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Abstract - The objective of this paper is to provide lower and
upper bounds for the switching activity on the state lines in
Finite State Machines (FSMs). Using a Markov chain model
for the behavior of the states of the FSM, we derive
theoretical bounds for the average Hamming distance on the
state lines which are valid irrespective of the state encoding
used in the final implementation. Such lower and upper
bounds, in addition to providing a target for any state
assignment algorithm, can also be used as parameters in a
high-level model of power, and thus provide an early
indication about the performance limits of the target FSM.
Experimental results obtained for the mcnc’91 benchmark
suite show that our bounds are tighter than the bounds
reported previously by other researchers and can be
effectively used in a high-level power estimation framework.
Keywords: Lower/upper bounds, Hamming distance,
Markov chains, switching activity, power estimation.

I. INTRODUCTION

Since power consumption has become a critical issue in the
development of digital systems, tools that can control the
power budget during the various phases of the design
process are in high demand [1]. Given the initial
specification of the behavior of the system, several
synthesis/optimization steps are required to generate the
final implementation. Synthesis systems take the hardware
description language model of the design and typically
perform the following steps: high-level synthesis, state
assignment of the symbolic states of the FSM describing the
control part, logic synthesis and library binding.

This paper targets the very first step in this synthesis flow
where the FSM characterizing the control part of the high-
level representation is typically described in the form of a
State Transition Graph (STG) and each state is represented
in a symbolic form. Such an investigation is motivated by
the fact that, despite the significant efforts invested in the
research of low-power systems, little has been done from
the perspective of theoretical aspects involved in the design
and application of such systems. More precisely, most of the
work done so far has targeted only algorithms for state
assignment [2][3][4], re-encoding [5] or synthesis [6] for
low-power. In a complementary effort, the problem of bus
encoding for low-power has been tackled by several
researchers [7][8]. However, little has been done in the area
of finding good theoretical bounds for the average switching
activity in FSMs or on buses. Preliminary results in this
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direction have been recently reported in [9][10].
The objective of this paper is to find lower and upper

bounds on the switching activity of the state lines, directly
from an abstract STG description, far before the state
assignment is actually made. Such lower and upper bounds,
in addition to providing a target for any state assignment
algorithm, can also be used as parameters in a high-level
model of power, and thus provide an early indication about
the performance limits of the target FSM. To be more
specific, consider the typical representation of a standard
FSM in Fig.1a. In Fig.1b, we represent a portion of the STG
which describes the behavior of the FSM.

Fig.1: The FSM model
Depending on the actual encoding used in the final
implementation of the FSM, the state lines s may switch
more or less frequently. The amount of switching on the
state lines is best characterized by the average Hamming
distance between the codes assigned to consecutive states.
What we aim in this paper is to provide lower and upper
bounds for the average Hamming distance on the state lines
s which are valid regardless of the state encoding used in the
final implementation. These bounds can be later combined
with the average Hamming distance extracted from the
statistics of the vector sequence at the primary inputs x and
primary outputs y, and used to derive performance limits in
terms of total power consumption in the target FSM. The
main advantage of doing so is the independence of the
results from the actual implementation which gives more
flexibility to the designer.

A similar issue was addressed by Tyagi in [9]. In that
paper, the author introduces two lower bounds on the
average Hamming distance per transition which emphasize
the qualitative dependence of the average Hamming
distance on the number of bits used for encoding. An
interesting “by-product” of these lower bounds is a greedy
state assignment algorithm. In [10], lower and upper bounds
for the average switching activity on an information channel
(typically, a bus) are provided. However, their applicability
for FSMs is severely limited by the fact that they are
achievable merely through compression techniques rather
than encoding techniques (which is the case for FSMs).

In this paper we improve over Tyagi’s work by providing
not only tighter lower bounds, but also upper bounds for the
average Hamming distance. The new lower and upper
bounds are easy to understand and are based on either the
informational energy or the topology of the FSM. Together
with a technology-independent measure for the circuit
complexity, they can be used to generate performance limits
in terms of the total power consumption.

