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Abstract—In this paper, we propose a novel algorithm for
rate allocation in multiple-source media streaming peer to peer
networks. Our algorithm is based on ant-colony optimization and
capable of handling network changes which occur quite often
in unstructured P2P networks. The suggested algorithm does
not need any information about the topology of the network.
Moreover, it could get over uncertainties in network state
information, particularly the rate of media provider nodes that
could happen due to lack of accurate measurements. We show
that our algorithm will reach the maximum achievable rate of
the network quite fast and with relatively little overhead.

In our simulations, we have demonstrated that in cases where
network state information is inaccurate, the suggested ant-based
rate allocation method will lead to the same results that other
optimization-based rate allocation algorithms yield. Moreover,
we have shown that the proposed algorithm has an intrinsic low
pass filter which discriminate between transient network changes
from permanent ones. If the changes in the network is transient,
the algorithm compensate the temporary losses quite fast and
without much effort. In cases where the network changes last
longer, the algorithm overcomes losses by employing other nodes
that have the media stream available. The rate of adaptation
is adjustable and must be carefully determined according to
network conditions.

I. INTRODUCTION

Peer to peer networks have grown rapidly in recent years.
Much of the Internet traffic is related to these networks nowa-
days. Although P2P networks were originally designed for
file sharing purposes, they have evolved to provide streaming
and live media contents as well. This is mainly due to the
considerable increase in the bandwidth available to ordinary
network users

Multimedia streaming has become one of the most im-
portant applications in the Internet. However, sending and
receiving media streams causes some challenges for users
due to large bandwidth consumption and real time nature of
streams which forces users to download the media file first
and then play it some later time.

Because of special characteristics of P2P networks, mul-
timedia streaming in peer to peer networks has its own
challenges. Peer nodes in a P2P network could join and leave
the network at any time. Moreover, rate of peer links vary in
time to a great extent. Since required bandwidth for receiving
media streams is quite high and the output bandwidth of users
are limited, a single user usually can not supply the necessary

streaming rate for other peers. Therefore, in practice multiple
peers should provide media streams to another peer. The sum
rate of these peers must be higher than the required rate of
the media stream.

These two properties of peer to peer networks, namely
network dynamism and the need for participation of several
media sources, are the most important challenges of P2P media
streaming. Any algorithm designed for peer to peer media
streaming must be able to cope with these challenges.

Ant-based algorithms are based on a relatively new concept
which is inspired by the collective foraging behavior of some
ant species. Ants use a chemical substance called pheromone
for indirect communications. There are several algorithms that
model and exploit this behavior for solving different problems
such as graph-based NP hard combinatorial optimization prob-
lems, e.g. the traveling salesman problem (for a quick review
see [13]).

The foraging behavior of ants and file sharing in peer to
peer networks are very similar. In the first case, there is an
ant colony where ants start their journey from and bring food
back to. Initially, ants do not know the location of food sources
initially. Their task is to search for food and find those sources
that are easier to access and then bring back the food to the
colony. Since food resources are limited, it is best to find
multiple food sources and supply the colony with all these
sources.

Similarly, in peer to peer networks, there is a node request-
ing for a file or media stream. Since the node does not know
which nodes could provide it with its required file or stream,
it has to do a search across the P2P network, find those nodes
that have the requested content available and start receiving
data from these sources. Noting the lack of bandwidth and
to increase reliability and distribution of traffic load in the
network, it is best to receive the desired content from mul-
tiple sources. These similarities between the self-organizing
behavior of ant colonies and self-organization in peer-to-peer
networks have already been observed in [14]. Since they do
not require any global knowledge about the network, ant
algorithms are qualified for peer-to-peer networks. For a nice
animated overview of ants foraging behavior see [15].

