in [55]. After investigating

thermal models for different datacenters with different sizes, authors presented some

optimization techniques in cooling provisioning. For instance, they proposed using

variable load CRAC units or different CRAC layout in datacenter to minimize the power

required to satisfy the critical temperature constraint.

A 3D computational fluid dynamic-based tool for thermal modeling of rack-

mounted datacenters is presented in [56] and evaluated with real-world system. This tool

can be used in CRAC design process but because the tool has a long execution time, it is

not possible to use it in dynamic decision makings.

1.7 Geographical Load Balancing

Datacenters are usually designed for the worst-case workload. At the same time,

datacenter workload changes drastically depending on the time of the day and day of the

week. Considering the dynamic energy pricing trend [57], price of the electrical energy

purchased form the utility companies may be a function of time of day or the peak power

consumed by the datacenter. Energy prices at different sites of a geographically

distributed cloud system can be different due to local time differences and differences in

local utility company’s energy prices. To reduce the reliance on brown sources of

electricity and supplement/diversify the power generation sources for a datacenter, there

is a trend to generate electricity from renewable sources such as wind and solar at the

29

datacenters’ site [58, 59]. Geographically distributed datacenters associated with a cloud

system create load balancing opportunities that can result in a reduction in the total

number of computing resources provisioned in datacenters (considering the time

difference between peak workload times in different locations), as well as lowering

operational cost of each datacenter by purchasing electrical energy at lower prices

(considering dynamic energy prices at each site depending on the local time) and/or

increasing the utilization of the renewable power generated in some datacenters.

Geographical load balancing (GLB) can be defined as a series of decisions about

dynamic assignment and/or migration of virtual machines (VMs) or computational tasks

to geographically distributed datacenters in order to meet the SLAs or service deadlines

for VMs/tasks and to decrease the operational cost of the cloud system.

The GLB can be seen as the high-level resource management problem in the

cloud system. In the rest of this section, a review of the most relevant work to the GLB

problem is provided.

Some prior work has focused on reducing the operational cost of the cloud system

by using the load balancing opportunity – see [60] and [61]. Model predictive control has

been used to solve the GLB problem using the estimated future load, e.g., [30] and [62].

These studies consider homogenous datacenters (where all servers are identical), which is

far from the real-world situations. Reference [63] considers heterogeneous datacenters

(comprised of servers with different performance and power dissipation figures, and even

instruction sets), which results in a more elaborate load balancing mechanism.

Unfortunately, this work still ignores the heterogeneity of VMs, VM packing problem,

30

and realistic VM migration cost and can result in low performance under realistic

scenarios.

GLB increases the chances for effective utilization of renewable power sources in

datacenters. For instance, a recent work in [64] investigates the feasibility of powering up

a geographically distributed datacenter with only renewable power. A possible

disadvantage of GLB is that the access to cheap electrical energy purchased from the

local utility companies may result in an increase in the datacenter’s power consumption.

Considering the environmental cost of energy usage (e.g., carbon emission) can eliminate

this possibility. For example, reference [65] shows that if the electricity price is set based

on the share of the brown energy to the total produced energy, GLB can reduce the brown

energy usage. Similarly, Le et al. [66] present algorithms that reduce the brown energy

usage in geographically distributed datacenters.

Considering offline computation adds another perspective to the GLB problem i.e.,

the possibility of computation deferral. Computation deferral is only appropriate for batch

jobs with loose deadlines and can be used in combination with online service application

load scheduling to further reduce the total energy cost or brown energy consumption of a

datacenter. Reference [67] focuses on computation scheduling in datacenters and

computation deferral to minimize the energy cost. Reference [68] solves the GLB

problem considering online service and batch applications and cooling supply selection in

datacenters. The cooling supply choices considered in this paper are to use a chiller or

outside air cooling.

31

1.8 Structure of this thesis and parameter definition

This thesis integrates and extends our prior work. In particular have been

investigating and advancing the state-of-the-art for energy-efficient and SLA-driven

resource management in cloud computing systems and datacenters from different

perspectives. Utility function-based SLAs were considered in reference [26] in order to

assign VMs to server clusters and allocate resources to the VMs. A multi-dimensional

resource allocation solution for multi-tier applications in a datacenter with heterogeneous

servers was presented in reference [28] and [69]. In these works, we considered SLA

contracts with some guarantee on the average response time of applications.

SLA contracts with guarantees of rapid response time and/or penalties paid for

violating the stipulated response time constraints were considered in references [70] and

[71]. In particular, in reference [70], a centralized resource management system was

presented that determines the amount of resource that must be allocated to VMs and

subsequently assigns VMs to servers so as to reduce the operational cost of datacenters.

A scalable, hierarchical resource management structure considerate of cooling-related

power consumption and peak power availability in datacenters was presented in reference

[71]. In reference [72], considering given VM resource requirements, we presented a VM

replication and request forwarding solution that results in higher energy efficiency with a

small performance degradation with respect to the case without VM replication.

A geographical load balancing solution for a multi-datacenter cloud system was

presented in reference [73] , which considers the heterogeneity of VMs and datacenters,

cooling system inefficiency, and peak power constraint in each datacenter in order to

32

decide about VM assignment to datacenters or VM migration from one datacenter to

another. This work was focused on interactive applications, which are response time-

sensitive. A solution for the assignment and scheduling of batch jobs in distributed

datacenters to decrease the operational cost of the cloud system was presented in

reference [74]. In this work, each batch job was modeled with a directed acyclic graph of

heterogeneous tasks.

In this thesis we present SLA-driven energy efficient resource management in

datacenters and cloud systems with geographically distributed datacenters. First, a

centralized VM placement solution to minimize energy and migration cost is presented in

Chapter 2. The contribution of the presented solution in this chapter is to simultaneously

determine the VM assignment and the amount of resource allocated to each VM. The

presented approach results in higher energy efficiency and lower operational cost due to

the flexibility of the resource allocation solution.

Hierarchical SLA-based power/performance/cooling aware resource management

in a cloud computing system is presented in [71]. The presented resource management

structure resolves the scalability issue in periodic and reactive optimization procedures.

Moreover, considering cooling-related power consumption and peak power constraints in

the formulation of the resource management problem improves the performance of the

presented solution with respect to previous work.

 Resource management solution in a cloud system comprised of geographically

distributed datacenters can be decomposed to two levels. The first resource manager is a

cloud-level resource manager that decides about assigning VMs to datacenters whereas

33

the second resource manager deals with what is done inside each datacenter. Resource

management in the cloud system, which is called geographical load balancing, is

presented in [73]. Our contribution in this chapter is to introduce an algorithm that

assigns heterogeneous VMs to heterogeneous datacenters considering of the (predicted)

VM workload, the VM active period, dynamic energy prices, and the amount of locally

generated renewable energy in a datacenter’ site.

To increase the readability of the thesis, all notation used in each chapter is listed

and precisely defined at the beginning of each chapter. Moreover, notation common to all

chapters is presented in Table I.

TABLE I. NOTATION AND DEFINITIONS OF COMMON PARAMETERS IN THIS THESIS

Symbol Definition
 Predicted average request rate of the ith clientߣ
ܴ
௧, ݂ Contract target response time and penalty values for each request in the SLA contract

݄
Hard constraint on the possible percentage of violation of the response time constraint
in the SLA contract

 ௦ Average service rate of requests of the ith client on a unit processing capacity of server sߤ
݉ Required memory for the ith client

௦ܥ
, ܥ௦ Total processing and memory capacities of server s
݉ܿ Migration cost of the ith client

௦ܲ
, ௦ܲ

Constant and dynamic (in terms of utilization) power consumption of server s
operation.

 Duration of the decision epoch in seconds ߠ
Ψ	 Energy price

Pୢ୫ୟ୶ Peak power limitation of datacenter d
 Peak to average power consumption ratio ܴܣܲ
	ܱܲܥ Coefficient-of-performance

 ௦ A pseudo-Boolean integer variable to determine if server s is ON (1) or OF (0)ݔ

߶	
Resource allocation parameter, depending on chapter superscript ݉ and are used to
determine the type of resource and subscript ݏ is used to determine the server.
Superscript ݀ and ݏ are used to identify the selected datacenter and servertype.

34

Chapter 2 . SLA-BASED OPTIMIZATION OF POWER AND

MIGRATION COST IN CLOUD COMPUTING

2.1 Introduction

Operational cost and admission control policy in the cloud computing system are

affected by its power and VM management policies. Power management techniques

control the average and/or peak power dissipation in datacenters in a distributed or

centralized manner. VM management techniques [75, 76, 77, 78, 20] control the VM

placement in physical servers as well as VM migration from a server to another one. In

this chapter, we focus on the SLA-based VM management to minimize the operational

cost in a cloud computing system.

Optimal provisioning of the resources is crucial in order to reduce the cost

incurred on the datacenter operators as well as minimize the environmental impact of

datacenters. The problem of optimal resource provisioning is challenging due to the

diversity present in the clients (applications) that are hosted as well as in SLAs. For

example: some applications may be compute-intensive while others may be memory

intensive, some applications may run well together while others do not, etc. In this

chapter, we focus on online service applications in cloud computing systems. Our goal in

this chapter is to minimize the total cost of the cloud computing system under

performance-related constraints—in particular, upper bounds on the response times

(service latencies) for serving clients’ requests. The operational cost in the cloud

35

computing system includes power and migration cost and the SLA violation penalty of

serving clients. A lower bound on the total operational cost is presented, and the average

effectiveness of the presented algorithm is demonstrated by comparing with previous

works’ algorithms and lower bound value. Content of this chapter is presented in

reference [70].

The outline of this chapter is as follows. In section 2.2, cloud computing system

model is presented. The optimization problem and the proposed algorithm are presented

in section 2.3 and 2.4. Simulation results and conclusions are given in the sections 2.5

and 2.6.

2.2 System Model

An SLA-aware resource allocation method for a cloud computing system is

presented to minimize the total operational cost of the system. The structure of the

datacenter, the VM manager (VMM), as well as performance model and type of SLA

used by the clients are explained in this section. To increase readability, Table II presents

key symbols used throughout this chapter along with their definitions.

2.2.1 Datacenter Configuration

In the following paragraphs, we describe the type of the datacenter that we have

assumed as well as our observations and key assumptions about where the performance

bottlenecks are in the system and how we can account for the energy cost associated with

a client’s VM running in a datacenter.

36

TABLE II. NOTATION AND DEFINITIONS IN CHAPTER 2

Symbol Definition
 Predicted average request rate of the ith clientߣ
ܴ
௧, ݂ Contract target response time and penalty values for each request in the SLA contract

݄
Hard constraint on the possible percentage of violation of the response time constraint in
the SLA contract

 ௦ Average service rate of requests of the ith client on a unit processing capacity of server sߤ

݉ Required memory for the ith client
௦ܥ
, ܥ௦ Total processing and memory capacities of server s
݉ܿ Migration cost of the ith client

௦ܲ
, ௦ܲ

 Constant and dynamic (in terms of utilization) power consumption of server s operation.
 Duration of the decision epoch in seconds ߠ
Ψ	 Energy price

௦ݕ
ఊ	 Pseudo Boolean parameter to show that if the ith client is assigned to server s in previous

epoch (1) or not (0)

 ௦ A pseudo-Boolean integer variable to determine if server s is ON (1) or OF (0)ݔ

	௦ݕ Pseudo Boolean parameter to show that if the ith client is assigned to server s (1) or not (0)
 ௦ Portion of the ith client’s requests served by server sߙ

߶௦	 Portion of processing resources of server s that is allocated to the ith client

A datacenter comprises of a large number of potentially heterogeneous servers

chosen from a set of known and well-characterized server types. In particular, servers of a

given type are modeled by their processing capacity (ܥ∗
) and main memory size (ܥ∗) as

well as their operational expense (energy cost), which is proportional to their average

power consumption. We assume that local (or networked) secondary storage (disc) is not

a system bottleneck. Each server is identified by a unique id, denoted by index s.

The operational cost of the system includes a term related to the total energy cost

(in dollars) of serving clients’ request. The energy cost is calculated as server power

dissipation multiplied by duration of each decision epoch in seconds (ߠ) and cost of

energy consumption in US dollars (Ψ). The power of a server is modeled as a constant

power cost (∗ܲ
) plus another variable power cost, which is linearly related to the

utilization of the server (with a slope of ∗ܲ
). Note that the power cost of communication

37

resources and cooling and air conditioning modules are amortized over the servers and

communication/networking gear in datacenter, and are thus assumed to be relatively

independent of the clients’ workload. More precisely, these costs are not included in the

equation for power cost of the datacenter in this chapter. Moreover, the server

maintenance costs are not considered in our formulation.

Each client is identified by a unique identifier, represented by index i. Each client

produces one or more VMs, which are executed on some servers in the datacenter. Each

client has also established an SLA contract with the datacenter owner.

2.2.2 VM Management System

Datacenter management is responsible for admitting the VMs into the datacenter,

servicing them to satisfy SLAs, and minimizing the operational cost of the datacenter.

We consider two main resource managers in the datacenter: VM manager (VMM) and

power manager (PM). An exemplary architecture for the datacenter management system

with emphasis on the VMM and per server PM is depicted in Figure 5.

Power manager is responsible for minimizing the average power consumption and

satisfying the peak power constraints (thermal or peak power capacity limitation) subject

to providing the required performance to VMs. Power management system in datacenter

includes hierarchical power provisioners and a power manager for each server. Power

provisioners distribute the peak power allowance between lower level power consumers

and make sure that these power budget constraints are met. Servers are located at the

lowest level of this hierarchy. Power manager in each server tries to minimize the

average power consumption subject to satisfying the peak power constraint and

38

performance requirements of the assigned VMs. This manager uses different dynamic

power management techniques such as DVFS and clock throttling to minimize the power

consumption.

Figure 5. VM management structure in a datacenter

VMM is responsible for assigning VMs to servers, determining their performance

requirements and migrating them if needed. VMM performs these tasks based on two

optimization procedures: periodic and reactive. In contrast to periodic optimization

procedure, reactive optimization procedure is performed when it is needed.

In the periodic optimization procedure, VMM considers the whole active set of

VMs, the previous assignment solution, feedbacks generated from power, thermal and

performance sensors, and workload prediction to generate the best VM placement

solution for the next epoch. The length of the epoch depends on the type and size of the

datacenter and its workload. In reactive optimization procedure, VMM finds a temporary

39

VM placement solution by migrating, admitting, or removing a number of VMs in order

to respond to performance, power budget, or critical temperature violations.

In this chapter, we focus on periodic optimization procedure in VMM. IN periodic

optimization procedure, clients’ SLA, expected power consumption of servers, and

migration cost of VMs are considered. Migrating a VM between servers causes a

downtime in the client’s application. Duration of the downtime is related to the migration

technique used in the datacenter. We assume that there is a defined cost in SLA contracts

for these short but infrequent downtimes. In this chapter, ݉ܿ denotes the migration cost

of the ith client’s VM in the datacenter. Previous assignment variable ݕ௦
ఊ (=1 if the ith

client was assigned to server s and 0 otherwise) is used to calculate the migration cost in

the system.

2.2.3 Performance Modeling

Performance of each client in the cloud computing system should be monitored

and necessary decisions should be taken to satisfy SLA requirements. We focus on the

online service applications that are sensitive to latency. A client in this system is

application software that can produce a number of requests in each time unit. To model

the response time of clients, we assume that the inter-arrival times of the requests for

each client follow an exponential distribution function similar to the inter-arrival times of

the requests in e-commerce applications [22]. The minimum allowed inter-arrival time of

the requests is specified in the SLA contract. However, the average inter-arrival time (ߣ)

of the requests for each client is predicted for the optimization procedures.

40

Streams of requests generated by each client (application) may be decomposed

into a number of different VMs. In case of more than one VM serving client ݅, requests

are assigned probabilistically i.e., ߙ௦ portion of the incoming requests are forwarded to

the server s (host of a VM) for execution, independently of the past or future forwarding

decisions. Based on this assumption, the request arrival rate for each application in each

server follows the Poisson distribution function.

There are different resources in the servers that are used by VMs such as

processing units, memory, communication bandwidth, and secondary storage. These

resources can be allocated to VMs by a fixed or round-robin scheduling policy. In this

work, we consider the processing unit and memory to have fixed allocation policy

whereas others are allocated by round-robin scheduling. Our algorithm determines the

portion of processing unit and memory allocated to each VM, which is assigned to a

physical server. The amount of memory allocated to a VM does not significantly affect

performance of the VM under different workloads as long as it is not less than a certain

value [16]. Hence, we assign a fixed amount of memory (݉) to the ith client’s VM on

any server that the client is assigned to.

Share of a VM from the processing unit determines the performance of that VM

in the cloud computing system. The portion of processing unit allocated to different VMs

(߶∗௦) on a server is determined by VMM at the beginning of the decision epoch.

However, these values can be changed in each server as a function of workload changes

or power/performance optimization at the server. VMM considers the clients’ workload

41

to determine the resource allocation parameters to control the wait time of the processing

queue for different applications based on SLA requirements.

A multi-class single server queue exists in servers that have more than one VM

(from different clients). We consider generalized processor sharing (GPS) model at each

queue; GPS model approximates the scheduling policy used by most operating systems,

e.g., weighted fair queuing and the CPU time sharing in Linux. Using this scheduling

policy, multi-class single server queue can be replaced by multiple single-server queues.

Note that the processing capacity of server s allocated to the ith client’s VM is calculated

as ܥ௦
߶௦.

The exponential distribution function is used to model the request service time of

the clients. Based on this model, the response time (“sojourn time”) distribution of a VM

(placed on server s) is an exponential distribution with mean:

തܴ ൌ
1

௦ܥ
߶௦ߤ௦ െ ߣ௦ߙ

 (1)

where ߤ௦ denotes the service rate of the ith client on server s when the a unit of

processing capacity is allocated to the VM of this client.

The queuing model used in this chapter is M/M/c, which is simplified to M/M/1

with probabilistic request assignment. In case of service times with general distribution,

this model is an approximation. This approximation is not appropriate for M/G/1 queues

with a heavy-tail service time distribution. However, since we defined SLA based on the

response time constraint, these kinds of service time distribution functions are not

encountered. A more general case than the model in (22) would be the M/G/c queuing

42

model. It is not possible to predict the response time distribution of these queues without

a numerical approach unless for specific service time distributions. For this reason we

believe that using the M/M/c model for this high-level decision making process is

sufficient, and more complex models can be used in problems with smaller input size.

2.2.4 SLA model for the clients

We use soft SLA constraints, in which cloud provider guarantees that the

response time constraint is satisfied for most of the time (݄∗ for example for 95 percentile

point of the requests) and for each violation of constraint, the cloud provider pays back

the client a fixed penalty value (∗݂). Having defined the SLAs for clients enables the

cloud provider to vary the VM resource size and improve the power efficiency in the

system.

The constraint on the response time of the ith client may be expressed as:

ሼܴܾݎܲ ܴ
௧ሽ ݄ (2)

where ܴ and ܴ
௧ denote the actual and target response times for the ith client’s requests,

respectively.

Using the model provided in the subsection 2.2.3, the response time constraint for

each VM can be expressed as follows:

݁ି൫ೞ
థೞఓೞିఈೞఒ൯ோ

 ݄ ⇒ ߶௦ ሺߙ௦ߣ െ ln ݄ ܴ

௧⁄ ሻ ௦ܥ௦ߤ
⁄ (3)

2.3 Problem Formulation

In this work, we focus on an algorithm for solving periodic VM placement

problem in datacenter. The goal of this optimization problem is to minimize the total

43

operational cost of the system including power and migration costs and expected SLA

violation penalty. VMM uses different methods to achieve this goal, including turning

on/off servers, migrating VMs, and changing the VM sizes. The cost minimization

problem (P1) is provided next:

௦ݔΨ	݊݅ܯ ௦ܲ
 ௦ܲ

߶௦

൩
௦

ߠ ݖ௦݉ܿ
௦

ߠ ݂
ߣߙ௦݁ି൫ೞ

థೞఓೞିఈೞఒ൯ோ

௦

(4)

Subject to:

௦ݔ ∑ ௦ߙ ,																																			 (5) ݏ∀

߶௦ ߣ௦ߙ௦൫ሺݕ െ ln ݄ ܴ
௧⁄ ሻ ௦ܥ௦ߤ

⁄ ൯,																																			 ∀݅, (6) ݏ

∑ ߶௦ 1,																 (7) ݏ∀

∑ ௦݉௦ݕ 									,௦ܥ (8) ݏ∀

∑ ௦௦ߙ ൌ 1,		 ∀݅ (9)

௦ݕ ,௦ߙ ௦ݕ 1 ௦ߙ െ ,ߝ ∀݅, (10) ݏ

௦ݖ ௦ݕ െ ௦ݕ
ఊ	 ∀݅, (11) ݏ

௦ݔ ∈ ሼ0,1ሽ,	ݕ௦ ∈ ሼ0,1ሽ	,	ݖ௦ ∈ ሼ0,1ሽ ,					 ∀݅, (12) ݏ

߶௦ 0, ௦ߙ 0,																			 ∀݅, (13) ݏ

where ߝ is a very small positive value, and, ݔ௦ is a pseudo-Boolean integer variable to

determine if server s is ON (ݔ௦=1) or OFF (ݔ௦=0). We call ߙ௦’s and ߶௦’s assignment

and allocation parameters, respectively throughout the chapter.

44

The first term in the objective function is the energy cost of the system, which is

composed of the idle energy cost if the server is active (ݔ௦=1) plus a cost proportional to

the utilization of the server. The second term in the objective function captures the

migration costs whereas the third term represents the expected penalty that cloud provider

will pay to the clients when SLA violations occur.

Constraint (5) ensures that if a client is assigned to a server, this server will be

active. Constraint (6) is the SLA constraint for the clients. Constraints (7) and (8) are the

processing and memory capacity constraints in a server. Constraint (9) makes sure that all

requests of each client are served in the system. Constraint (10) is used to generate a

helping pseudo Boolean parameter (ݕ௦) which determines if the ith client is assigned to

server s (ݕ௦=1) or not (ݕ௦=0). If the value of ߙ௦ is more than 0, the first inequality of

(10) sets the value of ݕ௦ to one and if the value of ߙ௦ is zero, the second inequality of

(10) force the value of ݕ௦ to be zero. Constraint (11) is used to generate a pseudo

Boolean parameter (ݖ௦) which indicates whether the migration cost for the ith client from

server s should be considered (ݕ௦=1 and ݕ௦
ఊ=0) or not. Finally, constraints (12) and (13)

specify domains of the variables.

P1 is a mixed integer non-linear programming problem. Integer part of problem

comes from the fact that servers can be active or sleep (ݔ௦) and VMs can be placed on a

physical machine or not (ݕ௦).

The problem of minimizing the energy cost plus the expected violation penalty is

an NP-Hard problem. It can be shown that the NP-hard bin-packing problem [79] can be

reduced to P1. Indeed, even deciding whether a feasible solution exists for this problem,

45

does not have an efficient solution. So, we utilize a simple greedy algorithm (similar to

First Fit Decreasing (FFD) heuristic [79]) to find a feasible solution to P1 for the given

inputs. Another important observation about this problem is that number of clients and

servers are very large; therefore, a critical property of any proposed heuristic should be

its scalability.

 Different versions of this problem are considered in the literature. The

shortcoming of the presented solutions in the previous work is an assumption about

knowing the size of VMs based on SLA requirements. Although this assumption is valid

for Platform as a Service (PaaS), it is not completely true in case of Software as a Service

(SaaS). There are two issues with this assumption in case of SaaS: First, SLA contracts in

SaaS do not specify the amount of required resource and cloud provider needs a method

to translate the target performance metric to the amount of resource for each client;

Second, considering fixed resource requirement eliminates the fact that cloud provider

may overbooked the datacenter and needs to sacrifice the performance of some of the

clients to be able to provide performance guarantee for others. Based on these reasons,

we consider the problem of determining the VM sizing and VM placement together.

2.4 Cost Minimization Algorithm

In this section, a heuristic for problem P1 is presented. The output of this heuristic

is VM placement and request forwarding policy and the expected performance level of

VMs in the next epoch.

