
B2Sim: A Fast Micro-Architecture Simulator
Based on Basic Block CharacterizationBased on Basic Block Characterization

October, 23, 2006

Wonbok Lee, Kimish Patel, Massoud Pedram

D t f El t i l E i iDept. of Electrical Engineering
University of Southern California

Contents

IntroductionIntroduction
Prior Work
A key Observation
Basic Block Characterization Based Micro architectural Simulator (B2Sim)Basic Block Characterization Based Micro-architectural Simulator (B2Sim)

Cycle Characterization
On-Chip CPI Characterization
Off Chip CPI ComputationOff-Chip CPI Computation

B2Sim Framework
Simulation Environment and Benchmarks
Experimental ResultsExperimental Results
Conclusions and Future Work

Introduction
Micro-architectural simulators:

A software infrastructure that mimics micro-processor behaviors
Where to use:

Performance projection during the pre-silicon phase of the chip design (HW)
Performance evaluation / architectural exploration (SW)
Hardware-software co-design/verification (HW + SW)

Strong points in micro-architectural simulators:
Validate hardware before/without the actual implementation (cost)
Easy to explore micro-architectural design space (time)

W k i t i i hit t l i l tWeak points in micro-architectural simulators:
Slower than the native program execution (order of 4X ~ 5X)
Cannot properly handle system call & operating system related parts

Why micro-architectural simulators are slow?
Pipeline simulation in software
Pipeline stages which are implemented with inter-stage queue managementPipeline stages which are implemented with inter stage queue management

Can we make it faster?

Prior Work for Reducing Simulation Timeg
Simulation with Reduced Benchmark

MinneSPEC – A. J. KleinOsowski et al., Computer Architecture Letter, 2002.
SPEClit R T di t l WWC 2001SPEClite – R. Todi et al., WWC, 2001.

(Periodic) Sampled Simulation
SMARTS – R. E. Wunderlich et al., ISCA, 2003.

Program Behavior (Phase) Based Sampled SimulationProgram Behavior (Phase) Based Sampled Simulation
SimPoint – T. Sherwood et al., ISCA, 2003.

Statistical Simulation
HLS++ (Hybrid Laboratory Simulator) – M Oskin et al ISCA 2000HLS++ (Hybrid Laboratory Simulator) M. Oskin et al., ISCA, 2000.

Accelerate the Warm-up
MRRL (Memory Reference Reuse Latency) – K. Skadron et al., ISPASS, 2003.

Accelerate the Fast-forwardingcce e ate t e ast o a d g
SimSnap – P. K. Szwed et al., Interact, 2004.

Truncated Simulation
Joshua J. Yi et al., IEEE Trans. on Computer, 2006.

Instruction Set compiled Simulator
ISS - M. Reshadi et al., DAC, 2003.

A Key Observationy
Once a program is compiled, program code structure does not change

The relative dependencies between instructions do not change
On chip behavior of instructions does not change eitherOn-chip behavior of instructions does not change either

Characterize the behavior of a basic block (BB) in terms of cycles:
On-chip cycles remain the same, since dependencies between instructions do

not changeg
However, Off-chip cycles due to memory access changes due to the dynamic

behavior of caches and TLBs

On-Chip behavior (CPI) of a BB:
ALU operations
R i t R i t t fRegister-Register transfer
Dependency, stall, etc.

Off-Chip behavior (CPI) of a BB:
I/D-TLB accesses/missesI/D-TLB accesses/misses,
I/D-Cache accesses/misses,
Memory accesses, etc.

Key Observation (Cont’d)
On-Chip CPI of a BB is consistent

On-Chip CPI comes from (On-chip cycles = Total cycles – Off-Chip cycles)
Number of instruction in a BB is always fixed

Key Observation (Cont d)

Number of instruction in a BB is always fixed
Table shows some of the frequently visited BBs in their first 100 visits

How to use this characteristic?
Once a BB is characterized in terms of its On-Chip cycles we do not need toOnce a BB is characterized in terms of its On Chip cycles, we do not need to

simulate the BB in the detailed pipeline simulator to get the On-Chip CPI

Program BB Size
(inst #)

No. of
Visit

Average
On-chip CPI

On-chip CPI
Variance How about Off-Chip CPI of a BB?