To even increase the similarities between peer to peer
networks and ant colonies, we use Multiple Description Codes
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(MDC). Internet was initially designed for best effort type of
traffic. But in multimedia streaming, we have to deal with
real time traffic. In real world, users are heterogenous in their
access bandwidth to internet. Moreover, in multimedia peer
to peer networks, there are multiple sources that provide the
stream. As a result, we must use some sort of coding that
breaks media stream into multiple descriptions, each of which
could be received from different sources and must be decoded
separately from other descriptions. The more descriptions a
user receives, the higher quality its stream will be. Since
unstructured peer to peer networks are highly dynamic, MDC
provides a great opportunity to share multimedia contents
across these networks.

In this paper we propose an algorithm for choosing serving
nodes and do media rate allocation for these nodes based on
foraging behavior of ants. We assume that media streams are
coded with MDCs and each candidate source nodes contain
multiple descriptions of the desired media stream. While the
suggested algorithm is very simple, it is capable of reach-
ing maximum achievable rate of media streaming in a P2P
network. Our algorithm does not need any information about
network topology and can be executed in a distributed manner.
In addition, even if for any reason the rate of serving nodes is
not their actual streaming rate, our algorithm works without
any problem.

The rest of the paper is organized as follows: In section
II we briefly review current works on media streaming rate
allocation. Section III introduces ant-based routing algorithms.
In section IV we give a detailed explanation of our ant-based
rate allocation algorithm. Section V shows simulation results.
Finally section VI concludes the paper and explains future
works.

II. RELATED WORKS

Peer to peer media streaming has been a hot research area
in recent years. Many researchers have worked on different
aspects of media streaming in P2P networks. One of the most
important works on multimedia streaming in overlay networks
is oStream [1]. oStream investigates different streaming meth-
ods in one multicast session application layer networks. In
oStream, it is assumed that one peer could provide necessary
data rate for at least one other user so that media streaming
could be implemented as a multicast communication.

Another paper that has examined P2P media streaming
more deeply is [2]. ZIGZAG is an algorithm that builds
multicast trees in peer to peer networks. Due to great network
dynamism of peer to peer networks, ZIGZAG entails multiple
mechanisms to monitor and maintain multicast trees.

While previous papers considered only the single source
case, where one node could provide the necessary rate for
streaming media contents to other peers, multi source stream-
ing is discussed in some works like [3] and [4]. In [3],
the authors presented a multi source streaming system where
multiple sources transmit packets of multimedia content to
the receiving node with some redundancy. This increases the
reliability of media streaming in a network where packets can

get lost and nodes may or may not be available during the
desired streaming session. One of the important works that
considers multiple source media streaming is [5]. It suggests a
method to find the best set of nodes to provide media stream
from all nodes that have a media content available. In this
method, it is assumed that the rate of peer nodes are accurately
measured and the topology is known by the users. Nodes run
an optimization algorithm to maximize the expected rate of
media stream.

In addition, a simple method is proposed to do rate allo-
cation and monitor the streaming rate of peer users in the
network called PROMISE [6]. PROMISE tries to find the
optimum set and allocate proper rate when there are more
than one intermediate routers between the peers. One of the
disadvantage of PROMISE is the large amount of overhead
caused by the optimization algorithm. IPROMISE is proposed
[7] to solve the first issue. In [8] an algorithm is proposed
to solve the second problem by implementing a suboptimal
algorithm which has less overhead. This suboptimal algorithm
first sorts peer nodes based on their availability. Then it adds
each node to the active source list based on network topology.
It is shown that while this method is suboptimal compared to
PROMISE, its final rate is very close to what PROMISE’s
optimal algorithm yields. A new approach to choose the
best set adaptively is proposed in [9]. In [10] authors have
investigated methods of changing the quality of media stream
for different users according to their network resources. To
achieve this goal, authors have examined quality adaptation
and layered media coding methods.

Due the heterogeneity of users in a P2P network, heteroge-
nous and distributed MDCs are more appropriate. This is the
problem which was addressed in [11]. The performance of
wavelet-based MDC in peer to peer networks is investigated
in [12].