A two-step algorithm is proposed for this problem. In the first step, clients are

ordered based on their status in the previous decision epoch and their estimated resource

46

requirements for the next decision epoch. Based on this ordering, VMs are placed on

servers one by one using dynamic programming and convex optimization methods. This

constructive approach may result in servers with low utilization or uncompetitive

resource sharing policy within the server. So, in the second step of the algorithm, two

local searches are executed to fix these issues.

Details of the SLA-based Power and Migration Cost Minimization algorithm or

SPMCM for short are presented below.

2.4.1 Initial Solution

To find an initial solution for P1, a constructive approach is used to assign clients

to servers and allocate resources to them based on the assignment solution in the previous

epoch. For this purpose, clients are divided into four groups. Clients that were served in

the previous epoch are placed in one of the first three groups. The first group includes

clients that leave the datacenter in the new epoch. The second group includes clients

whose request arrival rates drop in the new epoch and the third group includes clients

whose request arrival rates rise in the new epoch. Finally, the fourth group includes

clients that were not served in the previous epoch.

Clients within these groups are picked in the order of their average minimum

processing requirement for VMs (biggest VM first) but the groups are processed in

increasing order of their IDs. For clients in the first group, VMM releases their resources

and updates the resource availabilities. Resource availability in each server is defined as

the amount of processing and memory allocated to the existing VMs.

47

From other groups, the picked client is assigned to available servers to minimize

the operational cost of the cloud computing system. After finding a solution, resource

availabilities are updated and the next client is picked for the next assignment. The

formulation below describes the operational cost minimization problem for a picked

client (P2) (ith client).

Ψൣ൫	݊݅ܯ ௦ܲ
 ௦ܲ

൯߶௦൧
௦

ߠ ݖ௦݉ܿ
௦

 ߠ ݂ߣߙ௦݁ି൫ೞ
థೞఓೞିఈೞఒ൯ோ

௦
(14)

subject to:

߶௦ ߣ௦ߙ௦൫ሺݕ െ ln ݄ ܴ
௧⁄ ሻ ௦ܥ௦ߤ

⁄ ൯,																																			 (15) ݏ∀

߶௦ 1 െ ߶௦
,																 (16) ݏ∀

௦݉ݕ ሺ1 െ ߶௦ሻܥ௦,									 (17) ݏ∀

with the addition of constraints (9)-(13).

߶௦
 and ߶௦ denote the previously-committed portion of the processing and

memory resources on server s, respectively.

To eliminate the effect of integer parameter (ݔ௦) on the complexity of the

problem, the constant energy cost is replaced by a cost linearly proportional to the CPU

utilization of the server. Even with this relaxation, it can be shown that the Hessian

matrix for P2 is not guaranteed to be positive or negative definite (or semi-definite). This

means that the convex optimization methods cannot be directly applied to solve this

problem. However, fixing the value of ߙ௦ (between zero and one) makes the problem P2,

a convex optimization problem. More precisely, for a fixed ߙ௦, the allocation parameter

߶௦ can be found using convex optimization methods to minimize the energy cost and

48

SLA violation penalty. The complete solution for P2 called DPRA (dynamic

programming resource assignment) can thus be found by applying a dynamic

programming (DP) technique to examine different assignment parameters for different

servers and find the best solution as explained next.

Optimal solution of P2 for constant ߙ௦ values and for each server is calculated

using Karush-Kuhn-Tucker (KKT) conditions. Using this method, the partial cost of

assigning an ߙ௦ portion of the ith client’s requests to server s is calculated which includes

the energy cost, migration cost (if the client was not assigned to the server s in the

previous epoch) and expected SLA violation penalty value for this resource allocation.

Then assignment on different servers should be combined to construct a complete

solution for each client with the least total cost. DP technique is used to find the best VM

placement for the client (determining best ߙ௦) such that constraint (9) is satisfied.

Since we are dealing with cost minimization for one client at a time, there is no

need to consider the complete set of servers for each DP calculation; Instead we can use a

small number of servers from each server type plus servers that had served the client in

the previous epoch to find the best VM placement solution. Decreasing the number of

servers for each DP calculation decreases the time complexity of the solution.

The set of selected servers for the DP technique is different for clients in different

groups. In particular, for clients in the second group, only servers that served the client in

the previous epoch are considered. For clients in the third and fourth groups, servers that

served the client in the previous epoch, a set of servers from each server type with the

most unallocated resources, and possibly some inactive servers (from each server type)

49

are considered. To differentiate between using active and inactive servers for VM

placement, different slopes for energy cost for active and inactive servers are considered.

More precisely, ௦ܲ
 and ௦ܲ

 ௦ܲ
 may be used as the slopes of energy cost for active and

inactive servers, respectively. Note that, to change the slope of the energy cost for

different servers, we need to change the first term in the objective function in (14).

Algorithm 1 shows pseudo code of DPRA method.

Algorithm 1: Dynamic Programming Resource Assignment

Inputs: Ψ, ߠ, ݉ܿ, ߣ, ݂, ܥ௦
, ܴ

௧, ߤ௦, ௦ܲ
, ௦ܲ

, ߶௦
, ߶௦, ܥ௦, ܥ௦

, ݄ and ݉
Outputs: ߶௦, ߙ௦ (i is constant in this algorithm)

1 ga= granularity of alpha;
2 For (j = 1 to number of servers)
3 For (ߙ௦ ൌ 1/ga to 1)
4 ߶௦= optimal resource shares based on KKT conditions
5 C(s,	ߙ௦) = ߠߖ൫ ௦ܲ

 ௦ܲ
൯߶௦ ௦݉ܿݖ ߠ ݂ߙ௦ߣ݁ݔ൫െ൫ܥ௦

߶௦ߤ௦ െ ൯ܴߣ௦ߙ
௧൯

6 End
7 End
8 X = ga, and Y = number of servers
9 For (j =1 to Y)
10 For (x = 1 to X)
11 Dሾx,yሿൌ	infinity;	//Auxiliary	XൈY	matrix	used	for	DP	
12 For	ሺz	ൌ	1	to	xሻ	
13 Dሾx,yሿൌminሺDሾx,yሿ,Dሾx‐1,y‐zሿ	Cሺj,	z/gaሻሻ	
14 Dሾx,yሿൌminሺDሾx,yሿ,	Dሾx‐1,yሿሻ	
15 End
16 End
17 Back-track to find best ߙ௦’s and ߶௦’s to minimize cost

To improve the initial solution, we have used two local search methods; the first

one fixes the resource allocation parameters and the second one tries to make under-

utilized servers inactive and service their clients with higher energy efficiency on other

active or inactive servers.

50

2.4.2 Resource allocation adjustment

If more than one client is assigned to a server, constructive resource allocation

may not generate the global optimum allocation policy. We formulate resource allocation

problem in a server with fixed assignment parameters (ߙ௦) to minimize the energy cost

and SLA violation penalty as a convex optimization problem (P3):

Ψ	݊݅ܯ ௦ܲ
߶௦
∈ூೞ

 ݂ߙ௦ߣ݁ି൫ೞ
థೞఓೞିఈೞఒ൯ோ

∈ூೞ

	 (18)

subject to:

߶௦ ߣ௦ߙ௦൫ሺݕ െ ln ݄ ܴ
௧⁄ ሻ ௦ܥ௦ߤ

⁄ ൯,																																			 ∀݅ ∈ ௦ (19)ܫ

∑ ߶௦∈ூೞ 1,																 (20)

where ܫ௦ denotes the set of VMs assigned to server s.

P3 is a convex optimization problem and the solution can be found using KKT

optimality conditions. Note that this part of the VM placement algorithm is parallelizable

and can be implemented in power managers of the servers.

2.4.3 Turn OFF under-utilized servers

To decrease the total cost in the system, it may be possible to turn off some of the

under-utilized servers (after finding the initial solution) to reduce the idle energy cost of

the servers at the expense of more migration cost (for clients that were assigned to these

under-utilized servers in the previous epoch) or more SLA violation penalty.

An iterative method is presented to find the minimum cost solution based on the

results of the previous steps. In each iteration, a server with utilization less than a

threshold (e.g., 20%) is chosen and its VMs are removed. To assign the removed VMs to

51

other servers, DPRA method is used. Considering the high energy cost for inactive

servers, the DPRA method encourages the VMM to choose more SLA violation penalty

or pay for the migration cost instead of turning on a server. Note that these iterations do

not always decrease the total cost in the system; therefore, the global lowest total cost is

compared to the total cost after turning off a server, and the move is rejected if it is not

beneficial.

This iterative method is continued until all servers with low utilization have been

examined.

2.5 Simulation Results

To evaluate the effectiveness of the presented VM placement algorithm, a

simulation framework is implemented. Simulation setups, baseline heuristics and

numerical results of this implementation are explained next.

2.5.1 Simulation Setup

For simulations, model parameters are chosen based on true-to-life cloud

computing systems. The number of server types is set to 10. For each server type, an

arbitrary number of servers are placed in datacenter. Processors in server types are

selected from a set of Intel processors (e.g. Atom and Xeon) [80] with different number

of cores, cache, power consumptions and working frequencies. Active power

consumptions for different server types (excluding processor power consumption) are set

to vary uniformly between three to six times the power consumption of their fully-

utilized processor. Memory capacities of the servers are selected based on cache size of

52

the processors with a constant scaling factor of 1,500. Energy cost is assumed to be 15

cents per KWhr at all times. Request arrival rates of the client are chosen uniformly

between 0.1 and 1 request per second. The memory requirements for clients are also

selected uniformly between 256MB and 4GB. These parameters are borrowed from the

simulation setup of [27].

In each simulation, five different client classes are considered. Each client is

randomly picked from one of the client classes. The amount of penalty for different client

classes is selected based on the on-demand rates of Amazon EC2 cloud service [81].

Migration costs are set to be equal to downtime penalty of 65ms for each client. In

addition, ߤ௦’s are set based on the highest clock frequency for the servers.

Each simulation is repeated at least 1000 times to generate acceptable average

results for each case. In each simulation, a number of clients are assigned to the servers

for the first decision epoch. At the end of each epoch, an arbitrary number of clients leave

the datacenter while an arbitrary number of clients join the datacenter. Less than 10% of

current clients join or leave the datacenter at the beginning of each epoch. Moreover,

inter-arrival rate of the remaining clients in the system are chosen uniformly between 0.1

and 1 request per second for the next epoch. To account for the physical infrastructure

overhead, energy cost of the servers in the datacenter is multiplied by a factor of 1.3 as a

typical power usage effectiveness of current datacenters [11].

2.5.2 Heuristics for Comparison

We implemented a slightly modified version of the FFD [79] for VM placement,

called FFDP, and PMaP heuristic [7] as baseline. These approaches consider VMs that

53

have fixed processing size. We choose 1 2⁄ ݄∗ as the expected violation rate of the SLA

response time constraints for each client. From (23) the amount of processing units

required for different VMs on different physical servers were calculated.

The FFDP method picks clients based on the size of their VM (highest to lowest)

and assigns them to the first server with available resources from the server type that has

the lowest execution time for the client’s requests. The PMaP method is a VM placement

heuristic that tries to minimize the power and migration cost. PMaP computes the amount

of resources that VMs need, determines the active servers and place the VMs on the

servers. After these steps, a power and migration-aware local search is done to find the

final solution. Details of PMaP may be found in [7].

2.5.3 Numerical Results

Table III shows the performance of the SPMCM method for different number of

clients with respect to the lower bound on the total cost. This lower bound is the

summation of the lowest cost VM placement solution for each client. This table shows

that SPMCM generates a near optimal solution for VM placement that minimizes the

power and migration cost. Note that increasing the number of clients decreases the

distance between the total cost of SPMCM and the lower bound because of higher

consolidation possibility with higher number of clients.

Figure 6 demonstrates the normalized total cost of the datacenter using SPMCM,

FFDP and PMaP heuristics. It can be seen that the SPMCM algorithm generates solutions

with total cost, which is on average 35% less than FFDP solutions and 18% less than

PMaP solutions.

54

TABLE III. PERFORMANCE OF SPMCM W.R.T. LOWER BOUND COST

of clients Average performance Worst-case performance
250 1.15 1.36
500 1.14 1.23
1000 1.12 1.20
1500 1.09 1.21
2000 1.10 1.24
3000 1.09 1.19
4000 1.10 1.18

Figure 6. Normalized cost of the datacenter for different algorithms

Figure 7 shows the average run-time of SPMCM, FFDP and PMaP methods for

different number of clients. Average number of servers in each configuration is equal to

the 1.5 times the number of clients. It is clear that SPMCM is more complex than the

baseline and PMaP algorithms and hence the run-time of SPMCM is greater than two

other algorithms. SPMCM solution is found in less than 25 seconds when the number of

clients is equal to 1,000 and the number of servers in the datacenter is 1,500. Note that,

0

0.2

0.4

0.6

0.8

1

1.2

250 500 1000 1500 2000 3000 4000

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 o
f

di
ff

er
ne

t a
lg

or
it

hm
s

Number of clients

SPMCM FFDP PMaP

55

the VM placement algorithm is called only a few times in each charge cycle (one hour in

Amazon EC2 service [81]), e.g., 2-3 times per hour.

Figure 8 shows the average ratio of the expected violation rate of the response

time constraint to the maximum allowed violation rate under different penalty values

after VM placement using SPMCM. As expected, this ratio decreases by increasing the

penalty so as to avoid paying a large penalty cost. In other words, increasing the penalty

value forces the cloud provider to provision more resources for the client so that the

violation rate (and expected penalty) goes down.

2.6 Conclusion

In this chapter we presented a centralized VM placement to minimize the power

and migration cost in a cloud system. Soft SLA constraints on response time were

considered for the clients in this system. We presented an algorithm based on convex

Figure 7. Run-time of SPMCM on 2.8GHZ E5550 server from Intel for different number of clients

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7

R
un

-t
im

e o
f d

iff
er

ne
t a

lg
or

ith
m

s

Number of clients

SPMCM

MPP

FDD

56

optimization method and dynamic programming. Simulation results demonstrated the

effectiveness of our algorithm with respect to a lower bound and other well-known

solutions. Based on the results of this chapter, it can be seen that considering SLA with

effective VM placement can help to minimize the operational cost in the cloud computing

system.

Figure 8. Ratio of expected percentage of the response time constraint’s violation to the maximum
allowed percentage of violation

1 1.5 2 2.5 3 3.5 4 4.5 5
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Penalty value for missing a constraint (1/100 cents)

R
at

io
 o

f
vi

ol
at

io
n

 r
at

e
to

 t
h

e
m

ax
im

u
m

 p
os

si
b

le
 v

io
la

ti
on

 r
at

e

57

Chapter 3 . HIERARCHICAL SLA-DRIVEN RESOURCE

MANAGEMENT FOR PEAK POWER-AWARE AND ENERGY-

EFFICIENT OPERATION OF A CLOUD DATACENTER

3.1 Introduction

There are a number of different resource managers in the datacenter. A VM

manager (VMM) performs VM assignment and migration. A power manager (PM)

manages the power and performance state of servers whereas a cooling manager (CM)

manages the cooling and air conditioning units. In order to achieve the minimum

operational cost, coordination between these managers is necessary. Coordination

between VMM with one of the other managers in datacenter is presented in a number of

previous works, including [36] and [52].

The resource management policy in the cloud system is the key to determine the

operational cost, client admission policy, and quality of service. Considering a given set

of clients having signed appropriate SLAs with the cloud service provider, the resource

management problem in the cloud system can be described as the problem of optimizing

any of the aforesaid objective functions subject to the given SLAs. The resource

management decisions include assigning VMs to servers, allocating resource to each VM

and migrating them to address SLA violations, peak power constraints or thermal

emergencies.

58

To manage resources in a cloud system, a central manager (commissioned by the

cloud service provider) can cause reliability (single point of failure) and face scalability

issues. Regarding the latter point, the number of servers and VMs in a cloud system can

be in the order of tens of thousands to hundreds of thousands. This underlines scalability

as one of the key conditions that any resource management solution for the cloud system

should satisfy. In addition to the large scale of the problem, the number of performance

counters and power and temperature measurement signals from different parts of the

datacenter that should be monitored to make timely decisions (for example decision about

VM migration made at the millisecond rate) is huge and aggregating and analyzing this

amount of data in a centralized manager may result in low performance and large energy

overhead. Finally, there are certain management decisions that should be done very fast,

and hence, they must be made locally (instead of relaying the data to a central manager

and waiting for a command from that manager).

In this chapter, we present a hierarchical and decentralized decision making

architecture for resource management (VMM, PM and CM) in cloud datacenters. The

presented solution employs a set of decentralized decision makers (managers) who are

trying to solve a complex, large-scale, constrained, optimization problem with

cooperation. This cooperation involves making hierarchical decisions and exchanging

requests for VM assignment/migration and temperature/power capacity adjustments

among different managers. In best of our knowledge, there is no work in the literature

that presents this structure or considers all of these factors in its resource management

algorithm.

59

To show the effectiveness of the presented management scheme, a cloud system

simulation software tool has been developed. The simulator can model and do

performance evaluation of both centralized and decentralized resource management

architectures. Simulation results demonstrate that the decentralized resource

management algorithm reduces the operational cost of a datacenter by about 40% and

decreases the run-time of the algorithms up to 7 times with respect to a centralized

management structure presented in previous work.

This chapter is organized as follows. The cloud system configuration and

cost/performance metrics are presented in section 3.2. The resource management problem

is described in section 3.3. The periodic optimization strategy, a local search strategy to

improve the objective function, and algorithms to handle emergency cases are presented

in sections 3.4, 3.5 and 3.6 respectively. Simulation framework and results are presented

in section 3.7 whereas the chapter is concluded at the last section.

3.2 Cloud Datacenter and Key Parameters

In the following paragraphs, the assumed architecture of the cloud datacenter is

described. Next some key observations and assertions about where the system’s

performance bottlenecks are provided. Finally, we explain how to account for the

operational cost associated with a client’s VM running in the system. To increase

readability, Table IV presents key symbols used throughout this chapter along with their

definitions.

60

TABLE IV. NOTATION AND DEFINITIONS IN CHAPTER 3

Symbol Definition
 ,ௗ, ܴ, ܳܥ

ܵ
Set of containers, racks, chassis and servers insider datacenter, container, rack and
chassis, respectively

௦ܥ
, ܥ௦ Total processing and memory capacities of server s

௦ܲ
, ௦ܲ

Constant and dynamic (in terms of utilization) power consumption of the server s
operation.

ܲ
, ܲ

 Idle power consumption of chassis ݍ and rack ݎ

 Duration of the decision epoch in seconds ߠ
Ψ Electrical energy price

∗ܲ
ே Peak power capacity of PDN at a location in the datacenter

ௗܲ
௫ Peak power limitation of datacenter ݀
 Peak to average power consumption ratio ܴܣܲ

ܶ
௨௧, ܶ

 Outlet and inlet temperature of chassis ݍ

ܶ
௦	 Supply cold air temperature in container ܿ

ܶ௧	 Critical temperature in datacenter
 Coefficient-of-performance ܱܲܥ
݉ Required amount of memory bandwidth for VM ݅

݉ܿ
∗

Migration cost of VM ݅ in different levels (∗ can be chassis, rack, container or
datacenter)

ܴ
௧, ݂ Contract target response time and penalty values for each request in the SLA contract

݄
Hard constraint on the possible percentage of violation of the response time constraint
in the SLA contract

 Predicted average request rate of the ith clientߣ

߶௦
 ,	߶௦

Portion of processing resources or memory bandwidth of server s that is allocated to
VM i

 is ON (1) or OF (0) ݏ ௦ A pseudo-Boolean integer variable to determine if the serverݔ

 A pseudo-Boolean integer variable to determine if a chassis or rack is ON (1) or OFݔ ,ݔ
(0)

3.2.1 Cloud datacenter

In this chapter, container-based (as opposed to the older raised-floor) cloud

datacenters [11] are assumed. This type of datacenter relies on containment, close-

coupled cooling, and modularity to improve the datacenter’s energy efficiency. An

example of container-based datacenter structure is shown in Figure 9.

61

Figure 9 – An example of structure of container-based datacenter

In these datacenters, containers act as separate rooms for servers. Each container

includes a number of racks. Inside each rack, a number of chassis exist and each chassis

comprises of a number of blade servers. d denotes the cloud datacenter. Each container,

rack, chassis and blade server is identified by unique id throughout cloud datacenter,

denoted by c, r, q and s respectively. The set of containers inside datacenter, set of racks

inside container c, set of chassis inside rack r, and set of servers inside chassis q are

denoted by ܥௗ, ܴ, ܳ and ܵ respectively. We use notation |∗| to denote the cardinality

of each set.

We assume that containers may be different from each other in terms of their rack

configurations or type of blade servers deployed. However, each container is internally

homogenous i.e., it employs the same blade server throughout. Servers deployed in the

datacenter are chosen from a set of known and well-characterized server types. In

particular, servers of a given type are modeled by their processing capacity or CPU

62

cycles per second (ܥ௦
) and memory bandwidth (ܥ௦) as well as their average power

consumption as a function of their utilization factor. We assume that local (or networked)

secondary storage (disc) is not a system bottleneck (although our model can easily be

modified to consider this resource). The power consumption of a server is modeled as a

constant power consumption term (௦ܲ
) plus another variable power consumption term,

which is linearly related to the utilization of the server (with slope of ௦ܲ
). Similar to

servers, each chassis and each rack consume a constant power if they are idle. These

power consumptions are denoted by ܲ
 (accounting for the fans and power regulators

inside each chassis) and ܲ
 (accounting for fan, power regulators and networking gears

inside rack).

A network of high-efficiency uninterruptable power supply (UPS) units is used to

connect the power supplies (from utility companies or generated in datacenter’s site) to

the datacenter’s PDN. Electric power is fed to the datacenter using a PDN, which is

structured in a hierarchy similar to the one used to organize servers in the datacenter. As

a result, each chassis, each rack, and each container have specified peak power capacities

(cap).

Ψ determines the electrical energy price for the datacenter in the current epoch,

which is used to translate the average power consumption in each datacenter to energy

cost.

Power provisioning is an important responsibility of the resource managers in a

datacenter. Efficient power provisioning helps increase the performance and get the

63

highest profit from serving clients in the datacenter. There are two different sources for

power unavailability at some location in the datacenter: 1) PDN bottleneck and 2)

limitation on the total provided power to the datacenter. The first problem is much more

serious than the second one [14]. The peak power capacity of PDN at a location in the

datacenter is shown by ∗ܲ
ே where ∗ denotes the whole datacenter, some container,

some rack, or some chassis. The peak power limitation imposed by the UPS inadequacy,

local electricity generation constraint, or limitation on the provided power by utility

companies is shown by ௗܲ
௫. Determining the peak power consumption for a mix of

applications in a server, chassis, rack, container or the whole datacenter is even more

arduous. There are different studies focused on this issue to determine the power

provisioning policy in a datacenter e.g. [14] and [37]. In this work, we assume that the

peak power consumption at each granularity level of a datacenter can be estimated by

multiplying the average power consumption and a factor related to the mix of running

applications at that level. This factor can be large in case of homogenous workload mixes

but it decreases if the heterogeneity of the workload in the mix goes up [14]. This factor

can be calculated based on profiling and/or prediction methods, as suggested in [14]. We

call this factor the peak to average ratio, (ܴܲܣሻ . It is calculated for each level of

granularity, ranging from chassis, rack, and container to datacenter.

Cooling in each container is accomplished in at least one of three of ways:

overhead Cooling, in-row cooling, and circular in-row cooling [82]. A big portion of the

total power consumed in a datacenter (up to 30% in older datacenters [48]) is related to

cooling infrastructure. The cooling power consumption is non-linearly proportional to the

64

total power usage in the container/datacenter. We assume that the air flows in different

containers are isolated from each other and each container has its own CRAC unit. The

temperature spatial granularity considered in this work is at the chassis level. Cold air is

drawn to each chassis with temperature ܶ
 and exits from the other side with

temperature ܶ
௨௧ . ܶ

 is a function of the supply cold air temperature (ܶ
௦) of the

container and recirculation of the heat from other chassis in that container. Similar to the

work by Tang et al. [16], the recirculation of heat can be described by a cross-

interference matrix, which is shown by ࣘ ൌ ൣ߶൧ேൈே
 in which ܰ is the number of

chassis in container c. According to reference [16], the vector of input cold air

temperatures (ሬܶԦ) in a container can be calculated based on the following formula.

