Recent Results of the Current Source Model-Based Approach for Timing Analysis

Shahin Nazarian, Hanif Fatemi, Massoud Pedram

SRC LPD Review

Oct 17, 2007

Outline

Background

- Current Source Modeling (CSM) for Logic Cell Delay Analysis Under Noisy Input Waveforms
- A Current-based Method for Short Circuit Power Calculation (CSPC) Under Noisy Input Waveforms
- A Current Source Model for CMOS Sequential Cells
- Conclusion

Introduction

Scaling and noise

• The down scaling of layout geometries:

- Aggravation of noise effects, such as the capacitive crosstalk noise
- Logic cell delay techniques
 - Single reference point (arrival time)
 - Rise/fall slope (transition time)
- Conventional logic cell delay techniques are inaccurate:

• Approximation of input with a saturated ramp, i.e., Γ_{eff}

Conventional Pre-Characterization

Logic Cell Timing Analysis Issues

Conventional logic cell delay techniques ignore the actual shape of the waveform

Pessimism in approximation with a saturated ramp

Logic Cell Delay Modeling

- - Accurate Logic Cell Timing Analysis:
 - Consider the actual shape of the input waveform
 - Problem Statement:
 - Given: A (noisy) input voltage waveform
 - Objective: Determine the output voltage waveform
 Minimum error w.r.t. the actual shape of the output waveform
 - Construct the output based on the input voltage and the logic cell model

Current Source Modeling

Some applications

- Path-based timing analysis inside a signoff tool:
 - 1. Identification of a set of critical paths by performing conventional static timing analysis (STA)
 - 2. Accurate timing and noise analysis on the target path by using the CSM model
- Noise analysis to determine the delay and slew changes
 - Used inside the STA tools as part of the signal integrity analysis (example: PrimeTime Signal Integrity, PTSI)
 - Simulation engine for waveform propagation

Our Current Source Model (DAC 06)

$$i_o + C_o \frac{\Delta V_o}{\Delta t} + I(V_i, V_o) + C_M \frac{\Delta V_o}{\Delta t} - C_M \frac{\Delta V_i}{\Delta t} = 0$$

- The non-linear behavior of the logic cell:
 - 2-D lookup table to store $I(V_i, V_o)$
- Parasitic effects in the logic cell:

• 2-D lookup tables to store $C_i(V_i, V_o)$, $C_M(V_i, V_o)$, and $C_o(V_i, V_o)$

 Series of SPICE simulations to pre-characterize various elements of the CSM model

Pre-characterization: Current Source

$$i_{o} + C_{o} \frac{\Delta V_{o}}{\Delta t} + I(V_{i}, V_{o}) + C_{M} \frac{\Delta V_{o}}{\Delta t} - C_{M} \frac{\Delta V_{i}}{\Delta t} = 0$$

- $I(V_i, V_o)$:
 - > Apply DC voltage sources V_{CH1} and V_{CH2} to the input and output
 - Measure i_o (the current going trough V_{CH2}) in SPICE and fill the entry I(V_{CH1},V_{CH2}) of the table
 - Sweep the DC voltage sources

Pre-characterization: Parasitics (C_M)

$$i_{o} + C_{o} \frac{\Delta V_{o}}{\Delta t} + I(V_{i}, V_{o}) + C_{M} \frac{\Delta V_{o}}{\Delta t} - C_{M} \frac{\Delta V_{i}}{\Delta t} = 0$$

$$C_{M}(V_{i}, V_{o})$$

- > Apply a ramp voltage source to input and a DC source to output
- > Measure i_o in SPICE for different voltage values at the input
- \succ Calculate C_M from the KCL eqn and fill out one column of the table
- Sweep the DC voltage source at the output

CSM Pre-characterization: Parasitics (*C*₀**)**

$$i_{o} + C_{o} \frac{\Delta V_{o}}{\Delta t} + I(V_{i}, V_{o}) + C_{M} \frac{\Delta V_{o}}{\Delta t} - C_{M} \frac{\Delta V_{i}}{\Delta t} = 0$$

- $C_o(V_i, V_o)$
 - Apply a DC source to input and a ramp voltage source to output
 - > Measure i_o in SPICE for different voltage values at the output
 - \succ Calculate C_o from the KCL eqn and fill out one row of the table
 - Sweep the DC voltage source at the input