While peer to peer networking has been explored by many
researchers, the application of ant-based algorithms in P2P
networks is rather a new concept. Although the ant metaphor
has been successfully applied to routing of data packets both
in wireless and fixed networks, little is yet known about its
applications in peer to peer networks. Babaoglu et al. [14]
has done a comprehensive research about the applicability of
biological processes to distributed environments, including a
discussion of ant-based methods in context.

SemAnt [16] suggests an ant-based query routing algorithm
for P2P networks. The experimental approaches show that
the algorithm produces robust results and converges fast. The
author has extended the algorithm to include strategies for self-
adaptation to volatile networks where nodes may leave or join
at any time.

MUTE [18] is an ant-based peer to peer file sharing appli-
cation. Its performance is investigated in [17]. It considers the
case of network dynamism and its effects on query routing
performance.

Anthill [19] is an open source framework for the design,
implementation, and evaluation of ant algorithms in peer-to-
peer networks.
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TABLE 1
PHEROMONE TABLE

Destination Neighbor
al a . am
di p(LD) | p(1.2) p(l,m)
da p2.1) | p2.2) p(2,m)
dn pm.1) | p(n.2) p(n,m)

All of these efforts are dedicated to the design of query
routing algorithms in peer to peer networks. To the best of our
knowledge, this is the first work on ant-based rate allocation
for media streaming in peer to peer networks.

III. AN INTRODUCTION TO ANT-BASED ROUTING
ALGORITHMS

A. Foraging Behavior of Ants

Ants establish the shortest path between food and their
nest in a fully-distributed and autonomous fashion. Ants first
wander to search for food. When they find a food source, they
return to the nest while leaving a trail of chemical substance
called pheromone on their way back. The pheromone attracts
other ants and guide them to the food. The probability that the
ants coming later choose a path is proportional to the amount
of pheromone on the path.

Although pheromone evaporates and decays, the following
ants also leave additional pheromone and thus reinforce the
path. If more ants travel over a path, they deposit more
pheromone on it. Inversely, larger amounts of pheromone
attract more ants. This behavior results in a positive feedback
effect. Since the number of ants that complete their journey
to the food source in a given time is larger on a shorter path
than on a longer path, a shorter path can accumulate more
pheromone and attract more ants.

At last, the shortest of alternative paths is selected. Most of
ants take this shortest way to the nearest food source. Longer
paths are also maintained because some ants are attracted to
them by remnants of pheromone.

B. Ant-based Routing Algorithm

Based on these principles, an ant-based routing algorithm
for communication networks was first suggested by Dorigio
et. al. [20]. In the proposed algorithm, each node has a sort
of routing table called pheromone table (See table I). Every
node has an entry (row in pheromone table) for each possible
destination in the network, and every table has an entry for
each neighboring node. The (i,j) member of the pheromone
table indicates the pheromone intensity between the current
node and its j** neighbor for destination i. Pheromone table
determines the routing behavior of nodes. When an ant arrives
at a node, it chooses its next hop based on pheromone inten-
sities of pheromone table in a probabilistic manner. This is in
contrast to deterministic routing of other routing algorithms.
Equation (1) [13] gives the probability with which an ant
destined to node i, chooses node j as its next hop. Here, node

Jj is one of the neighbors of node k& where the ant is currently
visiting. This is called random proportional transition rule.

Pij £~ Cx
.. if 1 € S5
(i, 5) —{ Sies Pt >
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In this equation, < is the set of node k’s neighbors that the ant
has not visited yet and ¢;; is the (,j) element of the pheromone
table, indicating the pheromone intensity on link (k,j) for all
ants destined to node i.

Each ant saves the path it travels so that when the destination
is found, it could find its way back to the source. In its path
backward to source, the ant updates pheromone tables of all
nodes it has visited in the forward path according to the defined
rules. Equation (2) indicates the updating rule.

dij(t +1) = (1 —a) x ¢i;(t) + A¢ 2

Here, A¢ is the amount of pheromone added to the link and «
indicates pheromone evaporation. The amount of A¢ depends
on network parameters such as delay and congestion. At the
beginning of the algorithm, all links are initialized with a little
amount of pheromone, ¢;;(0). Subsequently, the pheromone
is updated according to equation (2) in each iteration.