ሬܶԦ ൌ ܶ
௦ ࡰ ሬܲԦ, ࡰ ൌ ሾሺࡷ െ ሻିଵࡷ்ࣘ െ ଵሿ (21)ିࡷ

where ሬܲԦ vector denotes power consumption of chassis in container c, and ࡷ is an

ܰ ൈ ܰ diagonal matrix whose entries are thermodynamic constants of different chassis.

The cooling manager in datacenter makes sure that ܶ
 for each chassis is less than a pre-

specified critical temperature (ܶ௧). Note that, supply cold air temperature is determined

based on this constraint. Coefficient of performance (COP), which determines the

efficiency of the cooling system, is a monotonically decreasing function of of ܶ
௦. Due to

high efficiency of transmission and conversion efficiency in PDN of today’s datacenters,

we consider 1 ሺܱܲܥ/1 ܶ
௦ሻ to represent the power usage effectiveness for each

container.

65

3.2.2 Virtual machine characteristics

In this work, we consider virtualized datacenters. Each client of the cloud system

owns a virtual machine (VM) that typically runs one or more applications. Each VM is

identified by a unique identifier, represented by index i. These VMs can be classified into

different priority classes, ranging from the cloud service provider’s own VMs at the

highest priority level to pay-as-you-go VMs at the lowest priority level.

The applications running in a cloud system may be identified as online

(interactive) service or batch processing jobs [11]. Online service applications (e.g., web

hosting and online banking) are usually I/O intensive and response time-sensitive. On the

other hand, batch jobs (e.g., weather forecast and big data analytics) are compute or

memory intensive jobs that are throughput sensitive. The workload intensity of these

applications can change with time in periods ranging from milliseconds to hours. Based

on the type of the application, quality of service (QoS) is defined on specific performance

parameters such as the response time for online services and the throughput for batch

applications.

Different resources in servers such as the processing cores, memory,

communication bandwidth, and secondary storage can be allocated between assigned

VMs by a fixed or round-robin scheduling policy. The amount of allocated resource to a

VM is a function of the VM type and the client’s SLA contract. In this work, we consider

the processing unit and memory bandwidth to have fixed allocation policy. ߶௦
 denotes

the portion of the processing capacity of server s that is allocated to VM ݅. The amount of

memory allocated to a VM does not significantly affect performance of the VM under

66

different workloads as long as it is no less than a specified value [16]. Hence, we assign a

fixed amount of memory (݉) to the ith client’s VM on any server that the VM is assigned

to.

Migrating a VM between two servers causes a downtime in the client’s

application. Duration of the downtime is related to the migration technique used in the

datacenter and the communication distance between the source and destination of the

move. We assume that there is a defined cost in SLA contracts for these short but

infrequent service outages based on the length of the downtime. In this chapter, ݉ܿ
∗

denotes the part of the migration cost of the VM ݅ related to the level of the migration

where ∗ can be chassis, rack, container or datacenter. Note that VM migration has the

lowest cost in case of intra-chassis migration and the highest cost in case of inter-

container migration. In case of intra-chassis migration, ݉ܿ
ொ denotes the migration cost.

However, in case of other migration types, a summation of migration cost provides the

final migration cost, e.g., the cost of migrating VM ݅ from one rack to another rack inside

one container can be calculated as ݉ܿ
ொ ݉ܿ

ோ ݉ܿ
.

In this work we focus on response time-sensitive applications. Clients in a cloud

system have specific SLAs with the cloud service provider. Although different types of

SLAs can be adopted for clients in cloud system, a common SLA is to set a target

performance for the client’s instances of the application runs and requires that the cloud

service provider meet that target performance for no less than a certain percentage of the

runs (e.g. 95%). Furthermore, the service provider has to pay a penalty for any

67

application run that violates its performance target. ܴ
௧ , ݄ and ݂ denote the target

response time, the maximum tolerable constraint violation rate, and the penalty value for

each SLA violation of client i.

To estimate the response time of an application, a performance model must be

considered. To model the response time, we assume that the inter-arrival times of the

requests for each application follow an exponential distribution function similar to the

inter-arrival times of the requests in the e-commerce applications [22]. The maximum

allowed inter-arrival rate of the requests is specified in the SLA contract between a client

and the cloud owner. Although the maximum inter-arrival rate is part of the SLA

contract, the average inter-arrival rate (ߣ) of the requests for each client in each time

window is predicted for the optimization procedures.

A multiclass single-server (MCSS) queue exists in servers that provide service to

more than one VM. We consider generalized processor sharing (GPS) model at each

queue; The GPS model approximates the scheduling policy used by most operating

systems, e.g., weighted fair queuing and the CPU time sharing of Linux. Using this

scheduling policy, MCSS queue can be replaced by multiple single-server queues. Note

that the processing capacity of server s allocated to VM i is calculated as ܥ௦
߶௦

 .

Furthermore, it is assumed that client service times follow an exponential distribution.

Let ߤ௦ denote the average service rate of the VM i on server ݏ when it has a unit of the

server’s processing capacity. Now then, the response time of a VM follows an

exponential distribution function with a mean value, which is calculated as follows:

68

തܴ௦ ൌ
1

௦ܥ
߶௦ߤ௦ െ ߣ

 (22)

We assume that ߤ௦ for all servers of the same type are equal. To determine ߤ௦,

we consider an offline profiling mechanism which collects service rates for different

types of VMs running on different types of servers. These values indeed capture the

compatibility of certain client types to certain server types.

Considering these models for request arrival and service rate, the response time

constraint for each VM can be expressed as follows:

݁ି൫ೞ
థೞ

 ఓೞିఒ൯ோ

 ݄ ⇒ ߶௦

 ሺߣ െ ln ݄ ܴ
௧⁄ ሻ ௦ܥ௦ߤ

⁄ (23)

In addition to parameters for cloud system and clients, there are a number of

decision parameters that are used to optimize the operational cost of the system. The most

important parameter is ݔ௦, which is a pseudo-Boolean variable that determines whether

the server is on or off. This value can be found from ߶௦
 and ߶௦

 , which are the

processing and memory bandwidth allocation parameters for each server. Pseudo-

Boolean parameters ݔ and ݔ, which can be determined based on ݔ௦, show whether or

not a chassis is active. Moreover, pseudo-Boolean parameter ݕ௦ determines if VM ݅ is

assigned to server ݏ or not.

3.3 Cloud Datacenter Resource Management Problem

The resource management problem in cloud systems is the key to determining the

client admission policy, the operational cost, and the quality of service.

69

One of the most important problems for the cloud service provider is whether to

admit a client. In particular, a client’s service requirements may be too demanding or the

cloud resources are already committed to other clients that are paying more. This

problem, which is known as the admission control problem, falls outside the focus of the

present chapter.

Considering a set of clients with their own SLAs with the cloud provider, the

resource management problem in a cloud system can be described as the problem of

minimizing the total operation cost of the cloud and the SLA violation penalties subject

to performance and resource availability constraints. The biggest part of the operation

cost of a datacenter is the electrical energy cost, which must be paid to the utility

companies providing the electricity. To minimize the power consumption in each

datacenter, the number of active or idle servers should be reduced and at the same time,

the power consumption of the active servers should be balanced as much as possible in

order to reduce the cooling system’s power consumption.

Notice that from the resource assignment solution, an expected quality of service

(QoS) provided to each client is calculated. Based on this QoS, expected SLA violation

penalties for all clients can be computed. The other type of penalty that should be paid to

the customers is the result of VM migration between different servers, which can result in

service outage for a short time.

Various resource managers in cloud datacenters perform their jobs by interacting

with each other. The VMM performs the resource management interacting with the PM

and the CM. The PM reduces the power consumption in the system and uses control-

70

theoretic solutions to ensure that the peak power of each component remains below that

the given peak power capacity. The CM reduces the cooling system power consumption

subject to keeping the temperature below a critical threshold at every location inside

datacenter.

The common approach used for the resource management in a cloud system is to

perform optimization periodically (such a period is called epoch with duration ߠ) and

modify the solution during each epoch only in case of SLA, peak power or temperature

emergencies or dramatic workload changes. These processes are called periodic and

reactive optimizations, respectively. In periodic optimization, prediction of workload

statistics for each VM in addition to VMs’ expected behavior upon assignment to

different types of servers is used to determine the VM assignment and resource allocation

solution.

To assign VMs to datacenters in a multi-datacenter cloud system, the whole

application run-time, which can last for multiple decision epochs, should be considered.

Therefore, the cloud manager needs to consider the workload trend for each client as well

as the energy price during the day in order to decide how to assign VMs to datacenters in

a multi-datacenter cloud system. These decisions are usually made based on cloud service

provider’s policy that aims to achieve some kind of geographical load balancing [65]. In

this work we focus on the resource management problem in one cloud datacenter,

considering only the resource assignment solution in the previous epoch to minimize the

operational cost for the current epoch. Resource assignment parameters related to the

previous epoch are marked with superscript ߛ.

71

Periodic resource management problem can be formulated as follows:

Ψߠ		݊݅ܯ ܲ

∈

 ݂ߣߠ ௦݁ݕ
ି൫ೞ

థೞ
ఓೞିఒ൯ோ

௦
 ݉ܿ

ݖ∗
∗

∗∈ሼொ,ோ,,ሽ

	

subject to:

௦ݔ ∑ ߶௦

 ݔ ,
∑ ௫ೞೞ∈ೄ

หௌห
ݔ ,

∑ ௫∈ೂೝ
|ொೝ|

∗ݔ , ∈ ሼ0,1ሽ (24)

߶௦
 ൌ ∑ ߶௦

 , ߶௦ ൌ ∑ ߶௦

 , 0 ߶௦∗ 1 (25)

߶௦
 ௦ݕ ሺߣ െ ln ݄ ܴ

௧⁄ ሻ ௦ܥ௦ߤ
⁄ , ߶௦

 ௦ (26)ܥ/௦݉ݕ

൞

௦ݕ ߶௦
 	, ௦ݕ 1 ߶௦

 െ ߝ , ∑ ௦௦ݕ ൌ 1
ݕ ൌ ∑ ௦௦∈ௌݕ 	 , ݕ ൌ ∑ ∈ொೝݕ

ݕ ൌ ∑ ∈ோݕ 	 , ∗ݕ ∈ ሼ0,1ሽ
 (27)

൝
ݖ
ொ ൌ ∑ ∑ ൫ݕ௦ െ ௦ݕ

ఊ൯
ା

௦∈ௌ , ݖ
ோ ൌ ∑ ∑ ൫ݕ െ ݕ

ఊ ൯
ା

∈ொೝ

ݖ
 ൌ ∑ ∑ ൫ݕ െ ݕ

ఊ ൯
ା

∈ோ , ݖ
 ൌ ∑ ∑ ൫ݕ െ ݕ

ఊ൯
ା

∈ௗ

 (28)

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ ܲ ൌ ܲ

ݔ ∑ ௦൫ݔ ௦ܲ
 ௦ܲ

߶௦
൯௦∈ௌ

ುವಿ

ோ

ܲ ൌ ܲ
ݔ ∑ ܲ∈ொೝ ೝುವಿ

ோೝ

ܲ ൌ ቀ1 ଵ

ைሺ௧
ೞሻ
ቁ∑ ܲ∈ோ ುವಿ

ோ

∑ ܲ∈ min	ሺ
ುವಿ

ோ
,

ೌೣ

ோ
ሻ

 (29)

ܶ
 ܶ௧ (30)

where ߝ denote a very small positive value and ሺܣሻା captures the maximum value

between A and 0.

72

There are three main terms in the objective function: (i) IT and cooling energy

cost, (ii) SLA violation penalty, and, (iii) SLA penalties related to service outage caused

by VM migration.

Constraint (24) determines whether or not the server, chassis or rack is active.

Constraint (25) determines the utilization of each server and forces them to be less than

one. Constraint (26) determines the lower bound on the processing and memory

bandwidth share of a VM from their host machine based on SLA constraint. Constraint

(27) determines the assignment parameters (assignment of a VM to a server, chassis, rack

and container). Although the assignment parameter for chassis to container can be

determined directly from the assignment parameter for servers, these parameters are

derived to be used in constraint (28) to capture the VM migration cost. Results of these

constraints are ݖ
∗ parameters that determine whether or not a VM is migrated in chassis

level, rack level or container level. Constraint (29) calculates the average power

consumption of the chassis, rack, container and datacenter and limits the corresponding

power consumption to be less than the power provisioning capacity in PDN. This

constraint also limits the peak power consumption of the datacenter to the maximum

provided power. Constraint (30) forces the inlet temperature of each chassis to be lower

than the critical temperature.

Periodic resource management problem is a mixed-integer non-linear

programming problem. By some simplification, bin-packing problem and generalized

assignment problem can be reduced to this problem. So, this problem is an NP-hard

problem.

73

Periodic resource management represents a combination of optimization actions

made by VMM, CM and PM. The separation of VMM and other resource managers can

lead to inefficient use of resources and instability in creating a feasible solution.

Cooperation between the VMM and one of the other managers in a datacenter have been

proposed in a number of previous work such as [36] and [52] but, to the best of our

knowledge, our work is the first one to present using a combination of VMM, CM, and

PM for resource management.

A set of hierarchical and decentralized decision makers fit the distributed nature

of resources in cloud systems. Hierarchical structures for power management and reactive

management have been presented in the previous work, c.f. [36] and [83]. In addition, a

centralized manager can cause reliability (single point of failure) and scalability issues.

The big number of servers and VMs in large datacenters emphasizes scalability as one of

the most important factors in designing resource managers. In addition to big scale of the

problem, the number of performance counters and power and temperature measurement

signals from different parts of a datacenter is huge and aggregating this amount of data in

a centralized manager may result in low performance and large overhead. Finally, there

are certain management functions (e.g., doing VM migration in case of power or

temperature emergencies) that are best handled by local managers.

In this work, we present hierarchical resource management (HRM for short)

solution (VMM, PM and CM) in a cloud system. A figurative architecture for this

manager is shown in Figure 10. This hierarchy includes a cloud manager, datacenter

managers, container managers, rack managers and chassis managers. The hierarchical

74

managers collectively try to solve a constrained optimization problem with cooperation.

This cooperation involves exchanging requests of resource assignment, temperature

adjustment, power capacity increase or VM migration between resource managers in

different levels.

In the presented management architecture, periodic optimization is done by two

consecutive procedures: VM assignment and local search. To assign new VMs to servers,

the status of previous VM assignment solution after proper modification is used. Instead

of assigning VMs directly to servers, each resource manager distributes the VMs between

its lower level resource managers and this process continues until the chassis manager

assigns VMs to servers. In each resource manager, distribution of new VMs between

lower level resource managers is performed based on resource availability, peak power

capacity, temperature distribution, and COP of the lower level resource managers. Due to

constructiveness of this approach, a bottom-up local search procedure is used to modify

Figure 10 – An example of presented cooperative hierarchical manager

75

the solution after assigning every VM to a server. In local search step, priority of

performing a VM movement is set based on its effectiveness in reducing the cost.

Note that, the size of the problem tackled by each resource manager is much

smaller than original resource assignment problem. Moreover, the assignment or local

optimization in all resource managers that do not interact with each other can be executed

in parallel. These two factors reduce the time complexity of the periodic optimization

solution drastically. This means that this hierarchical solution makes the optimization

solution more scalable without sacrificing the performance of the solution.

In case of peak power or temperature emergency, some kind of reactive

optimization procedure is performed. Similar to the periodic optimization procedure, the

proposed reactive optimization solution is performed in a hierarchal manner to avoid long

decision making time.

VM assignment and local optimization steps in periodic optimization and reactive

optimization algorithms are presented in the following sections.

3.4 Periodic optimization: VM assignment

The objective in the periodic optimization is to assign new VMs to servers and re-

assign active VMs to servers based on their expected workload in the next epoch so as to

minimize the summation of total energy cost, the expected SLA violation penalty paid to

the clients, and the migration cost subject to resource, power and temperature constraints.

The solution is strongly dependent on the existing server assignments for active VMs.

76

To start the periodic optimization, VM workload should be predicted for the next

decision epoch. These predictions are based on the current VM workload and the

workload history in addition to the SLA contract.

After finding the workload prediction for all VMs, active VMs in the previous

epoch can be divided into three groups: 1) VMs that will not be active the next epoch; 2)

VMs with expected lighter workload in the next epoch; and 3) VMs with expected

heavier workload in the next epoch. Allocated resources to VMs in the first category can

be released. Next, resource allocation parameter (߶௦
) for VMs with lighter workload is

updated. Finally, the resource allocation parameter for VMs with heavier workload is also

determined based on their current assignment although the resource requirements for

some of these VMs may violate the resource constraints. Such VMs must be migrated to

a different server with more available resources.

To create a feasible initial solution for new VM assignments, we use a greedy

technique for these VM migrations. For this purpose, each chassis manager examines the

available servers in the chassis to find a new host for the target VM. If this manager

cannot find any server satisfying the VM resource requirement, it asks the parent rack

manager to look for a server to host that VM and this process continues until a high-level

resource manager can find a server to host the VM in question. Note that, the generated

initial solution will be improved by local search after assigning every new VM to a

server.

After finalizing the VM assignment for active VMs, each manager reports its

current state to its (higher-level) parent resource manager. For this purpose, the chassis

77

manager gathers current states of all of its servers. A compacted form of this information

is reported to its rack manager to model the chassis. Similarly the container manager, the

datacenter manager and cloud manager can use an appropriate abstraction of the gathered

information by their lower-level managers to model them in their resource management

problem. Note that the set of important parameters changes from one level to another. For

example, application to server type compatibility and COP are the most important factors

for the datacenter resource manager whereas energy proportionality and temperature

distribution are the most important factors for the container and rack resource managers.

An important factor in gathering information from different manager is to account

for power provisioning capacity at each level of the hierarchy. For instance, if the peak

power consumption of the currently assigned VMs to a chassis is equal to the peak power

capacity for that chassis, the amount of resource available on that chassis should be

accounted as zero even though there are some inactive servers on that chassis. We call

this amount of resource, effective resource. This modification helps to avoid peak power

capacity violation in resource management.

The problem of deciding VM to datacenter assignment, which is known as

geographical load balancing [65] in the literature, falls outside the scope of the present

chapter. In particular, we assume that VM assignment to datacenters is done based on a

pre-determined policy in the cloud manager.

Considering VM to datacenter assignment, to assign new VMs to servers, starting

from the datacenter manager, each resource manager assigns a subset of the new VMs to

each one of its lower level resource managers. For example, datacenter manager assigns

78

each VM to a container manager and each container manager assigns each of the received

VMs to a rack manager. This process continues until each chassis manager receives a set

of VMs to assign to its servers. The number of possible hosts for VMs in each resource

manager is small and this makes the problems less computationally expensive. This

process is effective in decreasing the decision making time with respect to a centralized

resource manager that assigns VMs directly to servers. The abstracted VM assignment

problem and solution for each resource manager is presented in the following paragraphs.

In order to start periodic optimization, workload associated with the active and

incoming VMs needs to be predicted for the next epoch. We assume that the probability

distribution function of ߣ (ܲܨܦሺߣሻ) for VM i in the next epoch can be predicted based

on the current workload and the workload history. To account for SLA violation penalty

and VM migration cost, the predicted workload (ߣప) can be different from the expected

workload (ߣపഥ ൌ ሻ). In case of a large SLA violation penalty or VM migrationߣሺܨܦܲߣ

cost, over-provisioning (ߣప పഥߣ) becomes useful. In contrast, in case of small SLA

violation penalty or VM migration cost, under-provisioning (ߣప ൏ పഥߣ) may result in total

cost reduction.

The predicted ߣ is the value that minimizes the expected cost in the next decision

epoch:

పߣ ൌ min
ఒ

ሻߣሺܥሻߣሺܨܦܥ ൫1 െ ሻ൯൫݉ܿపതതതതതߣሺܨܦܥ ߣሺܥ
୫ୟ୶ሻ൯ (31)

where ܨܦܥ denotes the cumulative distribution function and ܥሺߣሻ denotes the minimum

cost (energy cost plus SLA violation penalty) of assigning the target VM with workload

79

intensity equal to ߣto a server, ݉ܿపതതതതത ൌ ݉ܿ
ொ 1 3⁄ ൫݉ܿ

ோ ݉ܿ
 ݉ܿ

൯ is the average

migration cost for the VM, and ߣ
௫notes the maximum tolerable ߣ based on the SLA

contract. In this formulation, we assume that if a VM is migrated, the maximum amount

of resource is allocated to it in order to avoid another migration in the near future. Notice

that function ܥሺߣሻ and ܨܦܥሺߣሻ are both monotonically increasing functions of ߣ.

This optimization problem tries to find the best balance between the energy cost,

the SLA penalty cost, and the expected VM migration cost – if ܨܦܥሺߣሻ ൎ 0 , the

expected migration cost dominates whereas if ܨܦܥሺߣሻ ൎ 1, the VM assignment cost

dominates the objective function. Because CDF and ܥሺߣሻ are monotonically increasing

functions between 0 and ߣ௫, at most one ߣ value exists that makes the gradient of the

expected cost function in (31) equal to zero. The expected cost function for this ߣ value

is compared to the expected cost function having ߣ ൌ 0 and ߣ ൌ ௫ in order to findߣ

the optimum ߣ.

The VM assignment problems in datacenter, container, rack and chassis resource

managers are similar. In each resource manager, new VMs are distributed between low

level resource managers to achieve the highest energy efficiency in servers and cooling

system and minimize SLA violation penalty subject to resource and peak power

constraints. Before stating the problem formulation in each resource manager, two

important parameters that can be used to model low level resource managers are

presented.

80

The first parameter is power dissipation to server utilization ratio (PUR)

parameter, which captures the energy non-proportional behavior in servers, chassis and

racks, depending on the status of the server, chassis and rack. Equations (32) to (35)

determine PUR parameter for an active server, an inactive server in an active chassis, an

inactive server in an inactive chassis in an active rack and an inactive server in an

inactive rack, respectively.

ܷܴܲ ൌ ܲ ܲ ܲ
 หܵหൗ ܲ

 |ܳ| หܵห⁄ൗ (32)

ܷܴܲ ൌ ܷܴܲ ܲ൫1 ߶ത௦
⁄ െ 1൯ (33)

ܷܴܲ ൌ ܷܴܲ ܲ
 หܵหሺ1 ⁄௦ഥݔ െ 1ሻൗ (34)

ܷܴܲ ൌ ܷܴܲ ܲ
 ሺ|ܳ| ൈ หܵหሻ൫1 ⁄തതതݔ െ 1൯ൗ (35)

where parameter ߶ത௦
, หܵห ൈ ௦ഥݔ and |ܳ| ൈ หܵห ൈ തതത denote the statistical averageݔ

CPU utilization in a server from the target server type, statistical average number of

active servers in an active chassis, and statistical average number of active chassis in an

active rack, respectively. These values are used to account for the idle power

consumptions of the server, chassis and rack. For example, if we want to assign a VM

that needs 40% of CPU utilization of an inactive server having ߶ത௦
 ൌ 0.3, we need to

account for the whole idle power consumption of the server for that VM because the

probability of assigning another VM to that server is low.