gzip -
graphic

21 41.9M 1.333 2.0e-4
45 12.0M 1.356 5.3E-6

gcc -
expr

12 77.1M 1.667 0

37 27.2M 1.215 2.9e-5

Cache simulator is needed all
the time

Cache miss counts
Memory latencyp 37 27.2M 1.215 2.9e 5

bzip -
program

44 35.5M 1.408 2.3e-4
69 20.8M 1.231 1.9e-5

mcf -
inp in

16 93.2M 1.624 3.9e-5
137 16 5M 1 400 6 4e 5

Memory latency
Key Idea of B2Sim

If a new BB is executed in the
detailed pipeline simulator, inp.in 137 16.5M 1.400 6.4e-5

vortex -
lendian1

20 44.6M 1.596 7.9e-4
38 26.3M 1.581 1.3e-3

characterize its On-Chip cycles
For subsequent visits of the BB,

avoid detailed pipeline simulation

BB’s On-Chip CPI Characterizationp
Is it really true that (On-Chip cycles = Total cycles – Off-Chip cycles) ?

Given I-cache miss latency of 32 cycles
Assume data dependency between 4th (add r1 r3 r5) & 5th (sub r2 r3 r1)Assume data dependency between 4th (add r1, r3, r5) & 5th (sub r2, r3, r1)

instructions
Consider that an I-cache miss occurs in the 4th instruction

On-Chip cycle of BB #k is 39 - 32 = 7 (shown on the left)p y ()
Consider that an I-cache miss does not occur in the 4th instruction

On-Chip cycle of BB #k is 8 (shown on the right)

BB’s On-Chip CPI Characterization (Cont’d)
What happens? Some I-cache misses may hide the data dependencies

By the time 5th instruction is fetched (in a miss), 4th instruction is finished, which
depends on 5th instruction

p ()

depends on 5 instruction
With an I-cache miss, no wait cycle for 5th instruction once it is fetched
Without an I-cache miss, dependency introduces a wait cycle to 5th instruction

Solutions to characterize On-chip cycle?p y
Do not characterize On-Chip cycle of a BB till there is no I-/D-cache misses
Allow a trial of threshold value to the characterization of On-Chip cycle of a BB

Visit #k Visit #k+1

add r1, r2, r3

cycle 2
cycle 3
cycle 4

cycle 2
cycle 3
cycle 4

Basic block #k

cycle 1 cycle 1

n n

Visit #k Visit #k+1

cycle 5

cycle 7
cycle 8

add r1, r3, r5
sub r2, r3, r1
add r4, r1, r3

add r4, r5, r6
add r7, r8, r9

cycle 4

cycle 6+32

cyc e

E
xe

cu
tio

n

E
xe

cu
tio

n

cycle 5

beq 0x20002cc
y

cycle 7+32

With an instruction cache miss Without an instruction cache miss
On-chip cycle = 39 32 = 7 On-chip cycle = 8

BB’s Off-Chip CPI Calculationp
Is Off-Chip cycle always equal to the memory latency?

Given D-cache miss latency of 32 cycles
Assume data dependency between 3rd (ld r1 0(r5)) and 5th (sub r2 r3 r1)Assume data dependency between 3rd (ld r1 0(r5)) and 5th (sub r2, r3, r1)

instructions
Consider that a D-cache miss occurs in the 3rd instruction

D-Cache miss latency is 32 - 1 = 31 (shown in the left)y ()
Consider that a D-cache miss does not occurs in the 3rd instruction

D-Cache miss latency is 32 (shown in the right)
E

xe
cu

tio
n

E
xe

cu
tio

n

BB’s Off-Chip CPI Calculation (Cont’d)
What happens?

Pipeline does not stall immediately on D-cache miss
Instead it stalls after one more (4th) instruction is executed

p ()

Instead, it stalls after one more (4th) instruction is executed
The compiler puts independent instructions btw. dependent instructions

Some memory latency might be hidden since independent instructions are
scheduled in between
Hidden latency is hard to characterize and we do not know the exact distance

Solutions?
For a BB that has D-cache miss, use the average distance value

E
xe

cu
tio

n

E
xe

cu
tio

n

Simulator Framework
Basic Block characterization (in terms of On-Chip & Off-Chip CPIs) based

Simulator (B2Sim)
For each of BBsFor each of BBs,

Execute sim-outorder for(/to) the first run(/visit)
Execute sim-cache for its subsequent run
BB’s total cycle: On-Chip cycle + Off-Chip cycleBB s total cycle: On Chip cycle Off Chip cycle

Build an On-Chip CPI table that
stores each BB’s On-Chip CPI

On-Chip CPI table has;On-Chip CPI table has;
of visit
of cycle
of instruction in BB

Program’s CPI can be derived by
the accumulation of On-Chip &
Off-Chip CPIs of BBs