In this paper, we target only lower and upper bounds for
the switching activity, although in order to be useful for
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high-level power analysis, they have to be used in
conjunction with an estimator for the area (complexity) of
the target circuit. This is very important from a practical
point of view, since it provides an estimate of the range
where total power values lie, early in the design cycle. As
pointed out in [14], for control circuits, one can use a power
model that depends on the switching activities on the
primary inputs, primary outputs and state lines:

where NI and NO denote the number of external input plus
state lines and external output plus state lines for the FSM,
C0 and C1 are regression coefficients which are empirically
derived from low-level simulation of previously designed
standard cell controllers, αI and αO denote the switching
activities on the external input plus state lines and external
output plus state lines, and finally NM denotes the number of
minterms in an optimized cover of the FSM and is related to
the area of the two-level implementation of the circuit.
Thus, having computed lower and upper bounds on the
switching activity, we can derive lower and upper bounds on
the total power consumption of the sequential circuit.

Other efforts in the direction of estimating the area of a
circuit have been presented in [15][16], but the problem is
far from being solved. However, since we want to keep the
independence from the actual implementation of the circuit,
none of these approaches is directly applicable in our case
(because the state encoding is unknown). Thus, we need an
encoding-independent measure for the complexity of the
circuit. To this end, our proposed measure is based on the
size of the minimal symbolic cover of the FSM [17].

The paper is organized as follows. In Sections II and III,
we present the lower and upper bounds, the complexity of
their calculation and discuss their relationship with other
possible bounds. The applicability of the lower and upper
bounds in a high-level power model is discussed in Section
IV and the experimental results are presented in Section V.
Section VI concludes the paper and summarizes our main
contribution.

II. INFORMATIONAL LOWER AND UPPER BOUNDS ON FSM
SWITCHING

In this section we present the theoretical framework for
determining lower and upper bounds on FSM switching
activity. Formally, the problem to be solved can be
formulated as follows:

“Given the behavior of the input data and the
behavioral description of a controller in the form
of the STG associated with the FSM, find lower
and upper bounds on the average Hamming
distance of the state lines, for a fixed length
encoding of the states.”

Behavior of the input data refers to the actual steady state
and conditional probabilities for the primary inputs,
assuming that the inputs are obtained using a Markov
generator. In the following, we assume that the state lines of
the FSM are modeled as a lag-one Markov chain1

characterized by the stochastic matrix Q = (qij)1 ≤ i,j ≤ n,
where n is the number of reachable states of the FSM and qij
= p (s = j | s’ = i) is the conditional probability of the FSM
being in state j given that it was previously in state i. These

probabilities, along with the steady state probability vector
p = (pi)1 ≤ i ≤ n, can be found using standard techniques for
probabilistic analysis of FSMs as proposed in [11]
(applicable only for uncorrelated input streams) or
[12](applicable for any high-order Markov source at the
primary inputs). Alternatively, having the STG of the FSM,
a fast functional simulation can be performed for a typical
input data stream and the set of reachable states can be
extracted along with the characteristics of the underlying
Markov chain. From here on, we will refer to lag-one
Markov chains as simply Markov chains.
Definition 1. (Average Hamming distance) Given a fixed
length encoding of the states of a Markov chain, the average
Hamming distance of the chain is given by:

where Q = (qij)1 ≤ i,j ≤ n is the matrix characterizing the
chain, p = (pi)1 ≤ i ≤ n is the steady state probability vector,
and dij is the Hamming distance between the codes assigned
to states i and j.
Example 1. Consider the Markov chain in Fig.2, where each
edge from state si to state sj is labeled with the conditional
probability qij. The steady state probability vector is given
by p = (1/3 1/6 1/6 1/6 1/6).

Fig.2: An example of a Markov chain
Assuming a random encoding of the states such that code
(s1) = ‘000’, code (s2) = ‘001’, code (s3) = ‘110’, code (s4) =
‘010’, code (s5) = ‘101’, then the average Hamming

distance of the chain is given by = 1.33 transitions/step.
This means that, for this particular encoding, an average
number of 1.33 transitions is obtained when the graph in
Fig.2 is traversed in a random manner.
Definition 2. (Average Hamming distance from state i) The
average Hamming distance from state i is defined as:

.

Example 2. For the chain in Fig.2 and for the given
encoding, we have: = 0.5, = 2, = 1.5, = 1.5,
= 2.
Note 1. Given a fixed length encoding of the states, the
relationship between the average Hamming distance of a
Markov chain and the average Hamming distance from a

fixed state of the chain is . Thus, if we find

lower and upper bounds for , we will also obtain lower

and upper bounds for .
To begin with, we give the following useful result:

Lemma 12. If {ai}1 ≤ i ≤ n and {bi}1 ≤ i ≤ n are two sets of
positive real numbers, then the following holds:1While in general the Markov chain corresponding to the state lines may be

characterized by a high-order Markov chain, for the purpose of estimating
the average Hamming distance, modeling the states as lag-one Markov
chains is sufficient.