The second parameter is temperature slack in container ܿ (ܵ) which is used to

determine the state of the cooling system in a container. Temperature slack parameter can

be defind as follows:

81

ܵ ൌ ∑ ∑ ൫ ܶ௧ െ ܶ
൯∈ொೝ∈ோ (36)

In addition to ܵ , another term is needed to capture the sensitivity of the

temperature slack to the power increase (Δܵ Δܲ⁄). This parameter can be directly defined

for a chassis. Rack and container version of this parameter can be defined as a weighted

average of the same parameter in their covered chassis. For instance, sensitivity of the

temperature slack to the power increase in a container can be defined as follows:

Δܵ Δ ܲ⁄ ൌ
∑ ∑ ௌ ൫ುವಿି൯⁄∈ೂೝೝ∈ೃ

∑ ∑ ൫
ುವಿି൯∈ೂೝೝ∈ೃ

 (37)

The VM assignment problem in datacenter manager may be formulated as

follows:

Ψߠ		݊݅ܯ ܲ

∈

 ݂ߣߠ ݁ݕ
ି൫ೞ

థ
 ఓೞିఒ൯ோ

∈

subject to resource availability and:

ܲ ൌ ቀ1 ଵ

ைሺ ்
ೞሻ
ቁ ൬

ം

ଵାଵ ை൫ ்
ೞം൯⁄
 ∑ ߶

ܷܴܲ ൰ (38)

∑ ݕ ൌ ݕ ,1 ∈ ሼ0,1ሽ (39)

߶
 ݕ ሺߣ െ ln ݄

 ܴ
⁄ ሻ ௦ܥ௦ߤ

⁄ , ߶
 ௬

ೞ
 , ߶

∗ 1 (40)

ܲ ܲ
ே ⁄ܴܣܲ (41)

∑ ߶
ܷܴܲ Δܵ Δ ܲ⁄ ܵ (42)

∑ ܲ∈ ൏ ௗܲ
௫ ⁄ௗܴܣܲ (43)

In this problem, ܴܲܣ parameter is estimated by its measured value from last

epoch. Note that, constraint (42) determines a varying temperature-related power cap on

82

the added power to each container. Parameter ܷܴܲ is the weighted average of ܷܴܲ

values for servers inside the container. For this calculation, the weight for PUR value for

each server is set to 1 െ ߶௦
, which shows the amount of remaining processing resource

in that server.

Based on this problem, cost of assigning a VM to a container can be found as

follows:

ܥ
 ൌ Ψሺ1ߠ 1 ሺܱܲܥ ܶ

௦ሻ⁄ ሻ߶
ܷܴܲ ߠ ݂ߣ݁

ି൫ೞ
థ

 ఓೞିఒ൯ோ

Ψߠ
௱ௌ ௱⁄ థ

 ோ
ௌ

ሺଵ ைሺ ்
ೞషሻ⁄ ିଵ ைሺ ்

ೞሻ⁄ ሻ

ଵାଵ ைሺ ்
ೞሻ⁄

	
(44)

where ܶ
௦ିdenotes the highest feasible temperature below ܶ

௦.

The first and second term in this cost is the energy cost and expected SLA

violation penalty. The third term in this cost function captures the expected effect of this

assignment on the cooling power consumption. Finding the allocation parameter that

results in minimum cost value for assigning a VM to a container is a convex optimization

problem and can be solved by a closed form formulation.

To solve the assignment problem based on these cost metrics, a constructive

approach can be used. In this approach, VMs are ranked based on the difference between

their minimum and second minimum cost of assigning to containers. Based on this

ranking, VMs are assigned to containers having minimum assignment cost until one of

the resources (CPU cycles, memory bandwidth, peak power, temperature related power

cap) of any container is exhausted. In case of exhausting CPU cycle count, memory

bandwidth, or peak power limit, the container in question is removed from the list of

83

containers with extra capacity. If, however, the temperature related power cap of a

container becomes zero, ܶ
௦ is decreased and ranking parameters are updated (but the

container is kept as one with some extra capacity to be utilized). This process continues

until all VMs are assigned to a container or resources in the datacenter are completely

exhausted. In the latter case, the remaining VMs are reported to the cloud manager for re-

assignment. This approach results in balanced resource utilization to reduce the power

consumption with focus on COP, server energy efficiency and VM to server

compatibility.

In container manager, due to homogenous set of servers, energy proportionality

and temperature distribution are the most important factors. The problem formulation in

this manager is similar to the one for datacenter manager. Thus, a similar VM assignment

algorithm used in datacenter manager can be used in the container manager. In this

manager, ܷܴܲ and Δܵ Δ ܲ⁄ parameters for each rack, which are calculated using

similar weighted averaging approaches, are used. Moreover, instead of constraint (42), a

temperature-related power capacity for each rack (ܶܲܥ) is defined as the maximum

extra power consumption in the rack until an inlet temperature in the container reaches

the critical temperature. A greedy process using binary search can be used to find ܶܲܥ

values.

Similarly, in rack manager, energy proportionality and temperature distribution

are the most important factors. Similar to container manager, a temperature-related power

capacity for each chassis (ܶܲܥ) is defined which can be found using binary search. Due

to importance of the energy non-proportionality nature of the servers, two ܷܴܲ values

84

represent each chassis in rack manager VM assignment problem: (i) ܷܴܲ represents

active servers in the chassis, and, (ii) ܷܴܲor ܷܴܲ depending on the status of the

target chassis represents inactive serves in the chassis. Therefore, instead of one

assignment cost, two assignment costs are calculated for VM assignment to each chassis

and the minimum one represents the cost of VM assignment to the chassis. Note that, the

resource availability for active and inactive servers inside each chassis should be captured

separately. Due to the similarity of the VM assignment problem in this manager to the

one in datacenter manager, a similar assignment algorithm can be applied.

The final VM assignment occurs at the chassis level. Due to rather small effect of

the VM assignment at this level on the temperature distribution inside the container, this

chassis manager does not consider temperature. The most important factor in VM

assignment at this level is to minimize SLA violation penalty and increase the energy

proportionality of the assignment. To determine the assignment cost for a VM to an

active (or inactive) server, cost function in (44) can be used by replacing ܷܴܲ with

ܷܴܲ (or ܷܴܲ) and ignoring the third term. Due to similarity of the VM

assignment problem in this manager to bin-packing problem, a solution based on First Fit

Decreasing (FFD) solution can be applied. In this solution, VMs are sorted based on their

minimum assignment cost to an inactive server. Starting from the VM with the highest

cost, the cost of assigning the VM to every active server that has enough available

memory bandwidth and CPU cycle count to satisfy SLA constraints is calculated. The

selected VM is assigned to the server with the lowest assignment cost (considering all

85

active and inactive servers) and resource availabilities are updated. Moreover, in case of a

tie, the VM is assigned to the server with the highest ߶௦
.

Note that, the provided resource allocation parameters for each server are not

fixed and power/performance manager module in each server changes these values based

on the set of assigned VMs and their instantaneous workload. A convex optimization

solution to determine the resource allocation parameters can be set up in each server.

3.5 Periodic optimization: Local Search Method

Before finalizing VM assignment solution in the periodic optimization procedure,

a hierarchical local search algorithm is performed to decrease the operational cost.

In the local search procedure, resource managers move VMs between servers in

order to decrease SLA violation penalty or reduce the power consumption by increasing

the energy proportionality or reducing the cooling power consumption. To limit the time

complexity of the local search, the number of VM movement attempts is bounded. For

this reason, VM movements are sorted based on their effectiveness in reducing the total

cost. For each VM, a ranking metric is calculated based on the expected cost reduction

from best possible movement. Depending on the resource manager, the ranking metric is

found based on the most important factors on that level. SLA violation penalty, migration

cost and energy proportionality are important factors in every resource manager but

cooling system power consumption and temperature distribution are important factors in

the rack and container managers. The local search procedure after sorting VMs is

straight-forward: (i) select the first VM; (ii) find the best real cost reduction for that VM

86

movement; and (iii) try the VM movement if the cost reduction is positive and go to (i) if

there is another VM with positive ranking metric. Note that, in case of moving a VM that

was assigned to its current server in the previous epoch, VM migration cost is subtracted

from the cost reduction value associated with that VM. After finishing VM movements in

each resource manager, VMs associated with the highest cost reduction values are passed

to the parent resource manager and that manager starts VM movements with a similar

approach. Details of ranking metric for different resource managers are presented in the

following paragraphs.

To start the local search, every parameter in the system should be updated based

on the current assignment solution, e.g. ܶ
௦ for each container and ܴܲܣ parameter for

each resource manager.

In contrast to the VM assignment procedure, local search procedure starts from

chassis managers. Each chassis manager tries to increase the energy proportionality and

reduce the SLA violation penalty. Two cost values are calculated for each VM: (i) current

total cost which can be found from equation (45); (ii) Minimum total cost in a typically

utilized server which can be found from equation (46).

ܥ ൌ Ψሺ1ߠ 1 ሺܱܲܥ ܶ
௦ሻ⁄ ሻ߶௦

൫ ௦ܲ
 ߶௦

⁄ ௦ܲ
൯ ߠ ݂ߣ݁

ି൫ೞ
థೞ

ఓೞିఒ൯ோ

 (45)

ܥ
 ൌ Ψሺ1ߠ 1 ሺܱܲܥ ܶ

௦ሻ⁄ ሻ߶௦
൫ ௦ܲ

 maxሺ߶௦
 , ߶ത௦

⁄ ሻ ௦ܲ
൯

 ߠ ݂ߣ݁
ି൫ೞ

థೞ
 ఓೞିఒ൯ோ

(46)

where ߶௦
 is the optimal allocation parameter that results in the minimum value for ܥ

.

87

Ranking metric for chassis manager can be found from (ܥ െ ܥ
 െ ݉ܿ

ொ) for VMs

that were assigned to the target server in the previous epoch or (ܥ െ ܥ
) otherwise. The

pseudo code for local search procedure in chassis manager is presented in Algorithm 2.

Algorithm 2: Chassis manager Local Search

Inputs: ܫ set of assigned VMs

Outputs: VM Movement inside chassis

ܫ 1 ൌ ∅
2 Foreach (݅ ∈ (ܫ
ݏ 3 ൌ ∑ ௦௦ݕݏ
4 Calculate ܥ based on (45)
5 Calculate ߶௦

 to minimize (46)
6 Calculate ܥ

 based on (46)
ܥ݀ 7 ൌ ܥ െ ܥ

8 If (ݕ௦

ఊ==ݕ௦) ݀ܥ ൌ ܥ݀ െ ݉ܿ
ொ

9 If (݀ܥ ܫ (0 ൌ ܫ ∪ ሼ݅ሽ
10 End
11 Sort VMs in ܫ based on ݀ܥ (non-increasing)
12 ݅ ൌ ܥ݀	∈ூݔܽ݉݃ݎܽ
13 While (|ܫ| 0)
14 Foreach (ݏ ∈ ܵ)
15 Calculate ܥ௦ as the cost of assigning the target VM to server s
ݏ 16 ൌ ௦ܥ	݊݅݉݃ݎܽ
17 If (ݕ௦

ఊ! ൌ ௦ܥ (1 ൌ ௦ܥ ݉ܿ
ொ

ᇱݏ 18 ൌ ∑ ௦௦ݕݏ
19 If (ܥ௦ ൏ (ܥ
20 move VM from its current host to server s
21 Update ܥ for ሼ݅|݅ ∈ ௦ݕሺ	&	ܫ ൌ ௦ᇲݕ	|	1 ൌ 1ሻሽ
22 End
ܫ 23 ൌ ܫ െ ሼ݅ሽ
24 ݅ ൌ ܥ݀	∈ூݔܽ݉݃ݎܽ
25 End

The goal of the local search in rack managers is to increase the temperature

balance in the rack in addition to move VMs to increase the energy proportionality and

reduce SLA violation penalty. Each Rack manager receives the VM lists form chassis

managers and subtract the rack level migration cost from ranking parameter associated

with VMs that were assigned to their current chassis in the previous epoch.

88

The effectiveness of VM movement from chassis ݍ௦ to ݍௗ in decreasing the hot

spot can be captured from (47) where ܶ
௦ା denotes the lowest possible supply cold air

temperature that is higher than current ݐ௦ and ߶௦
 is the optimal allocation parameter that

results in minimum total cost in a typically utilized server.

Ψߠ ܲ

భ
ೀು൫

ೞ൯
ି భ
ೀು൫

ೞశ൯

ଵା భ
ೀು൫

ೞ൯

ೄ
ೢ

ುೞ
థೞ
 ቆ

ುೞ
బ

ഝೞ
ାೞ

ቇି
ೄ

ೢ

ು
థೞ
 ቆ

ುೞ
బ

ౣ౮ሺഝೞ
 ,ഝഥೞ

ሻ
ାೞ

ቇ

ห ்
ೞశି ்

ೞห ∑ ∑ షሺೝష
ሻ

∈ೂೝೝ∈ೃ

 (47)

Parameter Δܵ௪ Δ ܲ⁄ denotes a weighted summation of chassis inlet temperature

sensitivity to power increase and is calculated from equation (48). This parameter shows

the effectiveness of reducing power consumption in a chassis in decreasing the hot spots

in container.

ௌ
ೢ

ൌ ∑ ∑

డ
்ᇲ

డ
݁
ିሺ்ೝି ்ᇲ

ሻ
ᇲ∈ொೝ∈ோ (48)

Considering fixed ݍ௦ , the effectiveness metric in (47) depends on the selected

destination chassis. For each VM, the smallest Δܵ௪ Δ ܲ⁄ in the rack is used as the

corresponding parameter for the destination chassis to calculate equation (47) to be added

to the previously calculated ranking metric.

In Container manager, the received VM lists form rack managers are ranked

based on their chassis manager ranking metric minus the rack level and container level

migration cost for VMs that were assigned to their current rack in the previous epoch plus

a term similar to (47) to capture the effectiveness of VM movement on resolving hot

spots in container. Similar to rack manager, the smallest value for Δܵ௪ Δ ܲ⁄ in the

container is used as the destination chassis parameter to create the ranking metric. Note

89

that, the number of reported VM from a lower level manager to the higher level manager

can be bounded by selecting only a small number of high ranked VMs from each low-

level manager. This selection helps to reduce the complexity of the local search

mechanism as we go up in the resource management hierarchy.

In datacenter manager, the value of ܥ
 for each VM can be replaced by the best

VM assignment cost to a typically utilized server in any container. The ranking metric for

each VM can be found from ܥ െ ܥ
 . For VMs that were assigned to their current

container in the previous epoch, ∑ ݉ܿ
∗

∗∈ሼொ,ோ,ሽ should be subtracted from their ranking

metrics.

A similar approach also can be used in the cloud manager if there is a possibility

of changing the geographical load balancing solution based on the feedback from each

datacenter before finalizing the VM assignment solution.

This hierarchical local search method tries to decrease SLA violation penalty and

power consumption and increase the cooling system efficiency considering the migration

cost. This approach speeds up the local search method by parallel execution of local

search in each level and also ranking VM movements based on their expected cost

reduction capability.

3.6 Methods to Deal with Emergencies

The periodic optimization solution cannot guarantee SLA constraint satisfaction,

peak power capacity and critical temperature constraint satisfaction due to hardware

failure and dynamic nature of the VM workload. A costly way of providing a

90

performance guarantee in the cloud system is VM replication and resource over-

provisioning, which are necessary for some clients (e.g., an e-commerce client) but

wasteful for many others. Periodic monitoring of performance, power and temperature

can be used to make reactive VM migration decisions or resource allocation adjustments

in order to guarantee the satisfaction of the constraints. In this section, reactive VM

migration and resource allocation adjustment mechanisms are presented in the

hierarchical resource management structure.

Dynamic changes in VM workload is first detected by the server.

Power/performance manager in each server monitors the workload of the assigned VMs

and minimizes the SLA and energy cost by dynamically changing the allocation

parameters or the state of the server (voltage and frequency). A decrease in VM workload

creates power saving opportunity whereas an increase in VM workload forces the server

to increase the power consumption to satisfy SLA constraints. Drastic increases in VM

workload may not be responded by power increase and may require VM migration. Note

that even if the power/performance manager module in the server can find a resource

allocation solution that satisfies all of the VM SLA constraints within allowable power

capacity, it is possible that migrating a VM results in lower total cost. These cases can be

handled with periodic calls to local search procedure in each epoch.

There are different changes in the cloud system requiring immediate response to

avoid hardware damage and huge penalties. For these situations, different control

hardware components are placed inside the datacenter to avoid events such as

temperature run-away in servers or power capacity violations. Some prior work such as

91

[36] has studied the required control mechanisms. These control mechanisms can,

however, result in violation of SLA constraints. The resource manager must, therefore,

closely monitor the power and temperature sensors and performance counters in order to

promptly migrate VM, change supply cold air temperature, or temporarily decrease the

power consumption of some of the servers.

In different emergency scenarios (SLA, peak power or temperature emergency),

VM migration, resource allocation adjustment and limiting server power consumption

and supply cold air temperature change are used to resolve the issue. In our proposed

framework, a hierarchical procedure is used to choose and then perform the best action,

which results in the lowest cost increase, to resolve the issue. Considering hierarchical

resource management in the cloud computing system is completely in favor of

implementing software control mechanism due to ability for making fast local decisions.

Dynamic changes in the cloud computing system can cause SLA constraint

violation due to a reason that can be classified in one of the following categories:

 Hardware or software failure (server, OS, …)

 Peak power emergency

 Temperature Emergency

 Resource capacity saturation

Between these categories, HW or SW failure has the highest emergency factor.

The decision to assign affected VMs to new servers should be made as soon as the

92

incident happens and the immediate resource manager that catches the problem is

responsible for re-assignment decisions.

For the other dynamic changes, a hierarchical procedure is used to perform the

best actions to resolve the issue. These hierarchical procedures make sure that by

changing VM assignment solution, another emergency is not created in the system.

In case of SLA violation due to resource capacity saturation in a server,

corresponding chassis manager sorts VMs and migrates them one by one until the

resource contention in the target server is settled. VMs can be ranked based on the cost of

movement plus total cost of the other VMs on the server assuming the VM is migrated.

VM movement cost (total cost in destination server plus migration cost) can be found by

searching between different servers in datacenter. These searches can be done in parallel

using the resource managers in order to decrease the run-time of the solution. In these

calculations, the total cost (energy cost plus SLA violation penalty) of remaining VMs on

the server assuming a VM is migrated is set to a big value if an SLA violation exists even

with assumption of the VM removal.

To resolve SLA violations that happened due to peak power cap or temperature

emergency, resource managers assume that power cap or temperature-related power cap

constraint is violated and try to resolve that problem. This approach results in more

global view of the problem and result in better solution than solving the SLA violation

problem for some VMs. In these cases, different actions can be taken to solve the

problem. These actions include migrating some of the VMs or reducing the power

consumption for some servers, which may result in higher SLA violation penalties. In

93

case of temperature emergency, reducing the supply cold air temperature can also be

deployed.

To find the cost of decreasing servers’ power consumption to satisfy peak power

or temperature-related power constraint, a metric that captures the effect of reducing

power consumption on total cost of serving VM (energy cost plus SLA violation penalty)

can be used. This metric can be represented by the derivative of VM cost with respect to

power consumption as follows:

డ
డ

ൌ డ
డథೞ

డథೞ

డ
ൌ ቀΨߠ ቀ1 ଵ

ைሺ ்
ೞሻ
ቁ ௦ܲ

 െ ܴߠ
௧ܥ௦

ߤ௦

݂ߣ݁
ି൫ೞ

థೞ
 ఓೞିఒ൯ோ

ቁ ൬

ଵ

ೞ
൰ (49)

Finding the minimum cost of satisfying a power cap by increasing SLA penalty

can be seen as a water-filling problem. In this water-filling problem, the volume of the

water is determined by the amount of power that needs to be cut. For each VM, area of

the corresponding water tank is a function of ߶௦
 . The initial water level in each tank is

specified by the value of equation (49). The height of each tank (highest water level

possible) is a function of the minimum ߶௦
 that satisfy SLA constraint (߶௦

ሺ୫୧୬ሻ). Using

iterative water-filing method, it is possible to find any approximation of the minimum

cost of satisfying the power cap without VM migration. Note that, in some cases, it is not

possible to satisfy the power cap constraint solely by limiting power consumption in

servers.

The other way of resolving peak power or temperature emergency is to change

VM assignment solution. To find the minimum cost of resolving the power emergency

with VM migration, a process similar to the local search method is deployed. This

94

process should select a set of VMs to be migrated from the entity with power or

temperature emergency. In addition to VM migration outside the target entity, we can

consolidate VMs inside the target entity to reduce the power consumption. To select the

set of VMs to be migrated, the ranking mechanism which is presented in the local search

procedure can be used. In order to find the best host for VM migration, ranking metrics

from different resource managers are gathered and the maximum ranking metric

represents the VM ranking metric in the target resource manager. Having the ranking

metrics for each VM, the problem of finding the best VM set can be shown to be an NP-

hard problem. It can be shown that Knapsack problem [79] can be reduced to this

problem. Due to dynamic nature of these procedures, we cannot use approaches like

dynamic programming to solve the problem. Instead, dividing the ranking metric by the

power decrease in the target entity due to migration can create a new ranking metric that

is appropriate for this problem. For the case of consolidating VMs inside the entity, the

power reduction due to this consolidation is used to create the new ranking metric. Based

on the sorted list of VMs, the target manager can migrate a set of VMs to resolve the

peak power or temperature emergency with minimum movement cost.

Supply cold air temperature reduction is another solution to the temperature

emergency. The cost of this action can be determined by the new supply cold air

temperature (ܶ
௦ሺሻ) and is dependent on the total power consumption in the container:

Ψߠ ܲሺ1 ሺܱܲܥ ܶ
௦ሺሻሻ െ 1 ሺܱܲܥ ܶ

௦ሻ⁄⁄ ሻ ሺ1 1 ሺܱܲܥ ܶ
௦ሻ⁄ ሻൗ .

95

To resolve the temperature emergency with a solution from combination of VM

migration, limiting servers power consumption and lowering ܶ
௦, the ranking solution can

be modified. In addition to the sorted list of VMs based on their modified ranking

metrics, another entry is added for each VM with metric equal to ݉ (eq. (50)) which

captures the effectiveness of the power reduction without VM migration.

݉ ൌ
ஏఏೞ

ቀథೞ
ሺౣሻିథೞ

 ቁାఏఒሺ
ିషቀೞ

ഝೞ
 ഋೞషഊቁೃ

ሻ

ೞ
ሺథೞ

ିథೞ
ሺౣሻሻ

 (50)

In addition to these elements, another entry with a metric equal to the negative

cost of decreasing supply cold air temperature divided by the total power to be cut is

added to the sorted list. The entry in the sorted list with the highest metric is picked, the

migration or power reduction is done and this process continues until the temperature

emergency is resolved. If the entry related to the supply cold air temperature is selected,

the supply cold air temperature is changed and the optimization is concluded. Note that

with selection of migration for a VM, the other entry related to that VM is removed from

the list. In contrast, if the power reduction entry is selected for a VM, the metric for the

VM migration entry is appropriately modified. In addition to one of these modifications,

the metric for the entry related to supply cold air temperature change should be modified

based on the power reduction in the chassis.

If the final solution includes a set of power reduction in servers, the total cost can

be reduced by replacing these power reduction with the iterative water-filing solution.

Pseudo code for reactive optimization algorithm for temperature emergency in a chassis

manager is shown in Algorithm 3.

96

Algorithm 3: Reactive Optimization – Temperature Emergency in chassis

Inputs: ܫ set of assigned VMs and ܲ௨௧
Outputs: VM Movement, power cap for server and ܶ

௦ሺሻ

ܫ 1 ൌ ∅, Calculate ܶ
௦ሺሻ to resolve temperature emergency

ோܥ 2 ൌ Ψ ܲ൫1 ⁄௦ሻݐሺܱܲܥ െ 1 ݐ൫ܱܲܥ
௦ሺሻ൯⁄ ൯ ሺ1 1 ⁄௦ሻݐሺܱܲܥ ሻൗ /ܲ௨௧

ܫ 3 ൌ ܫ ∪ ܥܣܴܥ
4 Ask Rack, container, datacenter and cloud manager to find ܥ

ሺ∗ሻ
5 // current cost minus best total cost in destination minus mig. cost
6 Foreach (݅ ∈ (ܫ
7 Find ܥ

ሺொሻ, ܲ
ሺሻ added power in the host //consolidation inside chassis

8 ܲ ൌ ߶௦

௦ܲ

9 If (∑ ௦ݕ ൌൌ 1) ܲ ൌ ܲ ௦ܲ

ܣ 10 ൌ 1/ ܲ max∗∈ሼோ,,ሽ ܥ
ሺ∗ሻ

11 If (ܲ ܲ
ሺሻ) ܤ ൌ max	ሼܣ, ܥ

ሺொሻ ሺ ܲ െ ܲ
ሺሻሻൗ ሽ

ܦ 12 ൌ ௦ܲ
ሺ߶௦

 െ ሺߣ െ ln ݄
 ܴ

⁄ ሻ ௦ܥ௦ߤ
⁄ ሻ

ܦ 13 ൌ ሺ ݂ߣ ቀ݄
௧ െ ݁ି൫ೞ

థೞ
ఓೞିఒ൯ோ

ቁ െ Ψܦሻ ൗܦ

ܥ 14 ൌ max	ሼܦ, ሽܤ
ܫ 15 ൌ ܫ ∪ ሼ݅ሽ
16 End
17 Sort the elements in ܫ based on ܥ∗ (non-increasing)
18 While (ܲ௨௧ 0)
19 ݅ ൌ ∗ܥ	ூ∋∗ݔܽ݉݃ݎܽ
20 If (݅! ൌ (ܥܣܴܥ
21 If (ܥ ൌൌ (ܦ
22 ܲ௨௧െൌ ௦ܲ

ሺ߶௦
 െ ሺߣ െ ln ݄

 ܴ
⁄ ሻ ௦ܥ௦ߤ

⁄ ሻ
ܦ 23 ൌ െ݂݅݊ and recalculate ܲ, ܤ and ܥ
24 Else
25 ܲ௨௧=ܲ௨௧ െ ܲ
ܫ 26 ൌ ܫ െ ሼ݅ሽ
27 End
28 Calculate ܶ

௦ሺሻ and update ܥோ
29 Else
30 ܶ

௦ ൌ ܶ
௦ሺሻ	

31 ܲ௨௧ ൌ 0
32 End
33 End

If the entry related to supply cold air temperature change is removed from the

presented algorithm, it can be used to solve the peak power cap emergency.