Voltage Calculation Using CSM

$$C_{L}\frac{\Delta V_{o}}{\Delta t} + C_{o}\frac{\Delta V_{o}}{\Delta t} + I(V_{i}, V_{o}) + C_{M}\frac{\Delta V_{o}}{\Delta t} - C_{M}\frac{\Delta V_{i}}{\Delta t} = 0$$

 $V_o(t_{k+1})$: Calculated based on $V_o(t_k)$ and $V_i(t_k)$, $V_i(t_{k+1})$ and the current source and parasitic capacitance values

$$V_{o}(t_{k+1}) = V_{o}(t_{k}) + \frac{1}{C_{L} + C_{o} + C_{M}} \cdot \left\{ C_{M} \cdot \left(V_{i}(t_{k+1}) - V_{i}(t_{k}) \right) - I\left(V_{i}(t_{k+1}), V_{o}(t_{k}) \right) \cdot \Delta t \right\}$$

Experimental Results

- HSPICE and our CSM-based results for some crosstalkinduced noisy waveforms
- Logic cell: Minimum sized inverter in 130nm library

Outline

Background

- Current Source Modeling (CSM) for Logic Cell Delay Analysis Under Noisy Input Waveforms
- A Current-based Method for Short Circuit Power Calculation (CSPC) Under Noisy Input Waveforms
- A Current Source Model for CMOS Sequential Cells
- Conclusion

Short Circuit Power Calculation

- Short circuit current:
 - Flows from the Vdd rail to ground during an output transition
 - Depends on the duration of time that transistors in the pull-up and pull-down sections of a CMOS logic cell operate in each region of the transistor operation
 - Depends on both input and output voltage waveforms
- How to measure short circuit current and energy dissipation?

Short Circuit Power Calculation Flow

• Problem statement:

Develop a short circuit power calculator capable of handling noisy inputs (including glitches) with arbitrary shapes

Short Circuit Current Pre-characterization

•
$$I_{sc}(V_{CH1}, V_{CH2}) = I(V_{M1}) \cap I(V_{M2})$$

- A new 2-D lookup table is created to store the $I_{sc}(V_{CH1}, V_{CH2})$ values
- Complexity of the CSM does not increase by the SCC precharacterization

CSM-based Short Circuit Power Calculator (CSPC)

- Step 1: Construct the output voltage waveform based on the noisy input waveform by using our CSM-based calculator
- Step 2: At each time instance, read the corresponding short circuit current from the look up table and thereby construct the exact short circuit (SC) current waveform
- Step 3: Report the short circuit energy dissipation associated with the input-output transition as the area under the SC current waveform times V_{DD}

Experimental Results – Accuracy of CSPC

- Noisy waveform given to a minimum sized inverter with a FO4 loading in our 130nm cell library
- Switching energy consumption per transition is 8.89fJ
- The SC energy dissipation is 2.68fJ (2.78fJ) per Hspice (CSPC)

Comparison with Previous Techniques

- Saturated ramp approximation of input waveform and use of precharacterized lookup tables E_{sc}(t_{in},C_L)
 - SC energy dissipation reported by ramp approximation is 7.1fJ
 - 45.9% error w.r.t. to Hspice short circuit energy report of 15.45fJ
 - SC energy dissipation reported by CSPC is 15.61J (1% error)
 - Shape of the input waveform should not be ignored

Experimental Results – Glitches

- Glitches are typically ignored by the timing analysis or a validation tools
 - The resulting SC energy dissipation may not be negligible (3.5fJ for the example shown below)

Short Circuit Energy in the Presence of Crosstalk

Accuracy and Runtime of CSPC

///////

Outline

Background

- Current Source Modeling (CSM) for Logic Cell Delay Analysis Under Noisy Input Waveforms
- A Current-based Method for Short Circuit Power Calculation (CSPC) Under Noisy Input Waveforms
- A Current Source Model for CMOS Sequential Cells
- Conclusion

Noise and sequential cells

- - Does the noisy input cause a functional error in the circuit?