P C0 αI NI N M⋅ ⋅ ⋅ C1 αO NO N M⋅ ⋅ ⋅+∝

2Proofs can be found at http://atrak.usc.edu/~draiciu/conferences.
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with equality if and only if aibj = ajbi for any i ≠ j. ■
Using the above result, we present lower and upper

bounds based on the information-theoretic concept of
informational energy [13].
Definition 3. (Informational energy) Given a discrete
stochastic process characterized by the steady-state
probabilities {pi}1 ≤ i ≤ n, the informational energy is defined

as .

The above concept can be extended to the more general
case of Markov chains as follows:
Definition 4. (Informational energy associated to a state)
Given a Markov chain characterized by the stochastic matrix
Q = (qij)1 ≤ i,j ≤ n, the informational energy for state i is

defined as .

Lemma 2. For a fixed k-bit encoding, the average Hamming
distance from state i satisfies the following double
inequality:

(1)

with equality if and only if qildij = qijdil (for the upper
bound) and qil(k - dij) = qij(k - dil) (for the lower bound) for
any l ≠ j, l ≠ i, and j ≠ i. ■

Lemma 2 basically breaks down the bounds of the
average Hamming distance from a given state into two
terms: one characterized by the informational energy (that
is, by the topology and parameters of the underlying
Markov chain) and the other characterized by the actual
Hamming distances given by the encoding. Since the
informational energy is encoding-independent, we need to
find lower and upper bounds on the encoding-dependent
sums that appear in (1).
Lemma 3. Let ti be the number of outgoing edges
(excluding the self edges) from state i. For a fixed k-bit
encoding, the following inequalities hold:

where mi, ni are chosen such that and

. ■

Lemmas 2 and 3 can be further combined to compute
encoding-independent lower and upper bounds for the
average Hamming distance of a Markov chain:
Theorem 1. For a fixed k-bit encoding, the average
Hamming distance of a Markov chain satisfies

where ,

, and the notation

is the same as in Lemma 3. The complexity of computing

these bounds is O (t) where is the total number of

transitions (excluding self transitions) and n is the number
of states in the underlying Markov chain. ■
Example 3. For the Markov chain in Fig.2, we have

= 0.25, = 0.5, = 0.5, =

0.25, and = 0.25. Thus, assuming that we target a k
= 3 bit encoding, the bounds for the average Hamming
distance from each state are: , ,

, , . Based on these
values, we get the following bounds for the average
Hamming distance of the chain:
Note 2. The bounds are achieved exactly if conditions in
Lemma 2 are met for every state i and the topology of the
Markov chain permits the assignment of the Hamming
distances as in Lemma 3.

The bounds presented in this section are easy to compute
and give an interesting insight into the relationship between
the informational energy associated with a Markov chain
and the possible values for the average Hamming distance
for a fixed length encoding. However, as we shall see later in
this paper, these bounds are not tight enough. We present in
the next section an alternative way to derive tighter bounds
for the average Hamming distance.

III. COMBINATORIAL LOWER AND UPPER BOUNDS ON FSM
SWITCHING

In this section, we prove formally that the bounds we are
about to present are indeed tighter than the information
theoretic bounds in the previous section and, in addition,

better than the simple bound used in [9]. We first

give the following result:
Lemma 4. Assuming that {qij}1 ≤ j ≤ n are sorted in non-
increasing order, for a fixed k-bit encoding, the average
Hamming distance from state i satisfies the following
double inequality:

(2)

where , , and mi, ni

are as in Lemma 3. ■
Note 3. The bounds in (2) are tight, that is, for a fixed state i,
we can always find an encoding which achieves these
bounds. For instance, for state s2 in Fig.2, assuming that
code (s2) = ‘001’ is fixed, then it is sufficient to consider
code (s1) = ‘000’ and code (s3) = ‘011’ to achieve the lower

bound of = 1 transition/step. On the other hand, if we
consider the same code for s2, code (s1) = ‘110’ and code
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(s3) = ‘111’, we achieve the upper bound of
transitions/step.

