Dynamic Thermal Management for MPEG-2 Decoding

Wonbok Lee, Kimish Patel, Massoud Pedram

University of Southern California Los Angeles CA

October 5th 2006

Outline

- Background
- Proposed Dynamic Thermal Management (DTM) Technique
- Spatial/Temporal Quality Degradation in MPEG-2
- Simulation Environment and Implementation
- Experimental Results
- Conclusion

Background

- Dynamic Thermal Management (DTM)
 - Do not design for the worst-case chip temperature; manage worstcase conditions by employing DTM
 - DTM aims to achieve a thermally safe state of a microprocessor at the expense of minimal performance degradation
- Two Thermal Thresholds :
 - Trigger temperature: Temperature above which DTM initiates
 - Emergency temperature: Temperature above which microprocessor starts to experience logical/timing errors
- Examples of previous DTM techniques
 - Fetch Toggling
 - Instruction Cache Throttling
 - Dynamic Instruction Window Resizing
 - Switching Off Active Functional Units
 - Deactivating Appropriate Register Ports
 - Activity Migration
 - Dynamic Voltage & Frequency Scaling

Decoding Time

- As microprocessors become faster, the absolute time needed to decode each MPEG frame becomes smaller
 - The frame rate is fixed: 29.97fr/sec(NTSC), i.e., 33msec per frame
 Total frame count = 60, image resolution=704X480
 - We compare MPEG decoding times (w/o dithering) for two cases:
 Decoding Speed: 42.01msec/frame vs. 24.01msec/frame
- Can we utilize the residual time (frame decoding deadline actual frame decoding time) to make the system thermally safe?

Temperature Violation w/o DTM

Simulation Setup

- □ Simplescalar + Wattch + Hotspot
- Assume Alpha 21364 processor floor-plan
- □ Set the trigger temperature = 82°C
- Once a program behavior settles down, temperature variance is captured in 10K cycle granularity

How DTM Works

• How to cope with this thermal crisis?

- Each time we reach the trigger threshold, we stall the processor to cool off
 - □ Ideally, a frame decoding will finish within its target deadline
 - □ If not, we may end up with some spatial/temporal quality degradation

Bottom line: Distribute decoding workload such that chip temperatures never exceed the threshold temperature

Thermal Model and Gradients

We adopt the thermal model used in Skadron, et al. (HPCA 2002)

$$\Delta T = (\frac{P}{C_{th}} - \frac{T_{old}}{R_{th} \cdot C_{th}}) \cdot \Delta t$$

- Δ*T* : Temperature variation
- **P:** Average power in an interval
- *R_{th}*: Thermal resistance
- C_{th}: Thermal capacitance
- T_{old}: Initial temperature
- Δt : A time interval

Important observations:

- During the period of decoding
 - □ Rising thermal gradient is calculated as:
- **During the period of resting (stall)**

□ Falling thermal gradient is calculated as:

```
Rising: \frac{\Delta T_r}{\Delta t} = (\frac{P}{C_d} - \frac{T_{old}}{R_d C_d})
```

alling:
$$\frac{\Delta T_f}{\Delta t} = (-\frac{T_{old}}{R_{th}C_{th}})$$

Leakage power is not considered in our simulations

A Program's Thermal Behavior and the Trigger Temperature

Classify a program's thermal behavior into three regions:

- □ Superlinear (cool off much slower than heat up): $\Delta T_r / \Delta T_f$ is much larger than 1
- □ Linear: $\Delta T_r / \Delta T_f$ is nearly one
- □ Constant (cool off much faster than heat up): $\Delta T_r / \Delta T_f$ is much less than 1
- T_{min} and T_{max} are circuit, floorplan and input filedependent
- Trigger temperature (which is package, heat sink and architecture dependent) can end up lying in any of these regions

For same ΔT ,

Key Concepts Behind the Proposed DTM Policy

- Run MPEG stream without any DTM policy to obtain T_{max} and T_{min}
- If $T_{trigger} > T_{max}$, the chip is thermally safe w/o any effort
- If T_{trigger} < T_{min}, significant quality degradation should be accrued to achieve thermal safety
- If $T_{min} < T_{trigger} < T_{max,}$, check the level of $T_{trigger}$. If it lies in
 - □ Constant region: thermally safe w/ little or no quality degradation
 - Linear region: thermally safe at the cost of some quality degradation
 - Super-linear region: thermally safe at the cost of sizeable quality degradation

The Proposed DTM Policy

- Stall the processor for the length of time for as long as the falling temperature is comparable to the rising temperature
 - Every time we reach T_{trigger}, we initially stall the processor for 1M cycles
- We may miss a frame decoding deadline (which means that either some level of spatial or temporal quality degradation will be necessary)
- We predict the frame decoding time by online linear regression
- If a deadline miss is predicted, we do spatial quality degradation during the frame decoding
 - □ If the deadline is in fact missed, we do temporal quality degradation (drop the next P or B frame)
 - □ Otherwise, we accrue the positive slack time for future use
- From our experimental setup, we have found that T_{trigger} mostly lies in the linear region

Adaptive Stall Periods

- Dynamically determine the stall period that creates equal rising & falling thermal changes
 - We start with some stall period (T_{f1}) and adapt the stall period on the next DTM cycles