97

3.7 Simulation framework and results

3.7.1 Simulation framework

To show the effectiveness of the presented resource management solution, a

complete datacenter simulation framework is implemented in C++.

The focus of the presented periodic and reactive resource management algorithms

are datacenter resource managers. So, only one container-based datacenter is modeled in

the simulation framework.

The structure of the implemented datacenters is based on the definitions in

section 3.2. Different parameters in the system are set based on real-world parameters.

We consider a heterogeneous datacenter with 16 containers and 500 servers per

container. We use hourly decision epochs. Four different server types are considered in

this datacenter. Processors in server types are selected from a set of Intel processors (e.g.

Atom and Xeon) [80] with different number of cores, cache sizes, power consumptions

and clock frequencies.

For each virtual machine in the system, a VM type from four different pre-defined

VM types is selected. The virtual machine type determines the average characteristics of

VM. The type also specifies variance from the mean for the matching VMs. For example,

a given VM type sets ߤ௦
 for each server type and each VM has this service rate per unit

capacity plus or minus a deviation that is solely dependent on the VM. Similarly, the

average request arrival rate (which in turn determines the VM workload in each epoch) is

determined by its VM type. However, the exact probability distribution function, PDF,

98

(and thus, the variance of the distribution) depends on the specific VM. We assume that

this PDF can be predicted in the cloud system and is used to determine the best workload

to avoid over-provisioning or under-provisioning. Moreover, workload of VM is changed

during an epoch based on this PDF. The frequency of VM workload changes in each

epoch is also determined based on a parameter dependent on VM type and a parameter

specific to VM. To reduce the simulation time, we assume that workload changes only

change the average inter-arrival time but the inter-arrival time and service time follow the

exponential distribution at all time. This means that in each time, the request response

time for each virtual machine can be determined based on M/M/1 queuing formulation.

Without this assumption, the long convergence time to determine the response time for

each VM does not allow us to simulate a datacenter with thousands of servers and VMs

in a reasonable amount of time. The VM lifetime is set randomly based on uniform

distribution between one and 8 hours.

In response to VM workload changes, the host server changes the resource

allocation parameters after a small delay. For this period of time, if SLA constraint is

violated, SLA violation penalty for 100% of the arriving requests is added to the cost of

the datacenter. Moreover, if the server is not able to determine the resource allocation

parameters such that SLA constraints for VMs or power or temperature constraint are

satisfied, reactive optimizations are performed.

To simulate the datacenter, we implemented an event-driven simulator. After

processing any VM workload changes, an event is generated to modify the resource

allocation parameters in the server after some delay. If this resource allocation

99

modification results in SLA violation or peak power or temperature violation, another

event regarding the reactive optimizations is added to the event queue. After each event,

the total cost is updated.

SLA for each VM is dependent on its VM type. The maximum tolerable request

arrival rate, target response time, SLA violation penalty, maximum tolerable SLA

violation rate, and migration penalties are determined based on the selected VM type

which is set based on EC2 pricing schemes [81].

Cooling system parameters for each container are set based on the provided data

in reference [52]. Peak power capacities for each component inside the datacenter

(chassis, rack, and container) are pre-set as fixed parameter values. These parameters

capture the ratio of the theoretical peak power consumption of each component to the

actual peak power capacity. For example if this ratio is 0.8 for a chassis, it means that the

peak power in that chassis cannot be more than 80% of the power consumption of an

active chassis with fully-utilized servers. These ratios can be the same in different levels

of the cloud system hierarchy or change depending on the aforesaid level. Energy cost for

regular cases is set to 15¢ per KWhr.

3.7.2 Base-line heuristics

To compare the results of the HRM with previous work, a power and migration-

aware VM placement algorithm (periodic optimization) called pMapper [84] is modified

and implemented. pMapper borrows FFD heuristics from bin-packing problem to find the

amount of resource needed from each server. After this step, VMs are sorted based on

100

their required processing size and assigned to the first available server with the least

power to the processing capacity ratio. To avoid high migration cost, VM migrations are

sorted based on a metric which is the power decrease to the migration cost. VM

migrations are performed based on this ranking metric if their metric is greater than one.

Note that pMapper is a centralized VM placement approach, which does not

consider the peak power capacity and CRAC efficiency in its algorithms. We thus

modified pMapper to address these two issues as follows: (i) When calculating the

ranking metric for servers, the effective power consumption of the server in the previous

epoch considering the CRAC efficiency factor is used; (ii) A utilization capacity is

considered for each server to decrease the possibility of having power capacity violation.

Furthermore, after finalizing the VM assignment, the same reactive optimization

procedure that we use for handling any peak power capacity violations is applied. With

these two changes, pMapper can serve as a good baseline against which one can compare

the presented methods in this chapter.

Moreover, to show the performance loss of using HRM instead of a centralized

periodic optimization algorithm with the same decision criteria, we implemented another

centralized periodic resource management algorithm called CRM. In this algorithm, VMs

are sorted based on their processing requirement size. Starting from the VM with the

biggest resource requirement size, servers are sorted based on their associated VM

assignment cost (calculated from equation (44)) and the VM is assigned to the server with

minimum assignment cost. After any assignment, resource, peak power and supply cold

air temperature is updated.

101

Note that, the presented reactive optimization technique is applied to the case with

pMapper and CRM algorithms as periodic optimization technique.

To compare our reactive optimization procedure, a centralized reactive

optimization method for SLA violation or power or temperature-related power violation

is also implemented. The implemented method is also based on FFD heuristic.

Considering the set of VMs related to the dynamic event, servers in datacenter are sorted

based on their power efficiency and starting from the smallest VM in the set, the best VM

migration is performed. This process continues until the power/temperature/SLA

emergency is resolved. The reason behind selecting the smallest VM in each try is that

smaller VMs typically have smaller migration costs.

3.7.3 Simulation results

Total number of active VMs and workload intensity (calculated as the summation

of minimum resource requirement of active VMs from a reference server type) in each

epoch is shown in Figure 11. During the full-day simulation, nearly 1,000,000 workload

changes are generated in our simulator.

Figure 11- Number of VMs and workload intensity in each epoch

0

2000

4000

6000

8000

10000

12000

0

200

400

600

800

1000

1200

1400

1600

0000011111111122222222223333333333444444444555555555566666666667777777778888888888999999 Axis Title

N
um

b
er

 o
f

ac
ti

ve
 V

M
s

W
or

kl
oa

d
 in

te
n

si
ty

(m

in
im

um
 n

u
m

b
er

 o
f

re
qu

ir
ed

 s
er

ve
r)

Series2
Series3

102

The total costs of the datacenter by applying HRM, CRM or pMapper algorithms

are presented in Figure 12. As it can be seen, considering flexible SLA, cooling system

efficiency, and peak power capacity in datacenter makes HRM algorithm better than

pMapper (by an average of 43%) in terms of the total cost of the system. Moreover,

performance loss of HRM method with respect to CRM approach is less than 2% which

shows the effectiveness of the hierarchical management.

Figure 12- Total cost of datacenter in each epoch

Figure 13- Run-time of the periodic optimization procedure in each epoch (run-time is reported in
logarithmic scales)

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T
ot

al
 C

os
t

($
)

Epoch

HRM
pMapper
CRM

0.2

1

5

25

125

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P
er

io
d

ic
 o

p
ti

m
iz

a
ti

o
n

ru

n
-t

im
e(

s)

Epoch

HRM
pMapper
CRM

103

One of the key motivations for considering a hierarchical resource manager is to

reduce the run-time of the periodic optimization procedures and improve the solution

scalability. Run-time of HRM, CRM and pMapper periodic optimization procedures are

shown in Figure 13. As it can be seen, the presented hierarchical method has a very short

run-time compared to the centralized approaches. In fact, HRM is in average 7 times

faster than pMapper and 27 times faster than CRM.

Calculating the arrival rate for each VM based on the prediction about its

workload significantly affects the periodic optimization solution. Moreover, due to

migration cost, effect of periodic optimization solution does not disappear even in case of

very dynamic workloads. To show this effect, we considered over-provisioning (20%

increase in predicted arrival rate) and under-provisioning (20% decrease in predicted

arrival rate) with respect to HRM algorithm for calculating the arrival rate. The results of

these two scenarios in addition to the HRM results are shown in Figure 14.

Figure 14- Run-time of the periodic optimization procedure in each epoch

It can be seen that the over-provisioning results in 13% higher cost than HRM and

under-provisioning results in 2% lower cost than HRM. Note that, this 2% reduction in

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T
ot

al
 c

os
t

($
)

Epoch (hour)

HRM
HRM-underprovisioning
HRM-overprovisioning

104

total cost results in higher SLA hard constraint violation (low user satisfaction) and

significantly higher number of reactive optimization calls in each epoch due to SLA

emergencies.

To understand the operational cost of the datacenter, different elements of the

total cost having different periodic optimization techniques are shown in Figure 15 to

Figure 18.

Figure 15- Elements of the total cost: Energy cost.

Figure 16- Elements of the total cost: SLA violation penalty.

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T
ot

al
 e

n
er

gy
 c

os
t

($
)

Epoch (hour)

HRM
CRM
pMapper
HRM-underprovisioning
HRM-overprovisioning

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T
ot

al
 S

L
A

 v
io

la
ti

on
 p

en
al

ti
es

 (
$)

Epoch (hour)

HRM
CRM
pMapper
HRM-underprovisioning
HRM-overprovisioning

105

Figure 17- Elements of the total cost: Migration cost.

Figure 18- Elements of the total cost: SLA hard constraint violation penalty.

As can be seen, over-provisioning approach results in high energy cost and low

SLA violation penalty and migration cost. This is due to the fact that the amount of

resources allocated to each VM is more than what it really needs. In contrast, under-

provisioning approach results in low energy cost but high SLA violation penalty and

migration cost. Moreover, SLA hard constraint violation penalty which results in user

dissatisfaction is high in this approach. pMapper algorithm results in high energy cost and

SLA violation penalty due to the lack of flexibility for resource allocation mechanism in

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T
ot

al
 M

ig
ra

ti
on

 c
os

t
($

)

Epoch (hour)

HRM
CRM
pMapper
HRM-underprovisioning
HRM-overprovisioning

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T
ot

al
 S

L
A

 h
ar

d
 c

on
st

ra
in

t
vi

ol
at

io
n

 p
en

al
ti

es
 (

$)

Epoch (hour)

HRM
CRM
pMapper
HRM-underprovisioning
HRM-overprovisioning

106

this approach but this approach results in the lowest hard SLA constraint violation.

Moreover, pMapper algorithm does not consider the cooling system efficiency and may

result in uneven temperature distribution inside containers and higher power usage

effectiveness. CRM approach results in lower energy cost with respect to HRM solution

but SLA violation penalty, VM migration cost and SLA hard constraint violation penalty

are higher in CRM approach. CRM approach results in higher consolidation level than

HRM solution due to global search between all servers for each VM assignment in CRM

approach which results in lower energy cost and possibly higher resource contention

between VMs and higher probability of forced VM migration due to emergencies.

Figure 19 reports the total number of calls to reactive optimization procedures in

one day considering different management strategies.

Figure 19- Total number of calls to the reactive optimization procedures in one day

As expected, the number of calls to reactive optimization procedures for the

under-provisioning scenario is larger than other hierarchical management algorithms.

Moreover, the rather large number of calls to reactive optimization procedures for

0

10000

20000

30000

40000

50000

60000

HRM HRM-over HRM-under pMapper CRM

of

 c
al

ls
 t

o
re

ac
ti

ve
 p

ro
ce

du
re

 in
 o

ne
 d

ay

107

pMapper scenario has two important reasons: (i) usual power capacity violation due to

issues in periodic solution, and (ii) dynamic calls to solve SLA violation problems due to

inflexibility of the resource allocation procedure.

In case of using HRM as the periodic optimization procedure, less than 4% of the

workload changes results in reactive optimization procedure call. The total cost of VM

movement cost for the presented reactive optimization procedure for SLA emergencies is

shown in Figure 20. In this figure, the total VM movement cost for reactive optimization

procedure in the centralized management structure is also shown. As can be seen, the

expected cost of solving SLA violation using the presented algorithm is smaller than the

expected cost of solving the issue with a centralized approach for most of the cases. This

is because the centralized approach does not consider the migration cost and only finds

the best server in the system as the host. Another drawback for the centralized approach

is the greedy VM selection strategy.

Figure 20- Total VM movement cost for the reactive optimization procedure (SLA violation
emergency)

0

0.005

0.01

0.015

0.02

0.025

0 500 1000 1500 2000 2500 3000 3500 4000

E
xp

ec
te

d
co

st
 o

f
So

lv
in

g
SL

A
 v

io
la

ti
on

 (
dy

na
m

ic
)

Sample dynamic procedures

HRM

Centralized reactive solution

108

The number of calls to reactive procedure for power or temperature-related power

cap violation is much smaller than the number of calls for SLA violation in hierarchical

management scenario. This is because the power cap violation happens in chassis, rack or

container but SLA violation happens in the servers. The total expected cost of solving

power cap violations using the presented algorithms in hierarchical and centralized

management scenarios is presented in Figure 21. Negative expected cost in this figure

means expected gain.

Figure 21- Total VM movement cost for the reactive optimization procedure (power cap emergency)

As can be seen, the expected cost of solving power cap violation using the

presented algorithms are less than expected cost of solving power cap violation using the

centralized approach. The expected gain in the presented approach is the result of lower

energy cost and SLA violation penalty in the selected hosts for the set of migrated VMs.

Similar to the previous case, the centralized approach does not consider the migration

cost and cannot select the best set of VMs to migrate.

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 5 10 15 20 25 30 35 40

E
xp

ec
te

d
co

st
 o

f S
ol

vi
ng

 p
ea

k
ca

p
vi

ol
at

io
n

(d
yn

am
ic

)

Sample dynamic procedures

HRM

Centralized reactive solution

109

The complexity of the presented algorithm for solving the power cap or

temperature emergency is mostly dominated by communication cost between different

managers in the system. The run-time of the presented reactive optimization algorithms is

negligible in our implementation due to the fact that there is no communication latency

between resource management instances in a unified software. The number of resource

managers involved in solving the problem can be limited in order to reduce the run-time

with possible expected cost increase.

(a) (b)

Figure 22- (a) power and (b) temperature distribution in a container with heavy worklaod. ࢙ࢀ ൌ
 and ࢞ࢇ ࢀ ൌ .

(a) (b)

Figure 23- (a) power and (b) temperature distribution in a container with light workload. ܛ܂ ൌ ۱ܗ
and ܠ܉ܕ ܖܑܙ܂ ൌ ૢ. ۱ܗૢ

110

To show the effectiveness of HRM algorithms in reducing the cooling system

power consumption, Figure 22 and Figure 23 show two instances of power and

temperature distribution in 10-rack containers. In these containers, two rows of racks

(five racks in each row) are placed in parallel. Each rack has five chassis (A on bottom to

E on top).

Figure 22 shows a case with heavier workload having supply cold air temperature

equal to 15oC and maximum temperature of 30.2oC. Figure 23 shows a case with lighter

workload having supply cold air temperature equal to 22oC and maximum temperature of

29.9oC. In both cases, it can be seen that the resource manager tries to decrease heat

recirculation which is the main results of the literature in temperature-aware task

scheduling in datacenter such as [52]. Note that this is not always possible because the

resource managers also consider three important factors in the resource management

solution which are energy proportionality, VM migration cost and peak power cap.

Figure 24- Dynamic energy price and total cost of the datacenter in a full day

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

E
ne

rg
y

pr
ic

e
($

 p
er

 K
W

H
)

T
ot

al
 c

os
t

($
)

Epoch

Total cost ($)

Energy price

111

Energy price has a big impact in determining the total cost of the system. Energy

price is an important factor in determining the resource allocation strategy in datacenters.

All of the presented algorithms in this chapter consider the energy price to decide about

the amount of resource allocated to each VM. To examine the effect of energy price on

the result of the presented algorithms, we considered a scenario with 5000 VMs and

different energy prices for each epoch. The energy price and total cost of the datacenter in

a full day is shown in Figure 24. As can be seen in this figure, the total cost in datacenter

has a similar pattern to the energy price in the system.

(a)

(b)

Figure 25- (a) percentage of the SLA violation penalty in the total cost and (b) average predicted
arrival rate for VMs in different epochs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

E
ne

rg
y

pr
ic

e
($

 p
er

 K
W

H
)

%

Epoch

Percentage of SLA violation penalty in total cost
Energy price

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2.5

2.7

2.9

3.1

3.3

3.5

3.7

3.9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

E
ne

rg
y

pr
ic

e
($

 p
er

 K
W

H
)

A
vg

. p
re

di
ct

ed
 a

rr
iv

al
 r

at
e

(p
er

 s
ec

on
d)

Epoch

Avg. predicted arrival rate
Energy price

112

Figure 25 shows the share of the SLA violation penalty in the total cost and

average predicted arrival rate for VMs in different epochs.

As can be seen in Figure 25(a), the share of SLA violation penalty does not

significantly change with energy price. This means that in case of low energy price,

resource manager tries to lower the SLA violation penalty and in case of high energy

price, it tries to reduce energy consumption by decreasing the resource allocated to each

VM. Another proof for this observation is Figure 25(b) which shows that by increasing

the energy price, the resource manager decreases the size of each VM (under-provision)

to reduce the energy cost.

3.8 Conclusion

In this chapter, a hierarchical resource management structure for cloud system is

presented. The presented structure shows scalability and higher performance compared to

a centralized structure suggested in the literature. Moreover, the performance loss of the

decentralized approach with respect to the centralized version of the algorithm is less

than 2% having 27 times shorter run-time.

The presented algorithm results in higher energy proportionality in the overall

datacenter, lower SLA violation penalty and migration cost and higher cooling system

efficiency. The presented management structure is appropriate for localized VM

migrations and allocation adjustment to avoid temperature, peak power and SLA

emergencies. The effect of over and under-provisioning approaches in this algorithm is

studied in the simulation results.

113

Chapter 4 . GEOGRAPHICAL LOAD BALANCING FOR ONLINE

SERVICE APPLICATIONS IN DISTRIBUTED DATACENTERS

4.1 Introduction

Geographical load balancing (GLB) can be defined as a series of decisions about

dynamic assignment and/or migration of virtual machines (VMs) or computational tasks

to geographically distributed datacenters in order to meet the SLAs or service deadlines

for VMs/tasks and to decrease the operational cost of the cloud system.

Most of the previous work that has focused on the GLB problem for online

service applications, e.g., [63, 65, 66], simplify the VM placement and migration problem

to a request forwarding problem for a VM type or a collection of VMs. This

representation ignores the heterogeneity of VMs, the VM packing problem, and real VM

migration cost and can thus result in low performance in a real cloud system.

In this work, we focus on the GLB problem for heterogeneous online service

applications that are response time-sensitive. Communication latency, queuing and

service delays, and VM migration penalty are the most important factors for determining

the VM to datacenter assignment solution. The availability of each type of resource in a

datacenter, peak power capacity, and varying PUE factor are considered in modeling each

datacenter. There are two versions of the GLB solution: (i) static solution, which

114

considers every input parameters to be determined deterministically in order to derive a

complete VM placement and migration solution for a long period of time, and (ii)

dynamic solution, which uses prediction of the input parameters for the future to derive

VM placement and migration for a the current time. In contrast to dynamic solution

which can be used in cloud-level resource management, the static solution can be used

during the design of geographically distributed datacenters to reduce the initial capital

expenditure and expected operational cost of the datacenter.

This chapter presents a novel algorithm based on force-directed scheduling [85] to

solve the static version of the problem. This solution is subsequently extended to a

dynamic one to perform periodic VM placement and migration management for online

service applications based on the prediction of application active periods, workload types

and intensities, electrical energy prices, and potential generation of renewable energy in

the near future. The effectiveness of the presented solutions is demonstrated by

comparison them to a solution that does not consider the GLB capability.

This chapter is organized as follows. Parameter definition and precise problem

formulation for the static scenario are given in sections 4.2 and 4.3. The static version of

the solution is presented in section 4.4 while dynamic problem formulation and solution

are presented in section 4.5. Simulation results are presented in section 4.6 and chapter is

concluded at section 4.7.

115

4.2 Parameter definitions

The GLB solution for online service applications is a periodic VM assignment to

and/or VM migration across geographically distributed datacenters if necessary. The

objective of the GLB problem is to minimize the operational cost (the electrical energy

bill plus SLA penalty) of the cloud system while satisfying resource, peak power

capacity, and SLA constraints. Note that the decisions in the GLB solution are focused on

the cloud-level VM assignment and migration. Each datacenter has its own VM

management that assigns VMs to its servers and migrates VMs. The datacenter-level VM

management and migration have studied in previous two chapters. An exemplary figure

for a geographically distributed datacenter is shown in Figure 26.

Figure 26 – An exemplary figure for a geographically distributed cloud system

116

To increase readability, Table V presents key symbols used throughout this

chapter along with their definitions.

TABLE V. NOTATION AND DEFINITIONS IN CHAPTER 4

Symbol Definition
 Duration of the decision epoch in seconds ߠ
࣮ Set of consecutive epochs considered for the static version of the GLB

 ሺ߬ሻ Set of active VMs in each epochܫ

 Set of geographically distributed datacenters ܦ
Ψௗሺ߬ሻ Energy price in datacenter d during epoch ߬
 ߬ ௗሺ߬ሻ Average generated power in renewable power plant in datacenter d during epochܩ

ௗܲ
௫ Peak power limitation of datacenter ݀
 Peak to average power consumption ratio ܴܣܲ
 ݀ ௗ Uninterrupted power supply (UPS) efficiency in datacenterߩ
	ܱܲܥ Coefficient-of-performance
ܵௗ	 Set of server types in datacenter d
 ݀ in datacenter ݏ ௗ,௦ Number of servers of typeܥ
߶ത௦ Average utilization of a server from server type ݏ

௦ܲ
, ௦ܲ

 Constant and dynamic power consumption of server type s operation.

݉ܿ
ௗ,ௗᇲሺ߬ሻ VM migration cost between datacenter ݀ and ݀ᇱ

ݎ
ௗ,௦ሺ߬ሻ

The least amount of the computing resource needed in order to guarantee satisfaction
of the SLA constraint for VM ݅ in server type ݏ datacenter ݀ in epoch ߬

݂ሺ߶
ௗ,௦ሺ߬ሻሻ Expected SLA cost of VM i in epoch ߬ with allocation parameter ߶

ௗ,௦ሺ߬ሻ

߶
ௗ,௦ሺ߬ሻ Amount of resource in server type j in datacenter d allocated to VM ݅ in epoch ߬

ݕ
ௗሺ߬ሻ Pseudo Boolean parameter to show that if VM ݅ is assigned to server s (1) or not (0)

In this chapter, we focus on solving the GLB problem in case of heterogeneous

VMs and heterogeneous servers in each datacenter. We present two versions of the

solution to this problem: (i) static solution considering predicted workload, known

renewable power generation capability, and dynamic electrical electricity prices; (ii)

periodic dynamic solution to decide about the VM placement and migration for the

current time based on the immediate information and predictions about the future. Note

that the assumption in the static version of the problem is simplistic but the static solution

can be used in capacity provisioning for datacenters, determining datacenter site

117

locations, or the amount of renewable power source construction near each datacenter.