Based on the above lemma, we give the following result
which holds for any k-bit encoding of the states of a Markov
chain:
Theorem 2. For a fixed k-bit encoding, the average
Hamming distance of a Markov chain satisfies the following
inequalities:

       (3)

where the notation is the same as in Lemma 4. The
complexity of computing these bounds is , where

is the total number of transitions (excluding self

transitions) and n is the number of states in the underlying
Markov chain. ■
Example 4. For the Markov chain in Fig.2, assuming a 3-bit
encoding, the inequalities in Lemma 4 and Theorem 2 may
be written as follows:

, , , ,

 and hence, we get:
Note 4. The bounds in Lemma 4 are always achievable if
each state i is considered in isolation. However, the bounds
in Theorem 2 may not be achievable for the whole graph
due to the constraints which result from the specific
structure of the Markov chain. For example, for the Markov
chain in Fig.2, if code (s3) = ‘011’, to achieve the lower
bound for state s3, we should have code (s4) = ‘111’ and
code (s5) = ‘010’. But this encoding does not achieve the
lower bound for state s4 which requires s5 to be at a
Hamming distance of 1.
Corollary 1. The bounds in Theorem 2 are always tighter
than the bounds in Theorem 1. ■

As we can see, we can trade-off the quality of the bounds
versus the time spent for their computation. The
informational energy-based bounds are easier to compute
(in about O(t) time), but they are not as tight as the bounds
given in Theorem 2 (computed in O(tlogn) time).
Note 5. The lower bound derived in Theorem 2 is always

better than the simple bound used in [9], which is

not achievable unless each transition has a Hamming
distance of 1. Indeed, we have the following result:

Corollary 2. The simple lower bound and the lower

bound in Theorem 2 satisfy:

that is, the lower bound in Theorem 2 is always tighter than

the simple lower bound . ■

Differently stated, although our lower bound may not be
achievable, it is still tighter than the simple bound. As we
shall see in the experimental part, in most of the cases, the
global and local lower bounds given in [9] are worse (i.e.
looser) than the simple bound, and hence, are worse than
our lower bound.

IV. AN APPLICATION OF SWITCHING BOUNDS IN POWER
ESTIMATION OF SEQUENTIAL CIRCUITS

In this section, we will show how our theoretical bounds can
be used in a high-level power estimation framework for
sequential circuits. We assume that the behavior of the target
circuit is specified as a STG and the state encoding (and
therefore the final implementation) has not been determined
yet.

To be useful for high-level power analysis, the lower and
upper bounds of the switching activity have to be used in
conjunction with an estimator for the area (complexity) of
the target circuit. However, since we want to keep the
independence from the actual implementation of the circuit,
the approaches proposed in [15][16] are not directly
applicable in our case because the state encoding is
unknown. Thus, we need an encoding-independent measure
for the complexity of the circuit. For this reason, we use the
following piecewise linear model for the power
consumption of a sequential circuit:

(4)
where SWi, SWs, SWo are the switching activities (or,
equivalently, the average Hamming distances) of the
primary inputs, state lines and primary outputs, respectively.
The term #SPI represents the minimum number of symbolic
prime implicants needed in a two-level implementation of
the sequential circuit. The terms Vdd and f represent the
voltage supply and the clock frequency, respectively.

Since we do not know the final state assignment and
basically need only a rough measure for the complexity of
the target circuit, we use the minimum number of prime
implicants from a symbolic cover of the FSM (#SPI)
[17][18]. To obtain this number, given a FSM, we first
assign one-hot codes to all states. Then symbolic
minimization is applied to the one-hot coded machine using
multi-valued logic minimization. The result is a symbolic
cover of the FSM. Each element of the symbolic cover is a
symbolic prime implicant, that is a 4-tuple (x, S, S’, y) where
S is the set of states which transit to the same next state S’
and assert the same output y when the input combination is
x. The set of symbolic prime implicants has also been used
in [3] for finding an optimal state assignment targeting low-
power design of sequential circuits.

The number of symbolic prime implicants in the minimal
symbolic cover (given by #SPI) is an upper bound on the
size of the minimal boolean cover of the target FSM [17]
and can be used in conjunction with the switching activity
information to derive power values. In general, the
coefficients α, β, γ of the piecewise linear model in (4)
depend on #SPI, SWi, SWs, and SWo. To find these
coefficients, we resort to least mean square regression
techniques. We present in Fig.3 a comparison between the
exact total power consumption and the total power
consumption obtained using the model in (4) for 100
random implementations of each benchmark circuit from
the mcnc’91 suite.