Simulation & Benchmark ProgramsSimulation & Benchmark Programs
Benchmark programs in the simulation

SPEC2000 INT
Reference/Train input files

MediaBench with custom input files
Platforms for the simulation: 3 Linux machines

Athlon 2500+ Pentium 4 2 5GHz Pentium 4 1 8GHzAthlon 2500+, Pentium 4 2.5GHz, Pentium 4 1.8GHz
Table shows the architectural parameters used in B2Sim

Main Memory Latency 32 cycles
L1 I/D Cache 32KB 32-way 32Byte block, 1 cycle hit latency
L2 I/D Cache None

I/D-TLB 4-way 1024 entries, 32 cycles miss latency
Branch Predictor Bimodal 128 Table
Functional Units 1 Integer ALU, 1 Integer MULT/DIV, 1 FP ALU, 1 FP MULT/DIV

RUU/LSQ size 8/8
Instruction Fetch Queue 8

In order Issue True
Wrong Path Execution True

Experimental Resultsp

Name Native
exec. time

Number of
instruction

Simulation Time (minutes)
Speedup

sim-cache sim-outorder B2Sim
gzip-log 2.9 4.4 28 160 50 3.20

gzip-source 5.3 8.8 55 334 107 3.12
gzip-random 5.8 7.8 51 295 99 2.98
gzip-graphic 6.3 9.4 60 365 119 3.06
gzip-program 8.9 16.8 105 646 213 3.03

gcc-expr 11.9 15.1 62 417 132 3.16
gcc integrate 14 2 16 5 66 444 135 3 29gcc-integrate 14.2 16.5 66 444 135 3.29

gcc-166 62.3 57.0 233 1505 452 3.33
bzip-graphic 15.7 24.5 129 696 191 3.64
bzip-program 12.4 20.1 107 590 162 3.62bzip program 12.4 20.1 107 590 162 3.62
bzip-source 10.1 16.7 90 489 135 3.54
mcf-inp.in 55.8 20.1 116 739 223 3.31

vortex-lendian1 16.6 13.0 60 404 117 3.45
djpeg-custom 1.7 2.9 17 94 26 3.61
cjpeg-custom 3.2 5.3 32 187 57 3.28

Experimental Results (Cont’d)
Overall average CPI error on B2Sim: 0.57%
Feasible reasons of CPI error:

Inter-BB data dependency
Sporadic I-cache misses which are not captured in the middle of On-Chip CPI

characterization
Overall average speedup of B2Sim: 3 31XOverall average speedup of B Sim: 3.31X
Speedup vs. IPB (Instruction Per Branch)

Size and occurrence of each BB determines the speedup
IPB has the combined nature of both

4.5

5
15
17

(IP
B

)

B2Sim's Speedup Instruction per Branch

1

1.2

1.4

%
)

2.5

3

3.5

4

Sp
ee

du
p

3
5
7
9
11
13

ru
ct

io
n

Pe
r B

ra
nc

h

0.2

0.4

0.6

0.8

C
P

I
e
rr

o
r

(%

2

gz
ip

-l

gz
ip

-s

gz
ip

-r

gz
ip

-g

gz
ip

-p

gc
c-

e

gc
c-

i

gc
c-

16
6

bz
ip

-g

bz
ip

-p

bz
ip

-s

m
cf

vo
rte

x

dj
pe

g

cj
pe

g

1
3

In
st

r

0

g
z
ip

-
l

g
z
ip

-
s

g
z
ip

-
r

g
z
ip

-
g

g
z
ip

-
p

g
c
c
-

e

g
c
c
-

i

g
c
c
-

1
6

6

b
z
ip

-
g

b
z
ip

-
p

b
z
ip

-
s

m
c
f

v
o

rt
e
x

d
jp

e
g

c
jp

e
g

Conclusion & Future Work
B2Sim differs from previous simulation acceleration approaches in:

Minimally use detailed pipelined simulator if it is really needed
Do not need off-line profiling, fast-forwarding (FF) and warm-up
Deterministic in that it generates consistent performance over multiple runs
High level of granularity to capture the cycle-accurate information

B2Sim analyzes and utilizes BB level program behavior and informationB2Sim analyzes and utilizes BB level program behavior and information
On-Chip CPI of each BB is consistent
Once a BB is characterized with its On-Chip CPI in the pipelined simulator:

Functional simulator is used for those BBs afterwardsFunctional simulator is used for those BBs afterwards
Off-Chip CPI of each BB temporally changes

I/D-cache level simulator is used for BBs all the time
Experimental results and analysis:

Speed comparison (sim-cache): (sim-outorder): (B2Sim) = 1:6:2
Ideal speedup of B2Sim can reach to the speed of sim-cache. However:

Every BB need to be executed in the pipelined simulator at least once
B h di ti d / l ti ti d BBBranch prediction and wrong/speculative execution are need over BBs

Work to speedup B2Sim is ongoing!