Moreover, as shown in this chapter, the static solution can be extended to the dynamic

version, which can be used in VM management in a cloud system.

The time axis in the GLB problem is divided into time slots called epochs. Each

epoch is identified by a unique id, denoted by ߬. ߠ denotes the duration of each epoch,

which is in the order of a few minutes to as much as one hour. New VMs are only

admitted at the beginning of each epoch. Similarly, decisions about VM migration and

placement are only applied at the beginning of each epoch. In addition to this decision

making process, a reactive manager migrates VMs between different datacenters in the

case of drastic workload changes, which may create SLA, peak power, or thermal

emergencies.

The solution to the GLB problem involves information about (or prediction of)

the dynamic energy prices, renewable power generation capability, VM workload, and

VM active period. The quality of these predictions determines the quality of the presented

solution to the GLB problem. In the first part of this chapter, we consider a static version

of the problem that assumes perfect prediction of these parameters and determines a

complete VM placement and migration solution for a long period of time e.g., a full day.

Definitions of parameters for the static version of the problem are given next.

࣮ denotes the set of consecutive epochs that we consider for the static version of

the GLB. Similar to the dynamic solution, the static solution changes the VM assignment

solution only at the beginning of each epoch. Each VM and each datacenter are identified

118

by a unique id, denoted by i and d respectively. ܫሺ߬ሻ denotes the set of active VMs in

each epoch and ܦ denotes the set of geographically distributed datacenters.

A time-of-use (TOU) dependent energy pricing scheme is considered for each

utility company. The energy price is assumed to be fixed for each epoch. Ψௗሺ߬ሻ denotes

the energy price in datacenter d during epoch ߬. TOU-dependent energy pricing scheme

(in contrast to peak-power dependent energy pricing) enables one to ignore the time

variation of renewable power generated in local renewable power facilities during an

epoch and model the amount of generated renewable power by the average generated

power in that epoch, which is denoted by ܩௗሺ߬ሻ. The allowed peak power consumption

of a datacenter is determined by the power delivery network in the datacenter and is

denoted by ௗܲ
௫. To translate the average power consumption to ௗܲ

௫, peak to average

power ratio (ܴܲܣௗሺ߬ሻ) is used. This parameter depends on the resource capacity of the

datacenter and the set of VMs assigned to the datacenter.

The PUE factor of a datacenter, which is defined as the ratio between total power

consumption of the datacenter to the power consumed by the IT equipment in the

datacenter, is dependent on the datacenter design (including facility planning and

management and cooling technology) and the amount of instantaneous power

consumption. We consider the PUE factor to be decomposed to a constant factor (ߩௗ),

which accounts for the uninterrupted power supply (UPS) inefficiencies within the

datacenter, and a load-dependent factor (1 ௗሺ߬ሻܱܲܥ/1), which captures the

inefficiency of the air conditioning units in the datacenter. In the load-dependent factor,

119

the coefficient-of-performance (ܱܲܥௗሺ߬ሻ), which models the amount of power consumed

by the air conditioning units, depends on the temperature of the supplied cold air, which

is in turn a function of the IT equipment power dissipation in the datacenter. Optimal

 ௗሺ߬ሻ is a monotonically decreasing function of the average power consumption inܱܲܥ

the datacenter.

We consider only the processing capacity as the resource in each datacenter

(consideration of other resource types such as the storage or network bandwidth falls

outside the scope of present chapter). To model each datacenter more accurately, we

consider datacenters with heterogeneous servers. Each server type is identified by a

unique id ݏ in each datacenter and the set of server types in each datacenter is shown by

ܵௗ. ܥௗ,௦ denotes the number of servers of type ݏ in datacenter ݀. Different server types

have different characteristics in terms of their processing speed (CPU cycles per second)

and power consumption.

Due to non-energy proportional behavior of the servers [13], it is important to

translate the amount of resources required in the server pool to the number of active

servers. To capture the VM packing effect, we assume that any active server of type s, is

utilized by an average value (smaller than one, e.g., 0.8) denoted by ߶ത௦. The rationale is

that considering any resource requirement value, server-level power management

strategies including server consolidation or dynamic voltage and frequency scaling

methods are employed in the datacenter ensuring that an active server is utilized at a high

level so that we avoid having to pay the penalty associated with the non-energy

proportionality behavior of the servers. This average utilization level for different server

120

types may not be the same because the characteristics and configuration of each server

type in terms of its power consumption vs. utilization level curve as well as the amount of

memory, local disk size, network interface bandwidth are generally different.

The average power consumption of each of these resource types in datacenter can

be found by multiplying the average power consumption of a typically utilized server of

given type (߶ത௦ ௦ܲ
 ௦ܲ

) by the number of servers needed to support the assigned VMs in

the datacenter. In this formula, ௦ܲ
 and ௦ܲ

 denote the idle and utilization-dependent

power consumption of a server of type	ݏ.

Each client of the target cloud system creates one VM to execute its application.

The SLA for online service application determines a target response time for requests

generated by the VM. The cloud provider must guarantee the satisfaction of this response

time constraint for a percentage of incoming requests (e.g. 95%) and agrees to pay a fixed

penalty for any request violating the response time constraint. Moreover, SLAs determine

VM migration cost, which is the penalty for service outage due to VM migration.

݉ܿ
ௗ,ௗᇲሺ߬ሻ denotes the VM migration cost between datacenter ݀ and ݀ᇱ.

Let ߶
ௗ,௦ሺ߬ሻ denote the amount of servers of type s in datacenter d allocated to

VM ݅ in epoch ߬ . To determine this resource allocation parameter for each VM, a

performance model must be considered. Each VM will have different resource

requirements and exhibit different response time behavior if it is assigned to different

server types. Moreover, dependence of a VM’s request response time in a host datacenter

can be determined based on the communication distance between the VM’s origination

121

point and the host datacenter, the data rate in dedicated communication channels, the

packet size of the incoming requests and outgoing response.

Performance models presented in the literature can help translate the resource

allocation parameter to specific SLA violation cost or price based on the client’s SLA

requirements, VM workload in the epoch, execution behavior of VM on the specific

server type, and the communication latency. The performance model can be abstracted by

parameter ݎ
ௗ,௦ሺ߬ሻ and function ݂ሺ߶

ௗ,௦ሺ߬ሻሻ that denote the least amount of the computing

resource needed in order to guarantee satisfaction of the SLA constraint and the expected

SLA cost of VM i in epoch ߬ with allocation parameter ߶
ௗ,௦ሺ߬ሻ, respectively. According

to definition, ݂ሺ0ሻ ൌ 0. Ignoring ߶
ௗ,௦ሺ߬ሻ ൌ 0, this function is monotonically decreasing

with respect to ߶
ௗ,௦ሺ߬ሻ. If the communication latency of assigning a VM to a datacenter

violates the SLA response time constraint, parameter ݎ
ௗ,௦ሺ߬ሻ will be equal to infinity in

order to avoid such assignments.

Note that constraint ߶
ௗ,௦ሺ߬ሻ ݎ

ௗ,௦ሺ߬ሻ guarantees that the SLA constraint will be

satisfied based on the assumed performance model but in order to satisfy the SLA

constraints, the host server monitors the performance of the application and in case of

SLA violation increases the amount of resource allocated to it or requests VM migration

from the datacenter-level resource manager.

4.3 Problem Formulation for the Static Problem

The static version of the GLB problem can be formulated as follows:

122

Ψௗሺ߬ሻቀܲௗሺ߬ሻߠ		݊݅ܯ െ ௗሺ߬ሻቁܩ
ା

ௗ∈ఛ∈࣮

 ൭݉ܿሺ߬ሻ ݂ሺ߶
ௗ,௦ሺ߬ሻሻ

௦∈ௌௗ∈

൱
∈ூሺఛሻఛ∈࣮

subject to:

ܲௗሺ߬ሻ ൌ ଵ

ఘ
ቀ1 ଵ

ைሺఛሻ
ቁ∑ ቀ൫߶ത௦ ௦ܲ

 ௦ܲ
൯∑ ߶

ௗ,௦ሺ߬ሻ ߶ത௦ൗ∈ூሺఛሻ ቁ௦∈ௌ (51)

∑ ݕ
ௗሺ߬ሻ ൌ 1ௗ∈ 			∀݅ ∈ ݕ , ሺ߬ሻܫ

ௗሺ߬ሻ 0 ,

ݕ
ௗሺ߬ሻ ∑൫݊݃݅ݏ ߶

ௗ,௦ሺ߬ሻ௦∈ௌ ൯ , ݕ
ௗሺ߬ሻ ∈ ሼ0,1ሽ

(52)

1 ߶
ௗ,௦ሺ߬ሻ 0,

∑ ∑ ൫߶
ௗ,௦ሺ߬ሻ ݎ

ௗ,௦ሺ߬ሻൗ െ 1 ߳൯
ା

௦∈ௌௗ∈ 0 ∀݅ ∈ ሺ߬ሻܫ

(53)

∑ ߶
ௗ,௦ሺ߬ሻ∈ூሺఛሻ ݀∀ ௗ,௦ܥ ∈ ܦ & ݏ∀ ∈ ܵௗ (54)

݉ܿሺ߬ሻ ݉ܿ
ௗ,ௗᇲݕ

ௗሺ߬ሻݕ
ௗᇲሺ߬ െ 1ሻ ∀݀, ݀ᇱ ∈ (55) ܦ

ܲௗሺ߬ሻܴܲܣௗሺ߬ሻ ௗܲ
௫ (56)

where ሺܣሻା denotes the max	ሺܣ, 0ሻ and Parameter ߳ is a very small positive value. Note

that ݊݃݅ݏሺ0ሻ is equal to 0.

The optimization parameters in this problem include the assignment parameters

ݕ)
ௗሺ߬ሻ) and the allocation parameters (߶

ௗ,௦ሺ߬ሻ). The objective function includes three

terms: (i) the energy cost paid to the utility companies, (ii) the VM migration cost, and,

(iii) the SLA cost of VMs based on the VM assignment and amount of resources

allocated to them.

123

Equation (51) determines the average power consumption of each datacenter

based on the allocated resource to VMs. Constraint (52) determines the pseudo-Boolean

assignment parameter for each VM in each epoch. Constraint (53) forces the amount of

resources allocated to each VM to be greater than ݎ
ௗ,௦ሺ߬ሻ. Resource capacity constraint

for each server type in each datacenter is captured by constraint (54). Constraint (55)

determines the migration cost associated with each VM. The migration cost is equal to

zero unless the VM is migrated from datacenter ݀ᇱ to ݀ in epoch ߬. In the latter case, the

migration cost is equal to ݉ܿ
ௗᇲ,ௗ. In order to consider the initial VM assignment solution,

if VM ݅ is initially assigned to datacenter ݀, ݕ
ௗሺെ1ሻ is set to one. Finally, constraint (56)

captures the peak power capacity constraint in each datacenter.

The GLB problem is an NP-hard optimization problem. Most of the previous

work [63, 65, 66, 60] has focused on solving the GLB problem with continuous workload

approximation. The problem can subsequently be solved using convex optimization

methods. The continuous approximation of the GLB problem is acceptable in case of

homogenous VMs or simple request forwarding scenarios in a cloud system. This

simplification cannot, however, accurately capture the VM migration cost and may result

in poor performance due to the necessity of deciding about the actual VM placement after

finalizing the load balancing solution. In this work, we present a dynamic and static

solution to the GLB problem for online service applications in the cloud system.

124

4.4 Algorithm for the Static Solution

As explained in section 4.2, in the static version of the problem, we assume that

every input parameter is known as opposed to a dynamic scenario in which these

parameters are only predicted with certain confidence. The input parameters in this

problem are the VM arrival time and active period, the VM workload in each epoch,

energy price and generated power in the renewable power plant for each datacenter. We

consider these parameters to be fixed during each epoch. Making this assumption means

that the frequency of drastic changes in the system is considered to be greater than the

frequency of applying the optimization solution.

The GLB problem involves a resource allocation problem for VMs assigned to

each datacenter at each epoch. To determine the optimal amount of resources that need to

be allocated to a VM to minimize the summation of energy and SLA costs, we need to

know the effective energy price and the PUE of a datacenter. It is obvious that these

values cannot be determined without knowing the average power consumption in the

target epoch but we can estimate ܱܲܥௗሺ߬ሻ and ܲௗሺ߬ሻ by using their typical values in

previous epochs with similar conditions. The problem of finding the best resource

allocation parameter for VM ݅ if it is assigned to server type ݏ in datacenter ݀ may be

formulated as follows:

Ψௗሺ߬ሻߠ		݊݅ܯ
ቀ ܲௗሺ߬ሻ െ ௗሺ߬ሻቁܩ

ା

ܲௗሺ߬ሻ

1
ௗߩ

ቆ1
1

ܲௗሺ߬ሻܱܥ
ቇ ሺ߶ത௦ ௦ܲ

 ௦ܲ
ሻ
߶
ௗ,௦ሺ߬ሻ

߶ത௦
 ݂ሺ߶

ௗ,௦ሺ߬ሻሻ

subject to:

125

߶
ௗ,௦ሺ߬ሻ ݎ

ௗ,௦ሺ߬ሻ (57)

In this formulation, ܲௗሺ߬ሻ and ܱܥܲௗሺ߬ሻ denote the estimated average power

consumption and COP, respectively. Considering a non-increasing SLA cost function, the

problem has only one solution in which ߶
ௗ,௦ሺ߬ሻ ൌ ݎ

ௗ,௦ሺ߬ሻ, ߶
ௗ,௦ሺ߬ሻ ൌ 1 or it satisfies the

following equality (KKT conditions):

߲݂ ቀ߶
ௗ,௦ሺ߬ሻቁ

߲߶
ௗ,௦ሺ߬ሻ

ൌ െߠΨௗሺ߬ሻ
ቀ ܲௗሺ߬ሻ െ ௗሺ߬ሻቁܩ

ା

ܲௗሺ߬ሻ

1
ௗߩ

ቆ1
1

ܲௗሺ߬ሻܱܥ
ቇ ሺ ௦ܲ

 ௦ܲ

߶ത௦
ሻ (58)

Considering a constant communication delay for assigning a VM to a datacenter,

a closed form solution can be found for (58) by using the M/M/1 queuing model, cf. [70].

In case of more complicated SLAs or queuing models, it may not be possible to obtain a

closed form solution for this problem, but a numerical solution can be used in such cases.

In the rest of this chapter, ߶
ௗ,௦ሺ߬ሻ denotes the solution of (58) or zero depending on the

value of ݕ
ௗሺ߬ሻ. Note that, at any point of the algorithm where all VMs are assigned to a

datacenter for an epoch, the value of ߶
ௗ,௦ሺ߬ሻ can be updated based on real values of

ܲௗሺ߬ሻ and ܱܲܥௗሺ߬ሻ.

The GLB problem considering VMs with lifetimes greater than single epoch is

more complicated than finding the best VM placement solution for each epoch because a

VM may cost less if it is not assigned to its best datacenter in the current epoch so as to

avoid having to pay for costly VM migration in a next epoch. To be able to find an

efficient and high-performance solution for the GLB problem, we present a force-directed

126

load balancing (FDLB) algorithm, which determines VM placement solution based on

force-directed scheduling (FDS) [85].

FDS is one of the notable scheduling techniques in high-level synthesis. It is a

technique used to schedule directed acyclic task graphs so as to minimize the resource

usage under a latency constraint. This technique maps the scheduling problem to the

problem of minimizing forces in a physical system which is subsequently solved by

iteratively reducing the total force by task movements between time slots. In reference

[86], we applied this technique to the task scheduling in demand response problem.

To solve the GLB problem using the FDS technique, |࣮| instances of each

datacenter (one for each epoch) and an instance of each VM for each epoch in its active

period are created. Note that, the instance of a VM in epoch ߬ only has interactions with

datacenter instances in that epoch and the VM instances in epoch ߬ െ 1 and ߬ 1 (if they

exist). Forces in this system are defined based on different terms in the objective

functions and resource and peak power capacities in datacenters. Assigning an instance of

VM ݅ in epoch ߬ to server type ݏ in datacenter ݀ creates the following force in the

system:

݁ܿݎܨ
ௗ,௦ሺ߬ሻ ൌ ܨ ܱ

ௗ,௦ሺ߬ሻ ሺ߬ሻܯܨ ܥܨ
ௗ,௦ሺ߬ሻ ܨ ܲ

ௗ,௦ሺ߬ሻ ܴܨ
ௗ,௦ሺ߬ሻ (59)

where:

ܨ ܱ
ௗ,௦ሺ߬ሻ ൌ Ψௗሺ߬ሻ

ቀሺఛሻିீሺఛሻቁ
శ

ሺఛሻ
ߠ ቀ1 ଵ

ைሺఛሻ
ቁ ൈ

																						 ଵ
ఘ
ቀ ௦ܲ

 ೞ
బ

థഥೞ
ቁ߶

ௗ,௦ሺ߬ሻ ݂ ቀ߶
ௗ,௦ሺ߬ሻቁ

(60)

127

ሺ߬ሻܯܨ ൌ ∑ ݉ܿ
ௗ,ௗᇲሺݕ

ௗᇲሺ߬ 1ሻ ݕ
ௗᇲሺ߬ െ 1ሻሻௗᇲ∈ (61)

ܥܨ
ௗ,௦ሺ߬ሻ ൌ ିଵ

ைሺఛሻమ

డைቀሺఛሻቁ

డሺఛሻ

ଵ

ఘ
ௗሺ߬ሻܲߠ ൈ

Ψௗሺ߬ሻ
ቀሺఛሻିீሺఛሻቁ

శ

ሺఛሻ
ቀ ௦ܲ

 ೞ
బ

థഥೞ
ቁ߶

ௗ,௦ሺ߬ሻ

(62)

ܨ ܲ
ௗ,௦ሺ߬ሻ ൌ ቀ1 െ ݁ିாሺೞ

ାೞ
బ/థഥೞሻ௫

,ೞሺఛሻቁ ݁ቀ
ሺఛሻோሺఛሻି,ೌೣሺఛሻቁ (63)

ܴܨ
ௗ,௦ሺ߬ሻ ൌ ቀ1 െ ݁ିథ

,ೞሺఛሻቁ ݁ቀ∑ థ
,ೞሺఛሻ∈ሺഓሻ ି,ೞቁ (64)

It can be seen that different force elements are defined for different parts of the

objective function or constraints in the GLB problem as explained next. ܨ ܱ
ௗ,௦ሺ߬ሻ

captures the energy and SLA costs based on the amount of resources allocated to the VM.

ܥܨ		ሺ߬ሻ captures the VM migration cost whereasܯܨ
ௗ,௦ሺ߬ሻ captures the energy cost of the

cooling power consumption change due to the average power consumption change.

ܨ ܲ
ௗ,௦ሺ߬ሻ and ܴܨ

ௗ,௦ሺ߬ሻ capture the pressure on the peak power and server type ݏ resource

capacity constraints in the datacenter. Note that ܨ ܲ
ௗ,௦ሺ߬ሻ and ܴܨ

ௗ,௦ሺ߬ሻ do not have

corresponding cost meaning, but are added to the force calculation to make sure the

capacity constraints are satisfied.

Finding a feasible solution to minimize the objective function is equivalent to

minimizing the summation of forces applied to VM instances. Starting from any solution,

we can identify the VM instance movements (from a server type in a datacenter to

another server type in a datacenter) that results in reducing the force and execute these

movements to reach a lower operational cost. The order of these movements affects the

128

final results because executing a movement changes the forces applied to some other VM

instances.

The initial solution has a significant impact on the quality of the final solution for

the GLB problem. To be able to perform gradual VM movement to reduce the total force,

we consider an initial solution in which, each VM instance is cloned and uniformly

distributed between possible resource types in different datacenters related to the target

epoch. Let ܰሺ߬ሻ denote the number of instances for VM ݅ in epoch ߬. The amount of

resources allocated to new VM instances is replaced by ߶
ௗ,௦ሺ߬ሻ/ ܰሺ߬ሻ and force

components are calculated based on this value. Note that the SLA cost for these VM

instances should be calculated from ݂ሺ߶
ௗ,௦ሺ߬ሻሻ/ ܰሺ߬ሻ	while the migration cost-related

force calculation should consider multiple VM instances in neighboring epochs with

appropriate weights. More precisely, ܯܨሺ߬ሻ for an instance of the VM should be

replaced by the following term:

ሺ߬ሻܯܨ ൌ
ଵ

ேሺఛሻ
∑ ݉ܿ

ௗ,ௗᇲሺ
௬
ᇲሺఛାଵሻ

ேሺఛାଵሻ

௬
ᇲሺఛିଵሻ

ேሺఛିଵሻ
ሻௗᇲ∈ (65)

Starting from the initial solution, we need to merge instances associated with each

VM in each epoch to reduce the number of instances related to each VM to one for each

epoch (ܰሺ߬ሻ ൌ 1). Speed of the instance merging affects the run-time of the algorithm

and the overall quality of the solution. We select a three-stage merging approach in which

first we reduce the number of instances for each VM in each epoch to 4 and then reduce

the number of instances to 2, and finally, determine the VM placement. In each stage, the

best merging action (least force increase) between different VMs and different epochs is

129

selected and executed until there are no VMs with more than the target number of

instances in each epoch. To calculate the best merging action and its associated force, the

total force applied to VM instances is calculated and subtracted from the best total force

if the instances are reduced to the target number of instances. Note that any VM instance

movement results in changes in forces applied to VM instances associated with the

datacenters in that epoch and its own VM instances in the neighboring epochs. These

force changes are captured in equation (59) but to calculate the next best VM movement,

the value of force for affected VM instances needs to be updated.

After finalizing the VM placement solution, in case of resource or peak power

capacity constraint violation in datacenters, the VM instance movement must be

continued until a feasible solution is reached. In this stage, VM instances can select any

destination resource type in a datacenter in the corresponding epoch in contrast to gradual

VM instance merging, which was limited to select destination(s) between current VM

instance hosts. In addition to this stage, even without any peak power capacity or

resource constraint violations, the VM movement can be continued to further reduce the

total cost with the restriction that no VM movement that results in any constraint

violations should be tried.

Considering this algorithm, we can formulize the datacenter and renewable power

plant design problem to minimize the capital expenditure and operational cost. The

presented algorithm can also be modified and used in the dynamic VM management in a

cloud system comprised of geographically distributed datacenters. Details of this

extension are given next.

130

4.5 Formulation and Solution of the Dynamic Version of the
Problem

VM placement in a cloud system comprised of geographically distributed

datacenters is performed at the beginning of each epoch based on the prediction of the

optimization parameters. The dynamic solution for the GLB problem determines the VM

placement solution for the current epoch (denoted by ݐ in this section ሻ with the

consideration of future epochs. To make a decision about a VM placement, we need to

consider its active period, its workload in the next epochs, other VMs in the system

including existing VMs and new VMs that will enter the cloud in the next epochs, and

energy price and renewable energy generation for next epochs.

The cloud system cost (ܥܥሺݐሻ) in epoch ݐ can be formulated as follows:

ሻݐሺܥܥ ൌ Ψௗሺݐሻߠቀܲௗሺݐሻ െ ሻቁݐௗሺܩ
ା

ௗ∈

∑ ቀ݉ܿሺݐሻ ∑ ∑ ݂ ቀ߶
ௗ,௦ሺݐሻቁ௦∈ௌௗ∈ ቁ∈ூሺ௧ሻ

(66)

The dynamic version of the GLB problem tries to minimize the summation of

ݐሺܥܥ) ሻ and the costs of the future epochsݐሺܥܥ ߬ሻ) by VM placement for the current set

of VMs.

