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Introduction

= Power management becomes a first-order concern
0 More functional blocks in SOC are being built with DVFS capability
0 Different clock and voltage domains exist on the same chip

= Challenges of dynamic power management (DPM)

O Intricate trade-off between power saving and performance loss

o Power manager (PM) can become a heavy duty task
o Monitors the workloads of multiple processors
0 Analyzes the information to make decisions
0 Issues DVFS commands to each processor

= DVFS-enabling techniques depend on:

0 Configuration of voltage/frequency control circuits
0 Efficiency of workload prediction mechanisms
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Some Relevant Prior Work

= A. lyer, et al. ICCAD 2002)

0 Online DVFS technique by utilizing an interface queue

= R. Kumar, et al. (Micro 2003)

0 Analytical model for power management under performance constraints

= Q. Wu, et al. (HPCA 2005)

0 Voltage island-based power management technique

m E. Chung, et al. (ICCAD 1999)

0 Power management technique based on adaptive control mechanism

= G. Dhiman, et al. (ICCAD 2006)

0 Machine learning based power management technique
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Proposed Approach

= Traditional approaches for DPM

0 Non-negligible overhead for power management policy computations
0 The PM needs to control each processor individually

. =

= Develop a learning-based power management framework

0 Improve the decision-making strategy which minimizes the overhead of
PM

0 Quickly analyze available input features
0 Accurately predict the current system state
0 Select an optimal action to minimize a user-specified cost function

= Key features of the proposed framework
0 Supervised-learning based DPM
0 Accurate predict ion of the system state
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A First-Order Explanation

= Proposed DPM framework

0 Incoming tasks are labeled with the state information (power and delay)

0 DVFS values are assigned to these tasks while in the service queue (SQ),
l.e., before it reaches the service provider (SP)

0 The overall task processing time is thus reduced
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Learning-based DPM Framework (1/5)

= Background on supervised learning

0 Atechnique for discovering relations and extracting relevant knowledge
0 Typically used to construct a self-improving decision-making strategy
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0 X: input feature (quantifiable feature of the system under considerations)
0 y: output measure (categorical measure labeled with a pre-defined class)
0 (X,y): elements of the training set

0 Training a PM involves finding a mapping from input features to output
measures

0 PM predicts the class of an output measure when a new input feature is
given
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Learning-based DPM Framework (2/5)

= Top-level organization of the proposed PM
0 Learning framework consists of training and classification phases
0 Classification is based on the Bayesian approach

0 The goal is to discover the relations b/w input features and output
measures and to predict the performance level by using classification
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Learning-based DPM Framework (3/5)

= Key functions of the proposed PM

0 Feature extraction: choose the input feature
(e.g., characteristics of the tasks, and the state of the SQ)
0 Measure extraction: choose the output measure
(e.g., power dissipation and execution time of the tasks)
0 Training set generation: assemble input-output data into a training set
0 Supervised learning: map the input to output based on training set
0 Classification: select the most likely class given the input
0 Policy generation: map the output classes to actions

= Our proposed DPM framework generally requires

0 Training
0 Classification
0 Policy generation
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Learning-based DPM Framework (4/5)

= Input feature and output measure extraction

0 PM gathers input features, which affect performance level of the system
0 Type of tasks (e.g., high-priority or low-priority)
0 State of the SQ (e.g., queue occupancy)
o Arrival rate of tasks (e.g., O < arrival rate < 1)

0 P M COI |ects Outp ut measures Input features Output measures
) . . Task type Queue Arrival Power Execution

o Power dissi patlon occupancy | rate oftask || dissipation | time
o Execution time of task high-priority |  med low Pow, exey
high-priority low med pow, exe,
. . low-priority d 1 pow exe
0 Class is considered as an — = - : :
low-priority low med pow, EXe;
attribute chosen from high-priority | low med pow, exe,
. low-priority med med pow, Exe;
enumerated type sets: T— — — — e,
oL 1= {pOW 1r pOWZ, powg} low-priority med high pow, exe,
low-priority med med pow, EXe,

o L, ={exe,, exe,, exe;}
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Learning-based DPM Framework (5/5)

m Classification

0 Classification task is the assignment of Maximum A Posteriori (MAP)
0 Input feature x and the prior class | assignment are given

Yupe = argmax Prob(y. =1]x,X,,...,X.)
|

ERA

= arg max PI’Ob(Xl,Xz,...,Xn | yi = I). Prob(yl — I)
| Prob(x,, X,,...,X,)