Backup: Results in Enhanced B2Simp
Speed-up comparison (over the original sim-outorder)

25

Speedup in BBSim Speedup in SMARTS Speedup in sim-fast

15

20

5

10

0

ip-lo
g

ndom
ource
rap

hic
ogram
c-e

xp
r

eg
rat

e
cc

-16
6

sc
ila

b
cc

-20
0

ource
ogram
rap

hic
f inp.in
nd

ian
1

nd
ian

2
nd

ian
3

fam
ily

g-doll
s

peo
ple

usto
m

fam
ily

g-dolls
peo

ple
usto

m

gzip
gzip

-ra
n

gzip
-so

gzip
-grap

gzip
-pro

g
gcc

gcc
-in

teg gcc
gcc

-sc gcc
bzip

-so
bzip

-pro
g

bzip
-grap
mcf-

i
vo

rte
x-l

en
d

vo
rte

x-l
en

d
vo

rte
x-l

en
d

djpeg
-fa

djpeg
-d

djpeg
-pe

djpeg
-cu

s
cjp

eg
-fa

cjp
eg

-d
cjp

eg
-pe

cjp
eg

-cu
s

Backup: Results in Enhanced B2Sim (Cont’d)p ()
CPI Error comparison (over the original sim-outorder)

5

6
CPI error in BBSim CPI error in SMART

3

4

1

2

0

gzip
-lo

g
ran

dom
so

urce
grap

hic
ro

gram
cc

-ex
pr

teg
rat

e
gcc

-16
6

c-s
cil

ab
gcc

-20
0

so
urce

ro
gram

grap
hic

cf-
inp.in

en
dian

1
en

dian
2

en
dian

3
g-fa

mily
eg

-doll
s

peo
ple

cu
sto

m
g-fa

mily
eg

-dolls
peo

ple
cu

sto
m

gz
gzip

-ra
gzip

-s
gzip

-gr
gzip

-pro gcc
gcc

-in
te gc

gcc
-s gc

bzip
-s

bzip
-pro

bzip
-gr
mcf

vo
rte

x-l
en

vo
rte

x-l
en

vo
rte

x-l
en

djpeg
-

djpeg
djpeg

-p
djpeg

-cu
cjp

eg
-f

cjp
eg

cjp
eg

-p
cjp

eg
-cu

Backup: Some details in Implementationp p

while (inst. for the speculative & wrong path execution) {
If (branch miss prediction occurs) {

Anatomy of B2Sim (Source Level)
// Basically, no new operations on this stage
// Instructions which arrive at this stage are supposed

take branch miss prediction penalty cycle into account in switching
// B2Sim does know on-chip/off-chip CPI of BB. However,
// B2Sim does not know branch miss prediction penalty;

}
}

If (inst. from miss predicted branch) {
take branch miss prediction penalty cycle into account;
// C d ID di i l l diff

to be executed;

If (BB is visited)
switch to modified sim-cache);

else {
while (fetch inst. until fetch-> dispatch Q fills) {

IF ID EX WB CT

sim-outorder

// Compared to ID stage, prediction penalty cycle differs
// Simply, one cycle difference;

}

If (last inst in BB)access I-$ & I-TLB to fetch inst.;
update I-$/I-TLB misses of BB;

}
}
Update branch prediction();

Modified sim-cache

If (BB was visited) // Basically, no new operations on this stage
// Instructions arrive at this stage are supposed to be

committed;

If (last inst. in BB)

B2Sim
for (number of inst. in a BB) {

If (total I-$ & I-TLB miss in a BB is changed) {
access I-$ & I-TLB to update status;

}

// How to measure pipeline stall count?
// On each cycle level, if none of the pipeline stages

or functions are called, we think it a pipeline stall cycle

B Sim

}
access D-$ & D-TLB to update status;

}
Update cycles in a BB;
Update instruction count in a BB;

// In Simplescalar
// ID = Dispatch, EX = Issue

Backup: SMARTSp
SMARTS (Sampling Micro-ARchiTectural Simulator)