The dynamic GLB solution directly affects ܥܥሺݐሻ but only indirectly affects

ݐሺܥܥ ߬ሻ . In contrast to straightforward calculation of ܥܥሺݐሻ based on the VM

placement solution (considering perfect information about input parameters in epoch ݐ),

estimating ܥܥሺݐ ߬ሻ is a difficult task due to the following missing information about

epoch ݐ ߬:

131

(i) Existence of VM ݅ (݅ ∈ ݐ ሻ) in epochݐሺܫ ߬. A probability value denoted

by ݎሺݐ ߬ሻ is considered to determine the probability of the VM to be active in epoch

ݐ ߬. This probability is a decreasing function of ߬.

(ii) VM ݅ Workload (݅ ∈ ݐ ሻ) in epochݐሺܫ ߬. Considering SLA, workload in

our problem formulation may be translated into resource allocation parameters.

Therefore, we consider predicted resource allocation parameters in epoch ݐ ߬, denoted

by ߶
ௗ,௦ሺݐ ߬ሻ.

(iii) Energy price and average renewable power generation. We consider

Ψௗሺݐ ߬ሻ and ܩௗሺݐ ߬ሻ to represent the predicted energy price and average renewable

power generation in epoch ݐ ߬.

(iv) The rest of active VMs (ܫሺݐ ߬ሻ െ .ሻ) and their workload in that epochݐሺܫ

Instead of predicting a number of active VMs for epoch ݐ ߬, resource utilization related

to those VMs in datacenters can be used. These resource utilization parameters can be

found based on the state of the datacenters in similar scenarios (same energy price,

renewable power generation and workload) after removing the resource utilization related

to VMs that existed in epoch ݐ. The amount of predicted background utilized resources

for resource type ݏ in datacenter ݀ in epoch ݐ ߬ is denoted by ܥመௗ,௦ሺݐ ߬ሻ.

Parameters ݎሺݐ ߬ሻ and ߶
ௗ,௦ሺݐ ߬ሻ can be estimated based on the historical

data about the VM type and VM’s original location. Energy price can be predicted based

on the historical data or information received from utility companies and average

renewable energy generation can be estimated based on weather prediction.

132

Based on the predicted optimization parameters, the dynamic VM placement

problem in a geographically distributed datacenter can be set up similar to the static

problem. A maximum application lifetime is considered for every VM and SLA and

migration cost and allocation parameters for VM ݅ in epoch ݐ ߬ are dampened by

probability ݎሺݐ ߬ሻ. To simplify the formulation, in the following formulation, we

consider the predicted parameters to be equal to their actual values for epoch ݐ and set

ሻݐሺݎ ൌ 1. The dynamic GLB problem can thus be formulated as follows:

	݊݅ܯ ݐΨௗሺߠ ߬ሻ ቀܲௗሺݐ ߬ሻ െ ݐௗሺܩ ߬ሻቁ
ା

ௗ
ఛ∈బ

 ሺ߬ሻݎ ൭݉ܿሺݐ ߬ሻ ݂ቀ߶
ௗ,ሺݐ ߬ሻቁ

௦ௗ

൱
∈ூሺ௧ሻ

ఛ∈బ

subject to constraints (52), (53), (55), (56) and

∑ ݐሺݎ ߬ሻ߶
ௗ,௦ሺݐ ߬ሻ∈ூሺఛሻ ௗ,௦ܥ െ ݐመௗ,௦ሺܥ ߬ሻ (67)

ܲௗሺݐ ߬ሻ ൌ ଵ

ఘ
ቀ1 ଵ

ைሺ௧ାఛሻ
ቁ∑ ቆቀ ௦ܲ

 ೞ
బ

థഥೞ
ቁ ൈ ൫ܥመௗ,௦ሺݐ ߬ሻ ௦∈ௌ

∑ ݐሺݎ ߬ሻ߶
ௗ,௦ሺݐ ߬ሻ∈ூሺఛሻ ൯ቇ

(68)

This problem can be solved by using the presented force-directed VM placement

algorithm for the static problem. Note that the number of VMs in this problem is limited

to |ܫሺ߬ሻ|, which results in shorter execution time for this solution. It can be shown that,

even starting from unsatisfactory background resource utilization, the dynamic solution

converges to a good solution after a number of iterations of the solution because the

133

accuracy of the background workload will be improved by applying the dynamic

solution.

4.6 Simulation Results

To show the effectiveness of the presented algorithms for the GLB problem, a

simulation framework is implemented.

In this simulation framework, we considered a US-based cloud system that has

five datacenters in California, Texas, Michigan, New York, and Florida. The

communication rate between these datacenters is assumed to be 1Gbps. Size of these

datacenters ranges from 4,000 to 1,600 servers belonging to four different server types,

selected from HP server types. Duration of epoch is set to one hour. The average

utilization of servers is assumed to be 70%. Peak power capacity of each datacenter is set

to 80% of the peak power consumption of the deployed servers and cooling system.

Based on the weather patterns, each datacenter has a combination of solar and wind

power plant with power generation capacity of up to 20% of its peak power consumption.

The renewable power generation changes during the day based on type of the power

plant.

The average energy price in one day for each datacenter is set based on the

reported average energy price [87] in datacenter’s location. Dynamic energy price for

each one of the datacenters is assumed to follow the dynamic energy pricing pattern in

reference [88] related to 5/23/2013 with appropriate time shift and average energy price.

134

Figure 27 shows the energy price pattern for the California datacenter with average

energy price of 15.2 ¢ per KWhr.

Figure 27 – Energy price in California datacenter (time in PST)

To determine the relation between the COP and average power consumption in a

datacenter, we applied the genetic-algorithm-based power provisioning policy presented

in reference [52] to find the maximum COP for different range of power consumption in

a two-row rack setting (250 blade servers with 110KW peak power) using hot-aisle/cold-

aisle cooling arrangement. The results are reported in Figure 28.

Figure 28 – Dependence of COP on average power consumption

0

5

10

15

20

25

E
ne

rg
y

p
ri

ce
 (

¢
pe

r
K

W
hr

)

Time

0

1

2

3

4

5

6

7

1.0E+02 1.0E+04 2.0E+04 3.0E+04 4.0E+04 5.0E+04 6.0E+04 7.0E+04 8.0E+04 9.0E+04 1.0E+05 1.1E+05

C
O

P

Total power consumption in cluster (Watt)

COP Estimated COP (linear regression)

135

It can be seen that the COP can be modeled as a linear function of the average

power consumption with acceptable error. To approximate the COP function for the

whole datacenter, the power coefficient in this linear estimation is multiplied by ௗ,௫/

110KW. This assumption is based on having multiple server rooms with capacity of

110KW each.

Synthetic workloads are generated to be used in the GLB problem. Based on

population distribution in US, applications are created in different time horizons and

geographical locations. Application workload is changed according to the local time of its

origination point. The application lifetime is set randomly based on uniform distribution

between one and 16 hours. The SLA parameters and costs for these applications are set

based on the Amazon EC2 pricing scheme [81]. We used the SLA model presented in

[70] to determine the SLA cost based on the amount of resources allocated to each VM.

The minimum resource requirement for each VM is determined considering a target

response time, a tolerable response time violation rate, behavior of the VM on the target

server type, the round-trip time between VM location and target datacenter location, and

the time required to transmit a typical packet in the incoming requests and outgoing

responses. The penalty for an under-serviced request is set to be equal to the service price

for one hour divided by the maximum number of requests that can violate the response

time in each charge cycle. The migration cost is considered to be linearly related to the

migration latency. The linear coefficient is set to be equal to the service price for one

charge cycle divided by the worst possible migration latency (New York to California.)

136

The baseline in our simulation is a case without geographical load balancing. For

this scheme, each client is assigned to its nearest datacenter that has sufficient available

resources. This scheme results in small VM migration cost if there are no resource

contentions in the datacenters.

Figure 29 – The intensity of the workload as a function of time of the day captured by the total
minimum resource requirement for active VMs

To show the effectiveness of the presented static algorithm, we created workload

for more than 100,000 clients across the US for a full day and determined the GLB

solution by using presented algorithm and baseline solution. The workload intensity,

which is obtained by summing the minimum resource requirement for the active VMs, is

reported in Figure 29.

The operational cost of the cloud system with FDLB algorithm, the baseline

algorithm, and FDLB-1 (a simplified version of FDLB) are presented in Figure 30. Note

that FDLB-1 constructively (i.e., epoch-by-epoch) determines the VM placement solution

in order to reduce the run-time of the original solution.

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

To
ta

l m
in

im
um

 r
es

ou
rc

e
re

qu
ir

em
en

t

Hour (Eastern time)

137

Figure 30 – Operational cost of the cloud in different epochs using different scheduling algorithms

As can be seen, in the beginning of the day, performance of the baseline method

is similar to that of FDLB algorithm but in peak workload hours, the total operational

cost using the baseline algorithm increases significantly. The total operational cost of the

cloud system for one day using FDLB algorithm is 35% less than that of the baseline

algorithm and 4% better than that of the FDLB-1 solution. The run-time of FDLB,

FDLB-1 and baseline on a 2.66GHz quad-core HP server are 466, 69 and 7 seconds,

respectively. Share of different elements of the operational cost using FDLB algorithm is

shown in Figure 31. As can be seen, FDLB solution avoids VM migration in light

workload but VM migration is used under heavy workload situations to reduce PUE,

increase the share of renewable energy, and decrease the energy cost. Moreover, it can be

seen that the energy cost in the beginning of the day is very small due to light workload

and availability of generated renewable energy in datacenters.

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

O
p

er
at

io
n

al
 c

os
t

($
)

Epoch

FDLB

Baseline

FDLB-1

138

Figure 31 – Share of energy, SLA and migration cost in operational cost in different epochs

Figure 32 shows the normalized operational cost of applying FDLB algorithm and

baseline method to the static problem with different number of VMs per day.

Figure 32 – Normalized operational cost of the system using FDLB and baseline method in the static
setting

As can be seen, the FDLB algorithm performs 6% to 77% better than the baseline

algorithm which does not consider the GLB. The performance gap between FDLB and

baseline solutions decreases as the number of VMs increases which is the result of

exhausting the renewable energy generation and cheaper resources in peak times.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
ot

al
 c

os
t

($
)

Epoch

Migration cost

SLA cost

Energy cost

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

50K 80K 100K 120K 150K 180K 200K

N
or

m
al

iz
ed

 o
p

er
at

io
na

l c
os

t

Number of VMs for one day

FDLB

Baseline

FLDB-1

139

To more clearly illustrate the effect of resource availability on the performance of

FDLB solution, Figure 33 shows the operational cost of the system in static setting with

100K VMs in one day with varying peak renewable power generation capacity in each

datacenter. As can be seen, the FDLB improvements w.r.t. baseline method increases by

increasing the peak power generation capacity in datacenters’ site.

Figure 33 – Normalized operational cost of the system in the static setting with different renewable
energy generation capacities

To show the effectiveness of the presented dynamic solution, we created a four-

day scenario. To be able to apply the prediction about the background workload from

first day of the dynamic algorithm to the other days, we considered similar situations for

all four days. The predicted parameters (discussed in section 4.5) are deviated from real

values by up to 10% to model the misprediction phenomenon. The number of created

VMs in each day is at least 100K. Normalized total operational costs of each day using

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0% 5% 10% 20% 30%

N
or

m
al

iz
ed

 o
p

er
at

io
n

al
 c

os
t

Peak renewable power generation capacity
peak power capacity of datacenter

FDLB

Baseline

FLDB-1

140

the dynamic and static FDLB algorithms and the baseline method are reported in Table

VI. As can be seen, the dynamic version of the algorithm works 3% worse than the

complete and perfect information scenario in the static version but it is 4% better than

only considering the current epoch (FDLB-1) and 39% more effective than not

considering the load balancing opportunity. Run-time of the dynamic algorithm (after

background workload preparation) ranges from 10 to 80 seconds for each epoch on a

2.66GHz quad-core HP server.

TABLE VI. NORMALIZED OPERATIONAL COST OF THE CLOUD DURING FOUR DAYS USING DIFFERENT LOAD

BALANCING ALGORITHMS

Day
Normalized total OPEX for full day

Dynamic
FDLB Static FDLB Dynamic

FDLB-1 Baseline

First day 1 0.997 1.075 1.426

Second day 1 0.967 1.024 1.364

Third day 1 0.977 1.043 1.388

Fourth day 1 0.968 1.029 1.388

Overall 1 0.977 1.042 1.391

Figure 34 shows the normalized operational cost of the system having different

number of VMs per day by applying different load balancing algorithms. Average added

prediction error in this scenario is equal to 10%.

 As can be seen, the performance of the dynamic FDLB is 32% to 46% better than

the performance of the dynamic baseline method. Increasing the number of VMs per day

increases the opportunity of utilizing green renewable power generated in datacenters’

site and increase the benefit of GLB. After 120K VMs in this setup, the resource

141

contention increases and it results in reduction of GLB advantage. Moreover, it can be

seen that, performance of FDLB-1 solution with respect to original solution improves as

we increase the number of VMs. This shows that, increasing the number of VMs reduces

the benefit of considering future epochs in GLB decision making. With a similar pattern,

the performance of dynamic FDLB with respect to static FDLB with perfect information

is improving by increasing the number of VMs which is the result of exhausting

resources in datacenter with cheap energy or generated renewable energy.

Figure 34 – Normalized operational cost of the system using FDLB and baseline method in the
dynamic setting

Figure 35 shows the normalized operational cost of the system using FDLB and

baseline method with different prediction error having 100K VMs per day. As can be

seen, the performance gap between different solutions does not drastically change by

increasing the prediction error.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

80K 100K 120K 150K

N
or

m
al

iz
ed

 o
pe

ra
ti

on
al

 c
os

t

Number of VMs per day

FDLB
Static-FDLB
FDLB-1
Baseline

142

Figure 35 – Normalized operational cost of the system using FDLB and baseline method in the
dynamic setting with different prediction error having 100K VMs per day

4.7 Conclusion

This chapter was focused on the load balancing problem for online service

applications considering a distributed cloud system comprised of geographically

dispersed, heterogeneous datacenters. The problem formulation and a novel solution were

presented and simulation results demonstrated the effectiveness of the presented

algorithms. The effectiveness of GLB was shown to increase as the renewable energy

generation capacity in datacenters increases. A possible future work is to combine the

GLB problem for online applications with offline computation tasks scheduling problem

to increase the benefit of the load balancing. Another possible future work is to consider

GLB problem with multi-tier applications, which create multiple dependent VMs.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1% 5% 10% 20%

N
or

m
al

iz
ed

 o
p

er
at

io
n

al
 c

os
t

Average prediction error

FDLB
Static-FDLB
FDLB-1
Baseline

143

Chapter 5 . CONCLUSIONS AND FUTURE WORK

In this thesis we presented SLA-driven energy efficient resource management in

datacenters and cloud systems (comprised of geographically distributed datacenters). The

presented centralized resource management solution in datacenters, which simultaneously

determines the VM assignment and the amount of resource allocated to each VM was

shown to result in an average 18% lower operational cost with respect to a solution that

determines the amount of resource that must be allocated to a VM before assigning VMs

to servers. Higher energy efficiency and lower operational cost were shown to be due to

the flexibility of the resource allocation solution.

The presented hierarchical resource management structure significantly shortened

the run-time of the periodic and reactive optimization procedures. Moreover, considering

the energy non-proportionality of today’s servers, cooling-related power consumption,

and peak power constraints in the formulation of the resource management problem was

shown to improve the performance of the presented solutions with respect to previous

work by an average of 43%.

The presented geographical load balancing solution for interactive applications

was shown to decrease the energy cost of the cloud system due to use of cheaper energy

provided by utility companies during non-peak hours or use of generated renewable

power in datacenter’s sites. We also showed that considering the whole active period of

144

VMs in load balancing decisions results in lower operational cost in the cloud system by

avoiding costly VM migrations between geographically distributed datacenters.

For future work, implementation of the presented algorithms in a real world setup

may help fine tune the presented solutions and show the practical effect of these

management algorithms in datacenters and cloud systems. Moreover, workload

prediction is a critical task that can be pursued because all of the presented algorithms

depend on some level of workload prediction and the accuracy of these predictions

directly affects the accuracy of the presented solutions.

145

BIBLIOGRAPHY

[1] J. Koomey, "Growth in data center electricity use 2005 to 2010," Analytics Press,
2011.

[2] ENERGY STAR, "Report to Congress on Server and Datacenter Energy Efficiency
Public Law 109-431," U.S.Environmental Protection Agency, Washington, D.C.,
2007.

[3] D. Meisner, B. Gold and T. Wenisch, "PowerNap: eliminating server idle power," in
Proceedings of the ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Washington, DC, 2009.

[4] S. Pelley, D. Meisner, T. F. Wenisch and J. VanGilder, "Understanding and
abstracting total datacenter power," in workhop on Energy-Efficient Design, 2009.

[5] "EPA confenrece on Enterprise Servers and Datacenters: Opportunities for Energy
Efficiency," EPA, Lawrence Berkeley National Laboratory, 2006.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.
Pratt and A. Warfield, "Xen and the art of virtualization," in 19th ACM Symposium
on Operating Systems Principles, 2003.

[7] A. Verrna, P. Ahuja and A. Neogi, "pMapper: Power and migration cost aware
application placement in virtualized systems," in ACM/IFIP/USENIX 9th
International Middleware Conference, 2008.

[8] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinsk, G. Lee, D.
Patterson, A. Rabkin, I. Stoica and M. Zaharia, "A view of cloud computing,"
Commun ACM, vol. 53, no. 4, pp. 50-58, 2010.

[9] R. Buyya, "Market-oriented cloud computing: Vision, hype, and reality of delivering
computing as the 5th utility," in 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, CCGRID, 2009.

146

[10] S. Ghemawat, H. Gobioff and S.-T. Leung, "The Google file system," in The 19th
ACM Symposium on Operating Systems Principles, Lake George, NY, 2003.

[11] L. A. Barroso and U. Holzle, The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines, Morgan & Claypool Publishers, 2009.

[12] C. Belady, "Green Grid Datacenter Power Efficiency Metrics: PUE and DCIE,"
2007. [Online]. Available: Available at
http://www.thegreengrid.org/gg_content/TGG_Data_Center_Power_Efficiency_Met
rics_PUE_and DCiE.pdf.

[13] L. A. Barroso and U.Hölzle, "The Case for Energy-Proportional Computing," IEEE
Computer, vol. 40, 2007.

[14] X. Fan, W. Weber and L. A. Barroso, "Power provisioning for a warehouse-sized
computer," in in Proceedings of the 34th Annual International symposium on
Computer Architecture, San Diego, CA, 2007.

[15] A. Karve, T. Kimbre, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviridenko and A.
Tantawi, "Dynamic placement for clustered web applications," in 15th International
Conference on World Wide Web, WWW'06, 2006.

[16] C. Tang, M. Steinder, M. Spreitzer and G. Pacifici, "A scalable application
placement controller for enterprise datacenters," in 16th International World Wide
Web Conference, WWW2007, 2007.

[17] F. Chang, J. Ren and R. Viswanathan, "Optimal resource allocation in clouds," in
3rd IEEE International Conference on Cloud Computing, CLOUD 2010, 2010.

[18] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat and R. P. Doyle,
"Managing energy and server resources in hosting centers," in 18th ACM
Symposium on Operating Systems Principles (SOSP'01), 2001.

[19] E. Pakbaznia, M. GhasemAzar and M. Pedram, "Minimizing datacenter cooling and
server power costs," in Proc. of Design Automation and Test in Europe, 2010.

[20] S. Srikantaiah, A. Kansal and F. Zhao, "Energy aware consolidation for cloud
computing," in Conference on Power aware computing and systems (HotPower'08),
2008.

147

[21] B. Urgaonkar, P. Shenoy and T. Roscoe, "Resource Overbooking and Application
Profiling in Shared Hosting Platforms," in Symposium on Operating Systems Design
and Implementation, 2002.

[22] Z. Liu, M. S. Squillante and J. L. Wolf, "On maximizing service-level-agreement
profits," in Third ACM Conference on Electronic Commerce, 2001.

[23] K. Le, R. Bianchini, T. D. Nguyen, O. Bilgir and M. Martonosi, "Capping the brown
energy consumption of internet services at low cost," in International Conference on
Green Computing (Green Comp), 2010.

[24] L. Zhang and D. Ardagna, "SLA based profit optimization in autonomic computing
systems," in Proceedings of the Second International Conference on Service
Oriented Computing, 2004.

[25] D. Ardagna, M. Trubian and L. Zhang, "SLA based resource allocation policies in
autonomic environments," Journal of Parallel and Distributed Computing, vol. 67,
no. 3, pp. 259-270, 2007.

[26] H. Goudarzi and M. Pedram, "Maximizing profit in the cloud computing system via
resource allocation," in Proc. of international workhop on Datacenter Performance,
2011.

[27] D. Ardagna, B. Panicucci, M. Trubian and L. Zhang, "Energy-Aware Autonomic
Resource Allocation in Multi-Tier Virtualized Environments," IEEE Transactions
on Services Computing, vol. 99, 2010.

[28] H. Goudarzi and M. Pedram, "Multi-dimensional SLA-based resource allocation for
multi-tier cloud computing systems," in proceeding of 4th IEEE conference on cloud
computing (Cloud 2011), 2011.

[29] G. Tesauro, N. K. Jong, R. Das and M. N. Bennani, "A hybrid reinforcement
learning approach to autonomic resource allocation," in Proceedings of
International Conference on Autonomic Computing (ICAC '06), 2006.

[30] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy and G. Jiang, "Power and
performance management of virtualized computing environments via lookahead
control," in Proceedings of International Conference on Autonomic Computing
(ICAC '08), 2008.

148

[31] A. Chandra, W. Gongt and P. Shenoy, "Dynamic resource allocation for shared
datacenters using online measurements," in International Conference on
Measurement and Modeling of Computer Systems ACM SIGMETRICS, 2003.

[32] N. Bobroff, A. Kochut and K. Beaty, "Dynamic Placement of Virtual Machines for
Managing SLA Violations," in Proceedings of the 10th IFIP/IEEE International
Symposium on Integrated Management (IM2007), 2007.

[33] M. N. Bennani and D. A. Menasce, "Resource allocation for autonomic datacenters
using analytic performance models," in Second International Conference on
Autonomic Computing, 2005.

[34] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer and A. Tantawi, "An analytical
model for multi-tier internet services and its applications," in SIGMETRICS 2005:
International Conference on Measurement and Modeling of Computer Systems,
2005.

[35] M. Pedram and I.Hwang, "Power and performance modeling in a virtualized server
system," in 39th International Conference on Parallel Processing workhops
(ICPPW), 2010.

[36] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang and X. Zhu, "No "power"
struggles: Coordinated multi-level power management for the datacenter," ACM
SIGPLAN Notices, vol. 43, no. 3, pp. 48-59, 2008.

[37] S. Pelley, D. Meisner, P. Zandevakili, T. F. Wenisch and J. Underwood, "Power
Routing : Dynamic Power Provisioning in the Datacenter," in ASPLOS ’10:
Architectural Support for Programming Languages and Operating Systems, 2010.

[38] M. Srivastava, A. Chandrakasan and R. Brodersen, "Predictive system shutdown and
other architectural techniques for energy efficient programmable computation,"
IEEE Trans. on VLSI, 1996.

[39] Q. Qiu and M. Pedram, "Dynamic Power Management Based on Continuous-Time
Markov Decision Processes," in ACM design automation confernece (DAC'99),
1999.

[40] G. Dhiman and T. S. Rosing, "Dynamic power management using machine
learning," in ICCAD ’06, 2006.

149

[41] D. Meisner, C. Sadler, L. Barroso, W. Weber and T. Wenisch, "Power Management
of Online Data-Intensive Services," in Proceedings of the 38th Annual International
symposium on Computer Architecture, 2011.

[42] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang and N. Gautam,
"Managing server energy and operational costs in hosting centers," in ACM
SIGMETRICS '05, 2005.

[43] X. Wang and Y. Wang, "Co-con: Coordinated control of power and application
performance for virtualized server clusters," in IEEE 17th International workhop on
Quality of Service (IWQoS), 2009.