Characterization Using Meta-stable Point of Feedback Loop" ISQED'06

CSM for Sequential Cells

- Output waveform of the sequential cell is important for calculating the next stage timing information
- A complete CSM-based solution for performing the delay and noise analysis on a set of selected paths is needed

We must develop CSM models of sequential cells

Current Source Modeling of Latch

- At each time latch is in one of the following modes:
 - Steady state transparent mode (CLK=1)
 - Transition mode (switching CLK)
 - Steady state hold (opaque) mode (CLK=0)
- CSM for latch which handles all three modes automatically:

Steady-State Feedback Mode (CLK=0)

Modeling the feedback loops:

Steady-State Transparent Mode (CLK=1)

Transition Mode (Switching CLK)

Voltage Calculation

CSM automatically adapts itself to different modes

$$\left\{ I_{D} \Big(V_{D}(t_{k+1}), V_{Q}(t_{k}), V_{CLK}(t_{k+1}) \Big) \cdot \Delta t + I_{Q} \Big(V_{Q}(t_{k}), V_{Q_bar}(t_{k}), V_{CLK}(t_{k+1}) \Big) \cdot \Delta t + C_{M} \Big(V_{Q}, V_{Q_bar} \Big) \cdot \Big(V_{Q_bar}(t_{k}) - V_{Q_bar}(t_{k-1}) \Big) \right\}$$

$$V_{Q} \Big(t_{k+1} \Big) - V_{Q} \Big(t_{k} \Big) = \frac{+ C_{M} \Big(V_{Q}, V_{Q_bar} \Big) \cdot \Big(V_{Q_bar}(t_{k}) - V_{Q_bar}(t_{k-1}) \Big) \Big\} }{C_{Q} \Big(V_{Q}, V_{Q_bar} \Big) + C_{M} \Big(V_{Q}, V_{Q_bar} \Big) + C_{D} \Big(V_{D}, V_{Q}, V_{CLK} \Big) }$$

Voltage Calculation

Computing $V_{Q_{bar}}(t_{k+1})$:

$$V_{Q_{bar}}(t_{k+1}) - V_{Q_{bar}}(t_{k}) = \frac{I_{Q_{bar}}(V_{Q}(t_{k+1}), V_{Q_{bar}}(t_{k})) \cdot \Delta t + C_{M}(V_{Q}, V_{Q_{bar}}) \cdot (V_{Q}(t_{k+1}) - V_{Q_{bar}}(t_{k}))}{C_{Q_{bar}}(V_{Q}, V_{Q_{bar}}) + C_{M}(V_{Q}, V_{Q_{bar}}) + C_{L}}$$

Simulation Results

 (Non-inverting) latch output does not change; noise causes a functional error

Simulation Results

 (Non-inverting) latch output changes as expected; no functional error occurs ////////

SR Latch

S

R

Need to model multiple input switching (MIS)

Simulation Results

• Waveform similarity metric:

$$RMSE = \sqrt{\frac{1}{N} \sum_{k=1}^{N} \left(V_{SPICE}\left(t_{k}\right) - V_{CSM}\left(t_{k}\right) \right)^{2}}$$

	Cell	Average normalized RMSE		Runtime speedup
Library	Library	Q	Q_bar	vs. HSPICE
130nm	Latch 1	13.5e-3	11.1e-3	1220
	Latch 2	14.1e-3	12.2e-3	1220
	Latch 3	26.5e-3	23.3e-3	2130
	FF1	6.5e-3	7.3e-3	1110
90nm	Latch 1	12.5e-3	10.1e-3	1230
	Latch 2	14.5e-3	12.8e-3	1330
	Latch 3	27.4e-3	23.6e-3	2160
	FF1	6.9e-3	7.9e-3	1150
65nm	Latch 1	12.9e-3	10.6-3	1290
	Latch 2	14.7e-3	13.3e-3	1290
	Latch 3	27.5e-3	24.5e-3	2170
	FF1	7.6e-3	8.2e-3	1410

36

////////

Conclusions

- A new current-based cell delay model was developed to accurately capture
 - Various cell parasitic effects
 - Cell nonlinear behavior
- We utilized our CSM-based waveform calculator for the purpose of short circuit current calculation
- CSM for some Sequential cells was introduced
- CSM for multiple input switching considering the stack effect will be developed
- Statistical CSM will be investigated