C. Why Ant-Based Algorithms Are Appropriate for P2P Net-
works?

The simple ant colony optimization meta-heuristic shown in
the previous section illustrates different reasons why this kind
of algorithms could perform well in peer to peer networks.

Ant-based routing algorithms have several properties that
make them an appropriate choice for peer to peer networks.
More specifically, They are:

o Simple

o Purely distributed

o Multipath, which is an important and desirable property

in unstructured peer to peer networks.

o Remarkably adaptable to network changes. When the

shortest path is accidentally broken, a longer alternative
path eventually becomes the new shortest path.

Of course ant-based algorithms have some disadvantages as
well. For instance one of the biggest disadvantages of ant-
based routing algorithms arises in highly dynamic networks
where a large number of control packets is needed. In such
cases, ant based algorithms need a large amount of overhead
before they find the shortest path.

IV. ANT-BASED RATE ALLOCATION

In this section we provide a detailed explanation of our ant-
based rate allocation algorithm for media streaming over peer
to peer networks.

A. Problem Formulation

We model the peer to peer network as a connected graph
G(V,E) where V is the set of nodes and E is the set of links.
It is assumed that there are a number of peer nodes that can
provide media contents. Those nodes that are willing to receive
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a stream, send their requests to these nodes. Source nodes
start media streaming based on user requests and network
conditions.

In general, peers do not know the address of media provid-
ing nodes. As a result they search for these nodes across the
peer to peer network. In this paper, we assume that a node
has done the search and already knows the address of media
providers (designing an ant based search algorithm is a subject
of our future research). At this point the only problem is how
to define rates according to which the destination node receives
media streams from different media providers.

Assume that a node D has requested a media stream with
rate . It has found a group T of nodes that provide the media
stream. Now the problem is how to allocate rate according to
which each node sends the requested stream. In the simplest
case, the set 1" contains only one node and this node has
sufficient available bandwidth to support the required rate, .
In practice, such a node usually does not exist. Even if there is
such a node, it soon becomes congested. Therefore, we usually
have many nodes neither of which could support the required
rate alone. It is the node D that specifies the rate of streaming
from each server. We suggest an ant-inspired algorithm to do
this rate allocation.

B. Ant-inspired Rate Allocation

We assign a pair (R, A) to each media provider where
(R;, A;) represent the rate and availability of node i respec-
tively. R; is the rate that node i claims it can support. The
availability of node i, represented by A;, is a measure of time
during which node i is on. The set 7' contains all the nodes
that have the requested stream available.

In the first step, the node D initializes its pheromone table.
Then according to its desirable rate, R, it generates a number
of agents, which we call ants. Now we have a network in
which the source has a direct link to each receiver. Here,
by the source we mean the source of ants and in the same
fashion, receivers are media providers who receive forward
ants. The only thing to do is to assign pheromone to links.
Having done that, ants follow the links with more pheromone
in a probabilistic manner.

We add pheromone to links according to the rate and
availability of the media provider at the end of the link. To be
more precise, pheromone on link i is proportional to:

Assume that the node D has generated N forward ants. The
number of ants is proportional to R. In other words, the
number of forward ants that node D generates is proportional
to the number of descriptions it requires. Since forward ants
choose their links probabilistically, in the first step the same
number of ants choose each link.

Each node receives a number of forward ants. The more
ants a node receives, the higher rate it is asked to provide. In
response to receiving forward ants, the node generates some
backward ants and sends them back to D. The number of
backward ants generated by node i is proportional to the

rate that the node could provide, i.e. R;. It must be noted
that backward ants do not carry traffic themselves but they
represent the rate by which traffic is transmitted to D.