= argmax Prob(y; = I)-ﬁ Prob(x; | y; =1)
j=1
= Example: Suppose a new input (x;=low, Xx,=med, Xx;=med) Is given, and
0 P(y,=pow,)P(x,=low,x,=med,x;=med | y,=pow,) = 1/6
0 P(y,=pow,)P(x,=low,x,=med,x;=med | y,=pow,) = 1/12
0 P(y;=pow;)P(x,=low,x,=med,x;=med | y,=pow;) = 1/144
0 Thus, MAP class of power level for the given input feature is pow;
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Stochastic Policy Optimization (1/4)

s Develop autonomous decision-making

0 Map the output classes to actions

0 Actions commanded by PM lead to quantifiable costs

0 Devise a policy for issuing a command that minimizes the expected cost

m Target processor has k states, each characterized by a
power-delay product (PDP)
0 Each state is annotated by its PDP value
a PM chooses an action from voltage-frequency set, A ={a,, ... a.}

0 State transition probability, T(s', a, s) = Prob(s' | a, S)

T(sy @, $y)

OO =0
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Stochastic Policy Optimization (2/4)

= Find an optimal action which minimizes the total energy
dissipation
0 Assume that predicted classes for output measures are p and d
ap=[p.pJandd=[d d,]
0 The expected cost of current state, where a is given in state s

C(s,a)e[p_-d_+e(s,a) p,-d, +e(s,a)]

0 e(s,a): the expected energy dissipation to transit from state s to some
next state under action a

0 We define a scalar cost function

p-d +p,-d
2

C(s,a) = —+e(s,a)
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Stochastic Policy Optimization (3/4)

= Policy generation deals with the cost function

0 A dynamic programming technique is used to solve the problem since it
exhibits the property of optimal substructure cost

= The optimal cost is defined as:
0 The expected discounted sum of cost that an agent accrues

¥’ (5) = min E (i y .c(t)j

t=0

0 y:adiscount factor, 0 < y< 1
0 c(t): cost at time t

= |n our problem setup, the cost function is defined as

P(s) = main(C(s, a)+7) T(s\a,s)¥ (s ')j VseS
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Stochastic Policy Optimization (4/4)

= Given the cost function, the optimal action can be obtained

by 7 (S)=arg min(C(s, a)+ yZT (s',a,8)¥ (s ')j

s'eS

= One way to solve optimal decision problem is to use value
iteration method

. . : initialize ‘P(S) arbitrarily
0 Value iteration method consists

of a recursive update of the
value function to choose an
action

I:
2 loop until a stopping criterion is met

3 loop for Vs € S

4: loop for Va € A

5. Q(s,a)=C(s,a)+7 ) T(s'a,5)¥(s)
6 ¥(s) = min Q(s.2) o

7 end loop

8 end loop

9 end loop

The value iteration algorithm
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Experimental Results (1/4)

= The technique is applied to a multicore processor

0 Dynamic load balancing block guarantees in-order delivery

o TCP/IP-related task (e.g., TCP segmentation and checksum offloading)
0 Power and delay measurement with TSMC 65nmLP library

o a, = [1.00V, 150MHZz], a, = [1.08V, 200MHz], a; = [1.20V, 250MHZ]

= Define a set of input feature / output measure

0 Input measure = {occupancy state of SQ, arrival rate of task}
0 Output measure = {power dissipation [mMW], execution time [nS]}

= The classes of output measure
O pow; =[34 41.0], pow, = (41.0 47.0], pow; = (47.0 54.0]
0 exe, =[14.1 21.5], exe, = (21.5 28.5], exe,; = (28.5 35.7]
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Experimental Results (2/4)

= Selection of the training set size

0 The training set size affects the classification accuracy
0 Results show that a training set size of 1000 is adequate for our purpose

—=— Probilow-priarity task, med arrival rate | exe2)
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Experimental Results (3/4)

m Classification of tasks

0 Randomly generates 100 tasks that arrive in the SQ of the processor
0 After predicting the system state, the PM chooses the best action to issue

vl nu mw J h

| | | | | | | | |
10 20 30 40 50 &0 70 a0 20 100
Sequence of tasks
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Experimental Results (4/4)

= Investigate energy-efficiency of the proposed technique

0 Greedy - apply a greedy DPM strategy as follows
0 Use the lowest a, value for low workload (i.e., arrival rate)
0 Likewise, use a, and a; for med and high workloads
0 Bayesian - apply the optimal actions based on the proposed technique

= Generate a number of tasks (e.g., 50, 100, 150, and 200)

0 Randomly select the priority and arrival rate of tasks

Number of tasks Total energy (normalized) Energy saving
Processor : : Over Greed
High-pri| Low-pri| Total Greedy Bayesian ver breedy
Procl 27 23 50 77.8 64.1 17.6%
Proc2 52 48 100 170.9 113.8 33.4%
Proc3 67 83 150 258.4 175.7 32.1%
Proc4 103 97 200 340.9 231.5 32.0%
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Conclusion

= Addressed the problem of system-level DPM

0 Reduce the computational overhead and latency associated with regular
activities of the PM

= Proposed a supervised learning based DPM framework

0 Enable the PM to predict the performance state of incoming tasks by
using a Bayesian classification technique

0 Reduce the overhead of traditional decision-making strategy

= Experimental results demonstrate that the proposed
technigue achieves system-wide energy savings up to
28.7% (average) compared to a greedy approach
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