Theory of sampling:
Select minimal but representative samples that catch the whole programSelect minimal but representative samples that catch the whole program

behavior by executing a periodical sampling
Simply, combine sim-outorder, sim-cache and sim-bpred
Periodically switches among three modes of operations:

Sampling mode, i.e., full detailed simulation and gather data
All micro-architectural details are accounted for

Detailed warm-up mode
Detailed simulation mode but do not gather dataDetailed simulation mode but do not gather data

Functional warm-up mode
Only cache and branch predictor are updated

D t il d D t il d D t il dDetailed warm-up Detailed warm-up Detailed warm-up

Execution
Functional Warm-up Functional Warm-up Functional Warm-up

Detailed simulation Detailed simulation Detailed simulation

Execution

Backup: SMARTS (Cont’d)p ()
Some details about the sampling

N: Benchmark length (No. of instruction), e.g., N=10 Million
U: Sampling unit size (No. of instruction), e.g., 1000U: Sampling unit size (No. of instruction), e.g., 1000
W: Detailed warm-up size (No. of instruction), e.g., 2000
k: Fixed sampling interval (No. of instruction), e.g., k = 1000
n = N/k: Sampling is executed in this many time, e.g., n=10,000
How to determine U? (What amount do we sample at a time?)

See CPI coefficient of variance w.r.t. increasing U size
1000 < U is enough to saturate the variance (see the backup slide)

H t d t i /k? (H ft l i ll ti ?)How to determine n/k? (How often we sample in overall execution?)
n > 10,000 yields 99.7% of confidence interval which is 4% CPI err

W i i i

0 k 2k 3k

W warming instructions

N

U(k-1) –W instructions U sampling instructions

Backup: SMARTS (Cont’d)
Performance of SMARTS

Speedup: 35X ~ 60X (over sim-outorder) but 1X-1.5X (over sim-fast)
N=10,000, U=1,000, W=2,000

p ()

N 10,000, U 1,000, W 2,000
Average CPI error: 0.64%

Observations in SMARTS:
Combine wattch makes sim-outorder to be slow

Reference simulation time: (outorder) : (cache) : (fast) is 18:6:1
Aggressive code optimization

Simulation time acceleration by data structure change?

Runtime parser migrid twolf mesa ammp gap swim averageRuntime parser migrid twolf mesa ammp gap swim average

sim-outorder 541 414 343 279 323 266 223 98
sim-fast 9.2 7.0 5.8 4.7 5.5 4.5 3.8 1.7
SMARTS 15 8 12 1 10 0 8 1 9 6 7 8 6 5 2 9

58X

SMARTS 15.8 12.1 10.0 8.1 9.6 7.8 6.5 2.9

Backup: SimPointp
SimPoint 3.0

Program behavior (phase) based sampling simulation
How and why it works?How and why it works?

Program behaviors change over time. However, they are not random but repeat
themselves in some cyclic patterns
Sample some periods/points that reflect the whole program behavior

Problem
Phase characterization in a program may not easy

L

Energy

DL1

L
2

IL1

bpred

gzip

IPC

gcc

Backup: SimPoint (Cont’d)p ()
How to determine the similarity between any two intervals

Each predefined interval size is ranged from 10M ~100M cycles
Compare basic block vector (BBV) distance of each interval

BB Assembly Code of bzip
1 srl a2, 0x8, t4

ID: 1 2 3 4 5 ..
BB Exec Count: <1, 20, 0, 5, 0, …>

Weigh by Block Size: <8, 3, 1, 7, 2, …>
= <8 60 0 35 0 >

Compare basic block vector (BBV) distance of each interval
Draw a similarity matrix

and a2, 0xff, t12
addl zero, t12, s6
subl t7, 0x1, t7
cmpeq s6, 0x25, v0
cmpeq s6, 0, t0
bis v0, t0, v0
b 0 0 120018 48

= <8, 60, 0, 35, 0, …>
Normalize to 1 = <8%,58%,0%,34%,0%,…>

bne v0, 0x120018c48
2 subl t7, 0x1, t7

cmple t7, 0x3, t2
beq t2, 0x120018b04

3 ble t7, 0x120018bb4
4 and t4, 0xff, t5

In a similarity matrix
Darker gray area means how

similar they aresrl t4, 0x8, t4
addl zero, t5, s6
cmpeq s6, 0x25, s0
cmpeq s6, 0, a0
bis s0, a0, s0
bne s0, 0x120018c48

5 bl t7 0 1 t7 gzip

similar they are
Lighter gray area means how

different they are
Horizontal line: Similarity in

f t l5 subl t7, 0x1, t7
gt t7, 0x120018b90

... ...