On receiving these backward ants, D updates its pheromone
table according to equation (2), where A¢ is given by equation
(3). It is clear that the pheromone values for those nodes that
could provide higher rates during longer periods of time grow
rapidly.

In the next steps, forward ants choose the nodes that have
higher rates due to the pheromone update rule. In a few steps,
forward ants find the best set of nodes that could provide the
desired rate.

C. Algorithm Properties

The suggested algorithm has several desirable properties
some of which are listed below:

o The algorithm is adaptable to congestion. To see this,
assume that a node i has a high rate R; and it is available
any time so that A; equals 1. Thus, the pheromone
intensity for this node is so large that all ants choose this
node with high probability. This will result in congestion
on the path between D and i. Therefore, only a fraction of
backward ants will be received by D and the pheromone
increment on that link is less that what it could be if all
backward ants were received by D. Due to pheromone
evaporation, the excess pheromone on this link will
be evaporated and the pheromone value for this node
decreases eventually. Therefore, fewer ants will choose
this node in next steps and less pheromone will be added
to the link. Finally, the network reaches stability where
there is no congestion on the links. This could be verified
with simulation results of next section.

o Another property of the proposed algorithm is that it
smoothly adapts itself with network changes. As an
example, assume that node ¢ fails. This means that it
could not provide rate R; temporarily. As a result, it will
not send backward ants to D. Therefore, no pheromone
will be added to its link and fewer forward ants will be
sent to this server. Eventually, pheromone will evaporate
and none of the forward ants would follow the link to this
node. If in the middle of this process, node ¢ is fixed, it
will generate backward ants and its pheromone will rise
again. Thus, forward ants will consider this node as a
potential media provider again.

According to equation (1), when the pheromone value for
one neighbor is reduced, the probability that this node is
chosen is reduced as well. Hence, the probability that
other nodes are chosen increases. Therefore, whenever
a node fails, other nodes compensate this failure in a
smooth fashion. This proves the adaptability of our algo-
rithm to network dynamism which is specially important
in peer to peer networks.

There is a tradeoff between the evaporation rate and the
speed of adaptation to network changes. If the evapo-
ration rate is high, the algorithm rapidly adapts itself
to the changes in the network. But this changes may
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be temporary. Thus, having a high evaporation rate is
not desirable in all cases. The coefficient a shown in
equation (2), which determines evaporation rate, should
be adjusted carefully to cover all these scenarios. This
adjustment could be done by the user according to
network conditions. If network changes frequently and
these changes are not temporary, it is better to have a
high evaporation rate. However, if the rate of change is
relatively low and most of changes are temporary, it is
better to increase « so that the algorithm handle these
changes smoothly without over reaction.

« Another advantage of our algorithm is its ability to handle
inaccuracies in rate measurements. There could be cases
where the actual rate of node ¢ is not what it claims. This
could happen either because node ¢’s rate is not measured
with high accuracy or there are bottlenecks in the physical
path between node D and node :. In such cases, since the
actual rate is less than what node ¢ claims to be, the rate at
which backward ants are received by D are less than what
it should be. As a result, the amount of pheromone added
to link (D,4) is less that its maximum. Thus, in next
steps fewer forward ants are sent over this link and more
forward ants are sent toward other nodes. This means that
the rate at which D receives media stream from node ¢ is
less than its announced rate, either due to congestion in
physical path or inaccuracies in rate measurements. It is
obvious that to overcome congestion as mentioned above,
we do not need any information about network topology.
This is a great advantage in comparison to algorithms that
need to know network topology to handle congestion, like
PROMISE [5] or IPROMISE [7].

o In cases that one node fails and the rest of nodes could
not provide additional rate to compensate the failure of
other servers, it is needed to add other nodes to set 7.
These nodes are those which were found in the search
phase. If there are no nodes to be added to the list, it is
necessary to do a search phase again.