As we can see, there is a very good match between the
exact and estimated values of total power and, on average,
the error is 2.36% (with a maximum of 36.44%). It should
be pointed out that, typically, the coefficient corresponding
to the state lines (β) is one order of magnitude larger than
the other two coefficients. As a consequence, it is expected
to have a very strong dependence between the total power
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Fig.3: Estimated vs. exact power for mcnc’91 benchmarks
values and the switching activity (or average Hamming
distance) on the state lines. From this perspective, it is
clearly important to have tight lower and upper bounds for
the average Hamming distance of the state lines.

V. EXPERIMENTAL RESULTS
In this section we provide our experimental results for a
subset of mcnc’91 benchmark suite. In particular, we assess
the effectiveness of the proposed bounds in FSM switching
activity analysis and show that these bounds can be used in a
high-level power estimation framework. To this end, we
target three sets of experiments:

a) The first set of experiments shows a comparison
between different theoretical bounds for the average
Hamming distance (Table 1). To do this, based on the STG
of each circuit, we extract the values for the conditional and
steady state probabilities of the underlying Markov chain.
Then, we compute our values for the minimum and
maximum switching activity considering a minimal length
encoding (i.e., logn bits where n is the total number of
reachable states). We give in Table 1 the values for the lower
and upper bounds based on informational energy (columns
2, 3) and the tighter bounds computed as in Section III
(columns 4, 5). For comparison, we also provide the simple
lower bound (column 6) and the local and global lower
bounds computed as in [9] (columns 7, 8).

As we can see in Table 1, our best lower bound (column
4) is larger (that is, tighter) than the simple bound (column
6) which assumes that every edge is assigned a Hamming
distance of 1. We also note that in some cases, the lower
bound based on informational energy (column 2) is also
better than the simple lower bound. Moreover, the lower
bounds computed as in [9] are in all cases lower (that is,
looser) than our proposed lower bounds and also the simple
lower bound. The reason is that the entropy factor in local
and global approaches from [9] captures the dynamic
information in an STG, whereas K1, roughly speaking,
captures a worst-case “static” measure. When the two differ
a lot (structure of the static graph and the dynamic use of it),
negative values are possible. Generally, this is when the
simple lower bound is likely to do better [19].

b) Second, to see how these bounds change when the
number of bits used for encoding varies, we chose a typical
example (circuit tbk) and compute the lower and upper
bounds for different encoding lengths (Fig.4).

Fig.4: A typical case: circuit tbk
For this set of experiments, the bounds were computed as

1K has been defined in [9] as .
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Table 1: Different theoretical bounds for the average Hamming distance

Circuit LB (inf) UB (inf) LB (comb) UB (comb) LB (simple)
LB (local)
as in [9]

LB (global)
as in [9]

bbara 0.1854 0.8003 0.2228 0.7851 0.2228 -0.3601 -0.9743
bbsse 0.7336 1.2667 0.7402 1.2441 0.7008 0.4584 0.0921
bbtas 0.3986 1.2983 0.4418 1.2799 0.4418 0.0030 -0.1276

beecount 0.7143 1.3089 0.7143 1.2857 0.7143 0.2905 0.0421
cse 0.2768 0.7719 0.2834 0.6613 0.2519 -0.5166 -1.4496

dk14 1.0000 2.7425 1.0000 2.7142 1.0000 0.1106 0.0669
dk16 0.9524 4.1454 0.9624 4.1238 0.9624 0.4127 0.2323
dk17 0.7777 2.2234 0.8428 2.1853 0.8408 0.2595 -0.3570
dk27 1.0000 2.5926 1.0000 2.5497 1.0000 0.1749 0.0413

dk512 1.0000 3.5356 1.0000 3.5027 1.0000 0.1666 -0.0552
ex1 0.5901 2.8842 0.7651 2.7727 0.7651 0.1432 -0.3522
ex2 0.7161 4.7164 1.0000 4.5528 1.0000 0.1586 -1.3630
ex3 0.8507 3.5243 1.0000 3.4604 1.0000 0.2931 -0.2876
ex4 0.8394 3.6825 0.9048 3.5872 0.9048 0.0133 -0.1497
ex5 0.7017 1.8275 0.7547 1.7981 0.7119 0.3516 -0.3465
ex7 0.8173 2.4667 0.9467 2.4210 0.9467 0.2887 -0.1884
keyb 0.3723 1.2939 0.4488 1.2441 0.4488 -0.1087 -0.9561

kirkman 0.7355 2.8026 0.7533 2.7922 0.7533 0.1550 -1.2543
mark1 0.7706 2.1092 0.7742 2.0968 0.7742 0.1830 -0.2352