[44] E. Elnozahy, M. Kistler and R. Rajamony, "Energy-Efficient Server Clusters," in
Proc. 2nd workhop Power-Aware Computing Systems,, 2003.

[45] R. Buyya and A. Beloglazov, "Energy efficient resource management in virtualized
cloud datacenters," in 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing (CCGrid), 2010.

[46] L. Liu, H. Wang, X. Liu, X. Jin, W. He, Q. Wang and Y. Chen, "Greencloud: A new
architecture for green datacenter," in 6th International Conference Industry Session
on Autonomic Computing and Communications Industry Session, ICAC-INDST'09,
2009.

[47] R. Nathuji and K. Schwan, "VirtualPower: Coordinated power management in
virtualized enterprise systems," Operating Systems Review, vol. 41, no. 6, pp. 265-
78, 2007.

[48] N. Rasmussen, "Calculating Total Cooling Requirements for Datacenters,"
American Power Conversion, 2007.

[49] E. Pakbaznia and M. Pedram, "Minimizing datacenter cooling and server power
costs," in Proceedings of the International Symposium on Low Power Electronics
and Design, 2009.

[50] R. Sharma, C. Bash, C. Patel, R. Friedrich and J. Chase, "Balance of power:
dynamic thermal management for Internet datacenters," IEEE Internet Computing,
2005.

150

[51] J. Moore, J. Chase, P. Ranganathan and R. Sharma, "Making scheduling "cool":
temperature-aware workload placement in datacenters," in Proceedings of the
Annual Conference on USENIX Annual Technical Conference, 2005.

[52] Q. Tang, S. Gupta and G. Varsamopoulos, "Thermal-Aware Task Scheduling for
Datacenters through Minimizing Heat Recirculation," in Proc. IEEE Cluster, 2007.

[53] Q. Tang, S. Gupta and G. Varsamopoulos, "Energy-Efficient Thermal-Aware Task
Scheduling for Homogeneous High-Performance Computing Datacenters: A Cyber-
Physical Approach," IEEE Transactions on Parallel and Distributed Systems, 2008.

[54] S. Biswas, M. Tiwari, T. Sherwood, L. Theogarajan and F. T. Chong, "Fighting fire
with fire: modeling the datacenter-scale effects of targeted superlattice thermal
management," in Proceedings of the 38th Annual International symposium on
Computer Architecture, 2011.

[55] C. Patel, R. Sharma, C. Bash and A. Beitelmal, "Thermal considerations in cooling
large scale high compute density datacenters," in Proceedings of the Eighth
Intersociety Conference on Thermal and Thermomechanical Phenomena in
Electronic Systems, 2002.

[56] J. Choi, Y. Kim, A. Sivasubramaniam, J. Srebric, Q. Wang and J. Lee, "Modeling
and Managing Thermal Profiles of Rack-mounted Servers with ThermoStat," in
Proceedings of International Symposium on High Performance Computer
Architecture, 2007.

[57] A. Ipakchi and F. Albuyeh, "Grid of the future," IEEE Power and Energy Magazine,
vol. 7, no. 2, pp. 52-62, 2009.

[58] "http://www.google.com/green/energy/," [Online].

[59] R. Miller, "Facebook installs solar panels at new data center,"
DatacenterKnowledge, 16 April 2011. [Online].

[60] L. Rao, X. Liu, L. Xie and W. Liu, "Minimizing electricity cost: Optimization of
distributed internet data centers in a multi-electricity market environment," in IEEE
INFOCOM, 2010.

[61] R. Stanojevic and R. Shorten, "Distributed dynamic speed scaling," in IEEE
INFOCOM, 2010.

151

[62] X. Wang and M. Chen, "Cluster-level feedback power control for performance
optimization," in IEEE HPCA, 2008.

[63] M. Lin, Z. Liu, A. Wierman and L. L. Andrew, "Online algorithms for geographical
load balancing," in Proc. Int. Green Computing Conf., San Jose, CA, 2012.

[64] Z. Liu, M. Lin, A. Wierman, S. H. Low and L. L. H. Andrew, "Geographical load
balancing with renewables," in Proc. ACM GreenMetrics, 2011.

[65] Z. Liu, M. Lin, A. Wierman, S. H. Low and L. L. H. Andrew, "Greening
geographical load balancing," in Proc. ACM SIGMETRICS, San Jose, CA, 2011.

[66] K. Le, R. Bianchini, M. Martonosi and T. D. Nguyen, "Cost and energy-aware load
distribution across data centers," in HotPower’09, Big Sky, MT, 2009.

[67] M. A. Adnan, R. Sugihara and R. Gupta, "Energy Efficient Geographical Load
Balancing via Dynamic Deferral of Workload," in proceeding of 5th IEEE
conference on cloud computing (Cloud 2012), Honolulu, HI, 2012.

[68] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang and C. Hyser,
"Renewable and cooling aware workload management for sustainable data centers,"
ACM SIGMETRICS Performance Evaluation Review, vol. 40, no. 1, 2012.

[69] H. Goudarzi and M. Pedram, "Profit-maximizing resource allocation for multi-tier
cloud computing systems under service level agreements," in Large Scale Network-
Centric Distributed Systems, Wiley-IEEE Computer Society Press, 2013.

[70] H. Goudarzi, M. Ghasemazar and M. Pedram, "SLA-based Optimization of Power
and Migration Cost in Cloud Computing," in 12th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing (CCGrid), 2012.

[71] H. Goudarzi and M. Pedram, "Hierarchical SLA-Driven Resource Management for
Peak Power-Aware and Energy-Efficient Operation of a Cloud Datacenter,"
Submitted to IEEE transaction on computers.

[72] H. Goudarzi and M. Pedram, "Energy-efficient Virtual Machine Replication and
Placement in a Cloud Computing System," in IEEE international conference on
cloud computing (CLOUD 2012), Honolul, 2012.

152

[73] H. Goudarzi and M. Pedram, "Geographical Load Balancing for Online Service
Applications in Distributed Datacenters," in IEEE international conference on cloud
computing (CLOUD 2013), Santa Clara, 2013.

[74] H. Goudarzi and M. Pedram, "Force-directed Geographical Load Balancing and
Scheduling for Batch Jobs in Distributed Datacenters," in IEEE international
conference on cluster computing (CLUSTER 2013), Indianapolis, 2013.

[75] A. Beloglazov and R. Buyya, "Energy efficient resource management in virtualized
cloud datacenters," in Proceeding of 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing (CCGrid), 2010.

[76] I. Goiri, J. Fitó, F. Julià, R. Nou, J. Berral, J. Guitart and J. Torres, "Multifaceted
resource management for dealing with heterogeneous workloads in virtualized data
centers," in Proceeding of IEEE/ACM International Conference on Grid Computing
(GRID), 2010.

[77] B. Sotomayor, R. S. Montero, I. M. Llorente and I. Foster, "Capacity Leasing in
Cloud Systems using the OpenNebula Engine," in Workshop on Cloud Computing
and its Applications, 2008.

[78] R. Buyya, Y. S. Chee and S. Venugopal, "Market-Oriented Cloud Computing:
Vision, Hype and Reality for Delivering IT Services as Computing Utilities," in
IEEE International Conference on High Performance Computing and
Communications, 2008.

[79] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer
Implementations, Wiley, 1990.

[80] "http://ark.intel.com/," [Online].

[81] "http://aws.amazon.com/ec2/#pricing," [Online].

[82] A. Qouneh, C. Li and T. Li, "A quantitative analysis of cooling power in container-
based data centers," in IEEE International Symposium on Workload
Characterization (IISWC), 2011.

[83] E. Feller, C. Rohr, D. Margery and C. Morin, "Energy Management in IaaS Clouds:
A Holistic Approach," in Proceedings of IEEE 5th International Conference on
Cloud Computing (CLOUD), 2012.

153

[84] A. Verma, P. Ahuja and A. Neogi, "pMapper: Power and migration cost aware
application placement in virtualized systems," in ACM/IFIP/USENIX 9th
International Middleware Conference, 2008.

[85] P. Paulin and J. Knight, "Force-directed scheduling for the behavioral synthesis of
ASICs," IEEE TRansaction on Computer-Aided Design of Integrated Circuits and
Systems, 1989.

[86] H. Goudarzi, S. Hatami and M. Pedram, "Demand-side load scheduling incentivized
by dynamic energy prices," in IEEE International Conference on Smart Grid
Communications, 2011.

[87] "Electric Power Monthly," US energy information administration, 2013.

[88] "Power Smart Pricing," [Online]. Available:
http://www.powersmartpricing.org/tools/.

154

ALPHABETIZED BIBLIOGRAPHY

M. A. Adnan, R. Sugihara and R. Gupta, "Energy Efficient Geographical Load Balancing
via Dynamic Deferral of Workload," in proceeding of 5th IEEE conference on cloud
computing (Cloud 2012), Honolulu, HI, 2012.

D. Ardagna, B. Panicucci, M. Trubian and L. Zhang, "Energy-Aware Autonomic Resource
Allocation in Multi-Tier Virtualized Environments," IEEE Transactions on Services
Computing, vol. 99, 2010.

D. Ardagna, M. Trubian and L. Zhang, "SLA based resource allocation policies in
autonomic environments," Journal of Parallel and Distributed Computing, vol. 67, no. 3,
pp. 259-270, 2007.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinsk, G. Lee, D.
Patterson, A. Rabkin, I. Stoica and M. Zaharia, "A view of cloud computing," Commun
ACM, vol. 53, no. 4, pp. 50-58, 2010.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt and
A. Warfield, "Xen and the art of virtualization," in 19th ACM Symposium on Operating
Systems Principles, 2003.

L. A. Barroso and U. Holzle, The Datacenter as a Computer: An Introduction to the Design
of Warehouse-Scale Machines, Morgan & Claypool Publishers, 2009.

L. A. Barroso and U.Hölzle, "The Case for Energy-Proportional Computing," IEEE
Computer, vol. 40, 2007.

C. Belady, "Green Grid Datacenter Power Efficiency Metrics: PUE and DCIE," 2007.
[Online]. Available: Available at
http://www.thegreengrid.org/gg_content/TGG_Data_Center_Power_Efficiency_Metrics_P
UE_and DCiE.pdf.

A. Beloglazov and R. Buyya, "Energy efficient resource management in virtualized cloud
datacenters," in Proceeding of 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing (CCGrid), 2010.

M. N. Bennani and D. A. Menasce, "Resource allocation for autonomic datacenters using
analytic performance models," in Second International Conference on Autonomic
Computing, 2005.

155

S. Biswas, M. Tiwari, T. Sherwood, L. Theogarajan and F. T. Chong, "Fighting fire with
fire: modeling the datacenter-scale effects of targeted superlattice thermal management," in
Proceedings of the 38th Annual International symposium on Computer Architecture, 2011.

N. Bobroff, A. Kochut and K. Beaty, "Dynamic Placement of Virtual Machines for
Managing SLA Violations," in Proceedings of the 10th IFIP/IEEE International
Symposium on Integrated Management (IM2007), 2007.

R. Buyya and A. Beloglazov, "Energy efficient resource management in virtualized cloud
datacenters," in 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (CCGrid), 2010.

R. Buyya, "Market-oriented cloud computing: Vision, hype, and reality of delivering
computing as the 5th utility," in 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, CCGRID, 2009.

R. Buyya, Y. S. Chee and S. Venugopal, "Market-Oriented Cloud Computing: Vision,
Hype and Reality for Delivering IT Services as Computing Utilities," in IEEE
International Conference on High Performance Computing and Communications, 2008.

A. Chandra, W. Gongt and P. Shenoy, "Dynamic resource allocation for shared datacenters
using online measurements," in International Conference on Measurement and Modeling
of Computer Systems ACM SIGMETRICS, 2003.

F. Chang, J. Ren and R. Viswanathan, "Optimal resource allocation in clouds," in 3rd
IEEE International Conference on Cloud Computing, CLOUD 2010, 2010.

J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat and R. P. Doyle, "Managing
energy and server resources in hosting centers," in 18th ACM Symposium on Operating
Systems Principles (SOSP'01), 2001.

Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang and N. Gautam, "Managing
server energy and operational costs in hosting centers," in ACM SIGMETRICS '05, 2005.

J. Choi, Y. Kim, A. Sivasubramaniam, J. Srebric, Q. Wang and J. Lee, "Modeling and
Managing Thermal Profiles of Rack-mounted Servers with ThermoStat," in Proceedings of
International Symposium on High Performance Computer Architecture, 2007.

G. Dhiman and T. S. Rosing, "Dynamic power management using machine learning," in
ICCAD ’06, 2006.

"Electric Power Monthly," US energy information administration, 2013.

156

E. Elnozahy, M. Kistler and R. Rajamony, "Energy-Efficient Server Clusters," in Proc.
2nd workhop Power-Aware Computing Systems,, 2003.

ENERGY STAR, "Report to Congress on Server and Datacenter Energy Efficiency Public
Law 109-431," U.S.Environmental Protection Agency, Washington, D.C., 2007.

"EPA confenrece on Enterprise Servers and Datacenters: Opportunities for Energy
Efficiency," EPA, Lawrence Berkeley National Laboratory, 2006.

X. Fan, W. Weber and L. A. Barroso, "Power provisioning for a warehouse-sized
computer," in in Proceedings of the 34th Annual International symposium on Computer
Architecture, San Diego, CA, 2007.

E. Feller, C. Rohr, D. Margery and C. Morin, "Energy Management in IaaS Clouds: A
Holistic Approach," in Proceedings of IEEE 5th International Conference on Cloud
Computing (CLOUD), 2012.

S. Ghemawat, H. Gobioff and S.-T. Leung, "The Google file system," in The 19th ACM
Symposium on Operating Systems Principles, Lake George, NY, 2003.

I. Goiri, J. Fitó, F. Julià, R. Nou, J. Berral, J. Guitart and J. Torres, "Multifaceted resource
management for dealing with heterogeneous workloads in virtualized data centers," in
Proceeding of IEEE/ACM International Conference on Grid Computing (GRID), 2010.

H. Goudarzi and M. Pedram, "Energy-efficient Virtual Machine Replication and Placement
in a Cloud Computing System," in IEEE international conference on cloud computing
(CLOUD 2012), Honolul, 2012.

H. Goudarzi and M. Pedram, "Force-directed Geographical Load Balancing and
Scheduling for Batch Jobs in Distributed Datacenters," in IEEE international conference
on cluster computing (CLUSTER 2013), Indianapolis, 2013.

H. Goudarzi and M. Pedram, "Geographical Load Balancing for Online Service
Applications in Distributed Datacenters," in IEEE international conference on cloud
computing (CLOUD 2013), Santa Clara, 2013.

H. Goudarzi and M. Pedram, "Hierarchical SLA-Driven Resource Management for Peak
Power-Aware and Energy-Efficient Operation of a Cloud Datacenter," Submitted to IEEE
transaction on computers.

H. Goudarzi and M. Pedram, "Maximizing profit in the cloud computing system via
resource allocation," in Proc. of international workhop on Datacenter Performance, 2011.

157

H. Goudarzi and M. Pedram, "Multi-dimensional SLA-based resource allocation for multi-
tier cloud computing systems," in proceeding of 4th IEEE conference on cloud computing
(Cloud 2011), 2011.

H. Goudarzi and M. Pedram, "Profit-maximizing resource allocation for multi-tier cloud
computing systems under service level agreements," in Large Scale Network-Centric
Distributed Systems, Wiley-IEEE Computer Society Press, 2013.

H. Goudarzi, M. Ghasemazar and M. Pedram, "SLA-based Optimization of Power and
Migration Cost in Cloud Computing," in 12th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing (CCGrid), 2012.

H. Goudarzi, S. Hatami and M. Pedram, "Demand-side load scheduling incentivized by
dynamic energy prices," in IEEE International Conference on Smart Grid
Communications, 2011.

"http://ark.intel.com/," [Online].

"http://aws.amazon.com/ec2/#pricing," [Online].

"http://www.google.com/green/energy/," [Online].

A. Ipakchi and F. Albuyeh, "Grid of the future," IEEE Power and Energy Magazine, vol.
7, no. 2, pp. 52-62, 2009.

A. Karve, T. Kimbre, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviridenko and A.
Tantawi, "Dynamic placement for clustered web applications," in 15th International
Conference on World Wide Web, WWW'06, 2006.

J. Koomey, "Growth in data center electricity use 2005 to 2010," Analytics Press, 2011.

D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy and G. Jiang, "Power and
performance management of virtualized computing environments via lookahead control,"
in Proceedings of International Conference on Autonomic Computing (ICAC '08), 2008.

K. Le, R. Bianchini, M. Martonosi and T. D. Nguyen, "Cost and energy-aware load
distribution across data centers," in HotPower’09, Big Sky, MT, 2009.

K. Le, R. Bianchini, T. D. Nguyen, O. Bilgir and M. Martonosi, "Capping the brown
energy consumption of internet services at low cost," in International Conference on
Green Computing (Green Comp), 2010.

M. Lin, Z. Liu, A. Wierman and L. L. Andrew, "Online algorithms for geographical load
balancing," in Proc. Int. Green Computing Conf., San Jose, CA, 2012.

158

Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang and C. Hyser, "Renewable and
cooling aware workload management for sustainable data centers," ACM SIGMETRICS
Performance Evaluation Review, vol. 40, no. 1, 2012.

Z. Liu, M. Lin, A. Wierman, S. H. Low and L. L. H. Andrew, "Geographical load
balancing with renewables," in Proc. ACM GreenMetrics, 2011.

Z. Liu, M. Lin, A. Wierman, S. H. Low and L. L. H. Andrew, "Greening geographical load
balancing," in Proc. ACM SIGMETRICS, San Jose, CA, 2011.

Z. Liu, M. S. Squillante and J. L. Wolf, "On maximizing service-level-agreement profits,"
in Third ACM Conference on Electronic Commerce, 2001.

L. Liu, H. Wang, X. Liu, X. Jin, W. He, Q. Wang and Y. Chen, "Greencloud: A new
architecture for green datacenter," in 6th International Conference Industry Session on
Autonomic Computing and Communications Industry Session, ICAC-INDST'09, 2009.

S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations,
Wiley, 1990.

D. Meisner, B. Gold and T. Wenisch, "PowerNap: eliminating server idle power," in
Proceedings of the ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Washington, DC, 2009.

D. Meisner, C. Sadler, L. Barroso, W. Weber and T. Wenisch, "Power Management of
Online Data-Intensive Services," in Proceedings of the 38th Annual International
symposium on Computer Architecture, 2011.

R. Miller, "Facebook installs solar panels at new data center," DatacenterKnowledge, 16
April 2011. [Online].

J. Moore, J. Chase, P. Ranganathan and R. Sharma, "Making scheduling "cool":
temperature-aware workload placement in datacenters," in Proceedings of the Annual
Conference on USENIX Annual Technical Conference, 2005.

R. Nathuji and K. Schwan, "VirtualPower: Coordinated power management in virtualized
enterprise systems," Operating Systems Review, vol. 41, no. 6, pp. 265-78, 2007.

E. Pakbaznia and M. Pedram, "Minimizing datacenter cooling and server power costs," in
Proceedings of the International Symposium on Low Power Electronics and Design, 2009.

E. Pakbaznia, M. GhasemAzar and M. Pedram, "Minimizing datacenter cooling and server
power costs," in Proc. of Design Automation and Test in Europe, 2010.

159

C. Patel, R. Sharma, C. Bash and A. Beitelmal, "Thermal considerations in cooling large
scale high compute density datacenters," in Proceedings of the Eighth Intersociety
Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2002.

P. Paulin and J. Knight, "Force-directed scheduling for the behavioral synthesis of ASICs,"
IEEE TRansaction on Computer-Aided Design of Integrated Circuits and Systems, 1989.

M. Pedram and I.Hwang, "Power and performance modeling in a virtualized server
system," in 39th International Conference on Parallel Processing workhops (ICPPW),
2010.

S. Pelley, D. Meisner, T. F. Wenisch and J. VanGilder, "Understanding and abstracting
total datacenter power," in workhop on Energy-Efficient Design, 2009.

S. Pelley, D. Meisner, P. Zandevakili, T. F. Wenisch and J. Underwood, "Power Routing :
Dynamic Power Provisioning in the Datacenter," in ASPLOS ’10: Architectural Support
for Programming Languages and Operating Systems, 2010.

"Power Smart Pricing," [Online]. Available: http://www.powersmartpricing.org/tools/.

Q. Qiu and M. Pedram, "Dynamic Power Management Based on Continuous-Time
Markov Decision Processes," in ACM design automation confernece (DAC'99), 1999.

A. Qouneh, C. Li and T. Li, "A quantitative analysis of cooling power in container-based
data centers," in IEEE International Symposium on Workload Characterization (IISWC),
2011.

R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang and X. Zhu, "No "power" struggles:
Coordinated multi-level power management for the datacenter," ACM SIGPLAN Notices,
vol. 43, no. 3, pp. 48-59, 2008.

L. Rao, X. Liu, L. Xie and W. Liu, "Minimizing electricity cost: Optimization of
distributed internet data centers in a multi-electricity market environment," in IEEE
INFOCOM, 2010.

N. Rasmussen, "Calculating Total Cooling Requirements for Datacenters," American
Power Conversion, 2007.

R. Sharma, C. Bash, C. Patel, R. Friedrich and J. Chase, "Balance of power: dynamic
thermal management for Internet datacenters," IEEE Internet Computing, 2005.

B. Sotomayor, R. S. Montero, I. M. Llorente and I. Foster, "Capacity Leasing in Cloud
Systems using the OpenNebula Engine," in Workshop on Cloud Computing and its
Applications, 2008.

160

S. Srikantaiah, A. Kansal and F. Zhao, "Energy aware consolidation for cloud computing,"
in Conference on Power aware computing and systems (HotPower'08), 2008.

M. Srivastava, A. Chandrakasan and R. Brodersen, "Predictive system shutdown and other
architectural techniques for energy efficient programmable computation," IEEE Trans. on
VLSI, 1996.

R. Stanojevic and R. Shorten, "Distributed dynamic speed scaling," in IEEE INFOCOM,
2010.

Q. Tang, S. Gupta and G. Varsamopoulos, "Energy-Efficient Thermal-Aware Task
Scheduling for Homogeneous High-Performance Computing Datacenters: A Cyber-
Physical Approach," IEEE Transactions on Parallel and Distributed Systems, 2008.

Q. Tang, S. Gupta and G. Varsamopoulos, "Thermal-Aware Task Scheduling for
Datacenters through Minimizing Heat Recirculation," in Proc. IEEE Cluster, 2007.

C. Tang, M. Steinder, M. Spreitzer and G. Pacifici, "A scalable application placement
controller for enterprise datacenters," in 16th International World Wide Web Conference,
WWW2007, 2007.

G. Tesauro, N. K. Jong, R. Das and M. N. Bennani, "A hybrid reinforcement learning
approach to autonomic resource allocation," in Proceedings of International Conference on
Autonomic Computing (ICAC '06), 2006.

B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer and A. Tantawi, "An analytical model
for multi-tier internet services and its applications," in SIGMETRICS 2005: International
Conference on Measurement and Modeling of Computer Systems, 2005.

B. Urgaonkar, P. Shenoy and T. Roscoe, "Resource Overbooking and Application
Profiling in Shared Hosting Platforms," in Symposium on Operating Systems Design and
Implementation, 2002.

A. Verma, P. Ahuja and A. Neogi, "pMapper: Power and migration cost aware application
placement in virtualized systems," in ACM/IFIP/USENIX 9th International Middleware
Conference, 2008.

A. Verrna, P. Ahuja and A. Neogi, "pMapper: Power and migration cost aware application
placement in virtualized systems," in ACM/IFIP/USENIX 9th International Middleware
Conference, 2008.

X. Wang and M. Chen, "Cluster-level feedback power control for performance
optimization," in IEEE HPCA, 2008.

161

X. Wang and Y. Wang, "Co-con: Coordinated control of power and application
performance for virtualized server clusters," in IEEE 17th International workhop on
Quality of Service (IWQoS), 2009.

L. Zhang and D. Ardagna, "SLA based profit optimization in autonomic computing
systems," in Proceedings of the Second International Conference on Service Oriented
Computing, 2004.