V. SIMULATION RESULTS

In this section, we investigate the performance of our
algorithm. We examine different scenarios to show the ad-
vantages of our ant-based rate allocation compared to other
rate allocation algorithms.

We have simulated our scenarios on the same topology that
was used in [5] to show how PROMISE chooses the best set
of nodes in a peer to peer network according to their rate
and availability. While PROMISE needs to know the topology
completely to choose the best set of nodes, our algorithm does
not use any topology related information to do rate allocation.
This topology is shown in figure 1. It is assumed that we
have 6 media provider nodes. The numbers besides each node
indicates its announced rate and its availability. The capacity of
each bottleneck link is shown as well. In all parts, we assume
that the node D has requested a media stream with the rate (J¢)
of 1Mbps. Media stream is sent to node D in 8 descriptions.
Ant-based rate allocation does not need to know any topology

P3(0.25,0.8) F4(0.5.0.5)

O O P5(0.25,0.8)
P2(0.25,0.7;
( C)) O P6(0.5,0.9)
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0.5
B s O
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|
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Fig. 1. Network topology

related information and exact available rate of each node to
do rate allocation. As a result, the proposed algorithm is much
less complex than other suggested algorithms. In addition it
could easily handle the errors in claimed rates due to network
congestion or lack of accurate measurements. Therefore, in
the simulations we have assumed that our algorithm does not
know the topology of the network. It only has access to the
list of media providers with their claimed rate and availability,
(Ri, A;). We first simulate the process of acquiring the best
set of nodes for rate allocation. Then, we show the adaptability
of our algorithm to network changes which are quite regular
in peer to peer networks.

A. Finding the Best Set of Servers

Topology-based rate allocation algorithms are able to esti-
mate the maximum achievable rate of users in the network.
To accomplish this task, they choose the best set of nodes that
supports the required rate, . However, due to uncertainties in
the topology and rate of nodes, this choice may be inaccurate.

Our ant-based rate allocation does not need to know the
exact rate or the availability of the node. We sort the nodes
according to their availability and choose the first M nodes
whose sum rate is greater than $. It must be noted that due
to possible uncertainties in rate measurements, the actual sum
rate may be less than . But this is not a big issue since as
we will see shortly, the algorithm overcomes this problem by
gradually adding other nodes to the initial set until their sum
rate is greater than .

Based on this approach, nodes Ps, P5 and Fs are selected
to provide the media stream (see figure 1). At this point, D
starts to send forward ants and requests for media streams. The
initial pheromone values on network links are shown in figure
2. In addition, figure 2 indicates the maximum achievable
rate of media providers and the maximum achievable rate of
ant-based rate allocation. From figure 1, it is obvious that
the sum rate of media providers is only 0.75Mbps. This is
because of the fact that nodes P5; and Py share a 0.5Mbps link.
This bottleneck prevents D from receiving its required rate of
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1Mbps. It is shown in figure 2 that after a short period of time,
the ant-based rate allocation reaches 0.75Mbps which is the
maximum achievable rate in this case. It is clear from figure
2 that initially, D keeps sending requests based on 1Mbps.
This means that D adjusted the number of forward ants based
on 1Mbps. After a few steps, D adjusts the number of ants
to represent 0.75Mbps. This is due to the fact that servers Ps
and Ps generate backward ants according to their available
rate, 0.5Mbps. But because of the bottleneck on the link with
0.5Mbps bandwidth, only a fraction of backward ants will be
received by D. As a result, the pheromone added to links
between D and nodes P; and Py is less than its possible
maximum. At this point, node D decides that the chosen set
of nodes do not have sufficient resources to support its required
rate. Therefore, it selects another node from the sorted list of
nodes and adds it to current set of media providers. In our case,
node P, is added to the set of media providers. From figure
1 it is clear that the maximum achievable rate is now 1Mbps.
Figure 2 indicates that our ant-based rate allocation algorithm
will achieve this rate after addition of P,. This clearly shows
the adaptability of our algorithm without any knowledge about
network topology. The rate of adaptation could be changed by
adjusting the pheromone evaporation rate. We discuss this case
shortly.