mc 0.5714 1.1429 0.5714 1.1429 0.5714 0.0350 -0.1496
planet 0.7971 6.0511 0.9999 5.8889 0.9999 -0.0282 -0.5198

s1 0.1716 4.2261 0.7961 3.7175 0.7961 0.0420 -0.3045
sand 0.4375 2.2845 0.4947 2.2433 0.4718 0.1297 -0.4265
sse 0.7336 1.2667 0.7402 1.2441 0.7008 0.4584 0.0921
tav 1.0000 2.0000 1.0000 2.0000 1.0000 0.0000 0.0000
tbk 0.5056 1.6028 0.5238 1.5873 0.4603 -0.1148 -0.8332

train11 0.5860 2.1115 0.6029 2.0931 0.6029 0.3096 -0.4764
train4 0.5246 0.9494 0.5296 0.9357 0.5296 0.3779 0.1558
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in Section III. As we can see in the first graph, the lower
bound reaches the simple lower bound value after the
encoding length reaches 6 bits, while the upper bound
increases linearly with the encoding length (second graph).
Although these bounds may not be achievable, we can draw
the conclusion that increasing the number of bits used for
encoding beyond some limit will bring only marginal
reductions in the lower bound for switching activity on the
state lines (and thus in the minimum achievable total power
consumption).

c) The third set of experiments illustrates how the
theoretical results from Section III can be applied in a high-
level power estimation environment (Table 2). To derive the
power estimation model, we compute the number of
symbolic prime implicants of a minimal cover (#SPI) using
multiple-valued logic minimization. In addition, using the
STG information and the structure of the underlying
Markov chain, we compute, as in Section III, the lower and
upper bounds of the switching activity on the state lines.
Then, based on the model proposed in Section IV and using
the theoretical bounds from Section III (columns 2, 3), we
derive lower and upper bounds for the total power
consumption of each circuit. We also provide the minimum
and maximum power values obtained over 100
implementations with random state encodings which use the
same number of bits (columns 4, 5). The power values were
obtained using an in-house gate-level power simulator
developed under SIS.

As we can see, in most cases, the maximum and
minimum power values over all random implementations
are within the bounds we proposed. There are, however, 4
instances in which the bounds are violated and these
correspond to the cases when the power model given in
equation (4) of Section IV gives the largest errors in the
estimated power values. For these cases, the bounds for total
power values are violated by 12.38% on average.

VI. CONCLUSION
In this paper, we have presented lower and upper bounds for
the average switching activity on the state lines in FSMs. As
the main theoretical contribution, we improve over the
previous work by providing a tighter lower bound and a new
upper bound for the average Hamming distance between the
states of the target FSM. Our theoretical bounds are
encoding-independent, and therefore can be used in a high-
level power estimation framework to provide an early
indication about the performance limits of the target FSM.
Preliminary results are encouraging and show the
effectiveness of using these bounds for estimating the range
for total power values.
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Table 2: Bounds for total power values (μW @ 20MHz; Vdd = 5V)

Circuit LB (comb) UB (comb) LB (rand) UB (rand)

bbara 260.61 485.03 305.68 425.26
bbsse 795.19 1477.70 824.85 1372.41
bbtas 230.50 555.78 231.39 470.48

beecount 488.91 575.16 415.73 702.62
cse 579.38 821.84 604.71 782.47

dk14 717.21 965.27 721.53 943.10
dk16 557.88 1924.70 1133.90 1348.66
dk17 447.99 991.21 558.18 879.20
dk27 436.46 1024.40 561.07 895.71

dk512 500.83 1483.90 737.14 1156.16
ex1 1208.00 2722.60 1572.66 2319.51
ex2 534.61 2037.00 823.13 1621.94
ex3 508.51 1499.30 789.77 1205.71
ex4 713.14 1801.80 852.72 1466.09
ex5 375.67 786.18 457.85 679.09
ex7 488.24 1476.00 695.79 1262.40
keyb 597.78 1351.50 595.75 1309.30

kirkman 719.02 1667.80 786.89 1453.06
mark1 748.94 1825.70 812.32 1662.99

mc 284.09 469.45 281.79 401.79
planet 1893.20 4577.80 2723.32 3318.19

s1 1282.40 1853.80 1390.52 1713.35
sand 1290.90 2188.70 1555.95 1776.51
sse 795.18 1477.70 824.85 1372.41
tav 525.23 945.23 525.23 735.23
tbk 951.47 962.90 796.02 1089.03

train11 315.78 894.36 488.74 667.98
train4 237.97 362.74 247.50 347.81