 < Example of BBs >

gzipfuture sample
Vertical line: Similarity in

previous sample

Backup: SimPoint (Cont’d)p ()
No. of simulation points (K) for interval=100K (djpeg) and interval=10M (gzip)

Program
(input)

Total
IPC

Total
Time

K=1 K=2 K=3
Simulation Points

IPC Weight Time IPC Weight Time IPC Weight Time(input) IPC Time IPC Weight Time IPC Weight Time IPC Weight Time

djpeg
(pic.jpg)

0.654 103.1 0.654 1.0 103.1 6543
0.714 249.6 0.714 0.542 91.2 0.712 0.458 158.4 4955, 10133
0.716 218.1 0.747 0.198 36.9 0.684 0.262 31.0 0.718 0.540 150.2 2374, 1983, 9575
0.715 292.4 0.756 0.139 22.6 0.718 0.540 150.2 0.679 0.210 85.1 1442, 9575, 5493, 2151

gzip
(log)

0.6895 379.5 0.689 1.0 379.5 283
0.6973 723.2 0.740 0.155 343.7 0.689 0.845 379.5 195, 283
0.6989 1032.8 0.689 0.435 379.9 0.694 0.410 309.2 0.740 0.155 343.6 308, 163, 195
0.7136 1356.3 0.689 0.437 379.9 0.729 0.178 331.5 0.740 0.155 343.6 308, 171, 195, 85

dj i jdjpeg-pic.jpg
Number of instruction: 1.014B, Simulation cycles: 1.325B, Total IPC: 0.7648
Total simulation time in original sim-outorder: 2034 seconds

gzip loggzip-log
No. of instruction: 4.444B, Simulation cycles: 6.070B Total IPC: 0.7321
Total simulation time in original sim-outorder: 1356 seconds

Conclusions: The performance and the accuracy of SimPoint largely variesConclusions: The performance and the accuracy of SimPoint largely varies
over the determination of K. Also, the interval size matter.

Backup: Other Prior Worksp
Simulation with Reduced Benchmark

MinneSPEC: Modify the reference input dataset such that it still retains the
characteristics of the reference input dataset yet reduces the simulation timep y
SPEClite: Alternating UA (Microarchitectural mode) and FM (Functional mode)

and sample the representative 20-50 periods of one million instructions
Statistical Simulation (HLS++)

Step 1: Profiling the benchmark program to measure a collection of its
execution characteristics to create statistical profile.
Step 2: Generate a synthetic trace using the statistical profile

Synthetic trace consists of instructions contained in basic blocks that areSynthetic trace consists of instructions contained in basic blocks that are
linked together into a control flow graph (CFG)

Instead of actual arguments and op-codes, each instruction is composed of
a set of statistical parameters such as instruction type, I/D-cache hit
probability I-/D-TLB hit probability branch miss probability dynamic dataprobability, I-/D-TLB hit probability, branch miss probability, dynamic data
dependency distance (to determine how far a consumer instruction is away
from its producer), etc.

Step 3: Simulating the instructions in the synthetic trace on a trace driven
simulator to obtain the performance estimate (Statistical simulation)simulator to obtain the performance estimate (Statistical simulation)

Backup: Other Prior Works (Cont’d)p ()
Accelerate the Warm-up

To provide the correct cache & branch predictor states and handle the cold start
Checkpoint: Store the hardware state at the beginning of each sample andCheckpoint: Store the hardware state at the beginning of each sample and

impose this state when simulating the sampled trace
Prime: an empty cache at the beginning of each sample and uses a certain

percent of each sample to warm-up the cache
MRRL (M R f R L t) A hi t f th b fMRRL (Memory Reference Reuse Latency): A histogram of the number of

memory references between two references to the same memory location is used
to determine when to start the warm-up

Accelerate the Fast-forwarding (SimSnap)g ()
Fast-forwarding takes time and it usually employs functional simulation within

the cycle-accurate simulator model, e.g., (native): (functional): (cycle-accurate):
(1):(32):(32X42)
Substitute functional simulation with native (real-time) execution usingSubstitute functional simulation with native (real-time) execution using

checkpoint to transfer application state to a simulator at the desired simulation
points (a.k.a. Native FF)
Specifically, application level check-pointing (ALC) insert code to save function

call sequence along with run time information of data size layout etccall sequence along with run-time information of data size, layout, etc.
Modify the program to capture its own internal, dynamic state such that

program can restart