First cycle states that we are in the super-linear region

Stall period is decreased over time

•
$$T_{f1} > T_{f2} = T_{r3}$$

• $T_{r3} = T_{f3} = T_{r4} = ...$

First cycle states that we are in the constant region

Stall period is increased over time

$$T_{f1} < T_{f2}$$

$$T_{f2} = T_{r3} = T_{f3} = T_{r4} = \dots$$

Spatial/Temporal Quality Degradation

- Spatial quality degradation (soft)
 - Two Fine Granularity Scalability (FGS) methods are chosen
 - SNR scalability
 - Saturation Control
 - Together, they consume about 10% of frame decoding time
 - Their quality degradations are negligible (as shown by RMSE values)
- Temporal quality degradation (hard)
 - Simply drop either P or B frames
 - This is similar to frame discarding scheme in MPEG when the decoding time becomes too long

Quality Degradation (Cont'd)

- Example to show how we apply spatial & temporal degradation
 - □ Based on the previous non I-frame, predict the frame decoding time
 - □ We cannot say which form of quality degradation will prevail:
 - If prediction is accurate and decoding workload is medium,
 No. of spatially degraded frames > No. of dropped frame
 - No. of spatially degraded frames > No. of dropped frame
 - If many frames have heavy decoding workload,
 - □ No. of spatially degraded frames < No. of dropped frame

Simulation Setup

Our thermal simulator

- Combine Simplescalar 3.0, Wattch, and HotSpot
 - □ Generate per-structure temperature data for every 10K cycles
 - □ Based on the Alpha 21364 Chip floor-plan at 0.18µ, 1.8V, 1.2GHz
 - □ Emergency / Trigger temperatures: 85.0 / 81.8°C
 - □ Ambient / Initial temperatures: 40.0 / 60.0°C

Application program

- MPEG-2 decoder program in Media-bench
- DTM policies are implemented in the MPEG-2 decoder program and interact with the thermal simulator
- Test input files
 - MPEG-2 video file (.m2v) from <u>http://www.mpeg2.de/video/stream</u>

Architecture Parameters and Floorplan

Memory Latency	100 cycles/10 cycles		
L1 I/D Cache	64KB 2-way 32Byte block, 1 cycle hit latency		
I/D-TLB	Fully associate, 128 entries, 30 cycles miss latency		
Branch Predictor	4K Bimodal		
Functional Units	4 INT ALU, 1 INT MULT/DIV, 2 FP ALU, 1 FP MULT/DIV		
RUU/LSQ size	64/32		
Instruction Fetch Queue	8		
In order Issue	False		
Wrong Path Execution	True		
Issue Width	6 instruction per cycles		

FPMap	ap		IntReg	
FPMul	IntM	IntQ		
FPReg	PQ	LdStQ	IntExec	
FPAdd	ш	ITB		
BPred		DTB		
lCache		D	Cache	

ALPHA 21364 Floor-plan in 0.13um

Experimental Results

- Thermal results between no DTM vs. DTM-aware systems
 - When per-frame decoding time exceeds a certain value, DTM is needed
 - Our experimental results show that DTM support is clearly needed

	out files Average decoding time (msec) Resolution (pixel) No. of Frame I: P: B frame	Desolution	No. of		Max/Min Temp (°C)	
Input files		frame	w/o DTM	w/ DTM		
gitape	21.5	720 x 480	14	1: 4: 9	101.5 / 85.5	81.8 / 80.5
mei60f	19.6	704 x 480	50	5: 13: 32	99.6 / 83.8	81.8 / 80.5
hhilong	17.2	720 x 576	45	3: 8:34	97.2 / 81.9	81.8 / 80.5
time	11.8	704 x 480	50	5: 12: 33	91.5 / 76.2	81.8 / 80.5
soccer	8.5	640 x 480	51	4: 14: 33	82.5 / 70.5	81.8 / 72.4
tens	4.0	352 x 192	47	5: 12: 30	73.4 / 63.2	73.4 / 63.2
cact	4.0	352 x 192	50	5: 12: 33	73.4 / 64.1	73.4 / 64.1

Experimental Results (Cont'd)

- Categorize simulated input files into three types and show thermal variations of each type
 - □ Type1: Large resolution (≥704X480) files: Need aggressive DTM most of time
 - □ Type2: Medium resolution (≈640X480) files: Some level of DTM is needed
 - □ Type3: Small resolution (≤ 352X192) files: No DTM is needed
- In the middle curve, stall time is adjusted to make thermal rising and falling gradient equal

Experimental Results (Cont'd)

Spatial & Temporal Quality Degradation

- As a frame resolution becomes large, DTM becomes aggressive, i.e., experience higher spatial-temporal quality degradation
- If the trigger temperature is set to a higher value, the frame drop ratio becomes less

	Resolution (pixel)	Image/Video Quality Degradation				
Input file		Spatial		Temporal		
		Scaled frames	RMSE	Drop/Total frames	Drop ratio (%)	
gitape	720 x 480	5	0.119	5/14	35.7	
mei60f	704 x 480	8	0.125	15/50	30.0	
hhilong	720 x 576	0	0	8/45	8.8	
time	704 x 480	0	0	0/50	0	
soccer	640 x 480	0	0	0/51	0	
tens	352 x 192	0	0	0/47	0	
cact	352 x 192	0	0	0/50	0	

Conclusion

Presented a DTM approach for MPEG-2 Decoding:

- Utilizes residual time in a given decoding deadline for the thermal safety
- Defines three thermal zones: super-linear, linear, and constant
- Compared to the conventional DTM schemes
 - Does not pay the penalty of performance (speed) penalty but pays the penalty of quality degrardation instead

Future Research:

- □ Is FGS the best choice in terms of efficiency, i.e., maximize the time saving & minimize the image distortion?
- □ Will DTM for the MPEG-4 be similar?
- □ What if DVFS is applied instead?