Now assume that because of congestion or lack of accurate
measurements, we have 10% error in measured rates. If we use
PROMISE [6] on the topology shown in figure 1, nodes Ps, Ps
and P would be chosen as the set of media providers. But the
actual rate of P is 0.375Mbps rather than the measured value
of 0.5Mbps. Thus, the maximum achievable rate would be
0.875Mbps rather than 1Mbps. As a result, the set of selected
nodes could not support the required rate and all the efforts
that PROMISE does to find the best set is futile. Therefore, it
has to add another node, Ps. The final set, which is P5, Pj,
Ps5 and P is the same as the set that our ant-based algorithm
finds, albeit with much less effort.

To summarize, if we have complete and accurate informa-
tion about network topology and rate of nodes, algorithms
like PROMISE [6] will find the best set of nodes for initiation
of multimedia streaming. The negative point is that they are

complex. But if there is uncertainty in measured values, and if
there are no information about network topology, which is the
case most of the times, our ant-based rate allocation method
has a better performance.

B. Adaptability to Network Changes

One of the most important advantages of ant-based rate
allocation is its smooth adaptation to network changes. Since
most of P2P networks are unstructured, there are not many
nodes with high rate and long availability like servers, i.e.
with A; = 1. Moreover, network topology is very dynamic and
network changes quite often. Thus, any algorithm designed for
peer to peer networks must cope with network dynamism. In
this section, we consider scenarios in which changes occur in
network and examine the response of our algorithm to these
changes. We have run all simulations over the topology shown
in 1.

In a P2P network, rate of nodes vary to a great extent. These
variations could be temporary, long lasting or permanent. Any
algorithm which is to be used in peer to peer networks should
handle both of these changes. This is one of difficult challenges
that algorithm designers have to deal with.

It is mentioned in [9] that a low pass filter should be
applied to network changes so that temporary variations is
separated from permanent ones. From one perspective, ant
based algorithms implement a natural low pass filter. Since
ants react to changes gradually, they completely discard a
solution only if the duration of change is long enough. During
this period, all of the pheromones for the invalid solution
are completely evaporated. The rate of adaptation could be
adjusted by carefully determining the evaporation rate of
pheromone. This parameter could be chosen according to
network conditions.

To clarify this, consider the case shown in figure 3. All
of the conditions are the same as before. At t = 500 !, P
loses 50Kbps of its rate. This means that the rate of this link
should be decreased to 125Kbps because we have to send
one description instead of two descriptions 2. As a result,
the amount of pheromone for this link will not increase as
much as before. As we discussed in previous sections and
from equation (1), the probability that this node is chosen
by forward ants will be reduced and other nodes should
compensate this loss of rate. However, since all nodes are
sending media streams up to their rate limits, this loss could
not be compensated. Therefore, the pheromone of other users
will not increase (figure 3). At t = 600, network is recovered.
If D had considered this variations as a permanent one, it
would have added another node to the media providers set. It
is clear that it does not add another node because this change
is transient. When Pgs goes back to its normal conditions,
gradually the pheromone of its link is increased and the rate of

'We have normalized time axis by the intervals of forward ants generation.
Node D generates forward ants in regular intervals to maintain media
streaming.

2Since we have 8 descriptions for a 1Mbps stream, each description has a
rate of 125Kbps
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media stream rises to its required rate. The rate of pheromone
evaporation must be adjusted such that the pheromone is
not evaporated in 100 time units, which is the duration of
variations. In the simulated case, a is set to 0.01. In other
cases, it is set to 0.1.

Now assume another case where Ps fails permanently. This
could occur if Ps leaves the network for example. In this case,
maximum achievable rate decreases to 0.75Mbps. Since the
failure lasts for a long time, all of the pheromone on link to Ps
will finally evaporate and D will add another node, Py, to the
set of media providers. Since the initial amount of pheromone
on the link toward P; is large, the rate of media stream from
P, will be high. Therefore one of the descriptions of Py is
assigned to P, and network converges to the stable solution.
In figure 4 we have shown pheromone intensities for Ps, Py
and, Pj.

In figure 4, the maximum achievable rate is 1.25Mbps and
we use only 1Mbps of it. Now assume that P, loses 125Kbps
of its rate permanently. Since the sum rate of nodes is still
higher than 1Mbps, there is no need to add a new node and the
rest of the nodes compensate the loss of rate. This is because
of the fact that when P, reduces its rate, its pheromone will
decrease gradually due to pheromone evaporation. According
to equation (1), the loss of pheromone of one node will
decrease the probability that this node is chosen by forward

ants and will increase the probability of choosing other nodes
as the destination of ants. As a result, the rate of media
streaming from these nodes will increase while the rate of
P, will decrease. In the simulated case (shown in figure 5),
node Py will increase its number of description from 2 (in
previous cases) to 3. This will compensate the loss of rate and
keep the media streaming rate at its desired value, 1Mbps.

Small variations of rate in figure 5 is because all the other
nodes could compensate the loss of rate due to P» failure.
But after a few steps, node Fs is determined to do the
compensation and other nodes continue to send their media
stream as before.

Finally, consider the network condition shown in figure 3
that has reached stability. In this case, the maximum achievable
rate is 1Mbps and there is no excess rate since the required rate
by D is also 1Mbps. Now assume that Ps, whose actual (and
not measured) rate is 450Kbps, for some reason reduces its
rate to 250Kbps. Figure 6 illustrates the pheromone intensities
for Ps and Ps. It could be seen that while the total capacity
of the network was 1Mbps, rate reduction of 200Kbps by Fs
does not change the rate of media stream received by D. P;
compensate this loss shortly after the rate reduction, since it
was not working at its limits due to the bottleneck on the
links. When Py decreases its rate, Ps increases its own rate.
This scenario indicates that network changes in peer to peer
networks do not deteriorate the performance of our algorithm
in all cases. The suggested algorithm could easily adapts itself
to such changes.

We note that the adaptation time of our algorithm can be
varied by changing the parameter « and it can be determined
by noticing the state of the nodes of P2P network. In addition,
the minimum meaningful rate for our algorithm is the suffi-
cient rate for transmission of one description of MDC and all
rates below this value are equivalent to zero in our algorithm.

VI. CONCLUSIONS AND FUTURE WORKS

We have propose a new algorithm based on ant-colony
optimization metaheuristic to do rate allocation in multimedia
streaming P2P networks. The suggested algorithm does not
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there is a bottleneck in the network

need any topology related information to perform its tasks.
Moreover, it could overcome inaccuracies and uncertainties in
estimated network state information such as rate of nodes that
provide media streams. We demonstrated that our algorithm
will reach the maximum achievable rate of the network quite
fast and with relatively little overhead.

Our algorithm is capable of handling network dynamism
which is an inherent property of peer to peer networks. The
suggested algorithm has an intrinsic low pass filter which sep-
arates transient network changes from permanent ones. If the
changes in the network is transient, the algorithm compensates
the temporary losses without much complexity. In cases where
the network changes last longer, the algorithm overcomes
losses by employing other nodes that have the media stream
available. The rate of adaptation could be adjusted according
to network conditions.

Our future works will include designing an ant-based search
algorithm to find the nodes that provide media stream across
the P2P network. Another important task would be modifying
the proposed algorithm such that the pheromone evaporation
rate adapts itself to different network conditions. This would
be a great step forward since the resulted algorithm will adapts
itself to almost any network condition.

Extension of our algorithm to P2P networks with multiple
streaming sessions is another task which is to be fulfilled.
Finally, implementing the ant-based rate allocation algorithm
in a real world test-bed will be another important aspect that
can be pursued in future.
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