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Abstract— The emergence of cloud computing has established 

a trend towards building massive, energy-hungry, and 
geographically distributed data centers. Due to their enormous 
energy consumption, data centers are expected to have a major 
impact on the electric power grid by significantly increasing the 
load at locations where they are built. Dynamic energy pricing 
policies in the recently proposed smart power grid technology 
can incentivize the cloud controller to shift the computation load 
towards data centers in regions with cheaper electricity or with 
excessive electricity generated by renewable energy sources, e.g., 
photovoltaic (PV) and wind power. On the other hand, 
distributed data centers in the cloud also provide opportunities to 
help the power grid with distributed renewable energy sources to 
improve robustness and load balancing. To shed some light into 
these opportunities, this paper considers an interaction system of 
the smart power grid with distributed PV power generation and 
the cloud computing system, jointly accounting for the service 
request dispatch and routing problem in the cloud with the 
power flow analysis in power grid. The Stackelberg (sequential) 
game formulation is provided for the interaction system, under 
two different dynamic pricing scenarios: real-time power-
dependent pricing and time-ahead pricing. The two players in the 
Stackelberg games are the power grid controller that sets the 
pricing signal and the cloud controller that performs resource 
allocation among data centers. The objective of the power grid 
controller is to maximize its own profit and perform load 
balancing among power buses, i.e., minimizing the power flow 
from one power bus to the others, whereas the objective of the 
cloud computing controller is to maximize its own profit with 
respect to the location-dependent pricing signal. Based on the 
backward induction method, this paper derives the near-optimal 
or sub-optimal strategies of the two players in Stackelberg game 
using convex optimization and simulated annealing techniques. 

I.  INTRODUCTION 
loud computing has been envisioned as the next-
generation computing paradigm for its advantages in on-

demand service, location independent resource pooling, 
ubiquitous network access, and transference of risk [1][2]. 
Cloud computing transforms the computation and storage 
resources from the network edges to a "Cloud" from which 
businesses and users are able to access applications from 
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anywhere in the world on demand [3][4][5]. In cloud 
computing, the capabilities of business applications are 
exposed as sophisticated services that can be accessed over a 
network. Cloud service providers are incentivized by the 
profits of charging clients for accessing these services. Clients 
are attracted by the opportunity for reducing or eliminating 
costs associated with "in-house" provision of these services.  

The underlying infrastructure of cloud computing consists 
of large data centers and clusters of servers that are monitored 
and maintained by the cloud service providers [6]. Service 
providers often end up over-provisioning their resources in 
these servers in order to meet the clients' response time 
requirements or service level agreements (SLAs) [7]. Such 
over-provisioning may increase the cost incurred on the 
servers in terms of both the electrical energy cost and the 
carbon footprint. Hence, optimal provisioning or allocation of 
the resources in the cloud computing system, or in the broader 
area of distributed computing systems, is imperative in order 
to reduce the energy cost incurred on the servers as well as the 
environmental impact while satisfying the clients' SLAs. This 
topic has been extensively investigated in references [8]-[17]. 

The major cloud providers such as Microsoft, Google, and 
Amazon have built and are working on building the world's 
largest data centers with enormous energy consumption. A 
typical data center is comprised of hundreds of thousands of 
computer servers, cooling equipments, and substation 
transformers. For example, data center of Microsoft in Quincy, 
Washington consumes 48 megawatts that is enough to power 
40,000 homes [6][28]. It is estimated that the total electricity 
cost of servers and data centers in the United States is $7.4 
Billion annually [18], and is dominating all other cost aspects 
in cloud computing. Data centers are expected to have a major 
impact on the electric grid by significantly increasing the load 
consumption at locations where they are built.  

The current smart power grid technology is undergoing a 
transformation from a centralized, producer-controlled 
network to one that is less centralized and more consumer-
interactive, thereby minimizing the overall cost of electrical 
power delivered to the end users [19], [20]. Utility companies 
can employ time-dependent or location-dependent dynamic 
pricing strategies incentivizing the consumers to perform 
demand side management (DSM) [21], [22] by shifting their 
loads from the peak time periods to off-peak periods or from 
one physical location to another location. When the power 
grid is integrated with distributed renewable power 
generations such as photovoltaic (PV) or wind power, the 
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dynamic pricing policy is extremely useful for balancing the 
power supply and demand at different locations so as to 
perform proper frequency regulation [23]-[25]. In this way, 
such distributed renewable power generation facilities can be 
effectively integrated into the smart power grid despite their 
intermittent nature.  

The cost of electricity is dominating all other types of costs 
in the cloud computing system. The central controller of the 
cloud should develop resource management algorithms among 
data centers that take advantage of price diversity in the 
deregulated electricity markets to develop algorithms that 
distribute the workload among data centers in multiple 
locations to minimize the total cost of electricity of the data 
centers [26], [27]. The key idea is to constantly monitor the 
electricity prices at different regions and shift/route the 
computation workloads towards data centers that are located 
in regions with cheaper electricity or with excessive generated 
electrical energy from the renewable energy sources. In this 
way, the cloud controller can control the impact of data 
centers' energy consumption on the power grid at different 
locations. With appropriately designed dynamic pricing 
policies, it is even possible that cloud computing system could 
actually help the power system design with distributed 
renewable power generations in terms of load balancing and 
robustness thanks to the flexibility in service request 
dispatching to various data centers [1][28]. 

In this work, we jointly consider the service request 
dispatch and routing problem in the cloud with the power flow 
analysis [33] in smart power grid. We consider a power grid 
comprised of multiple power buses with distributed PV power 
generation facilities connected to certain power buses. The 
buses are interconnected through branches forming the grid 
topology. Each data center, which contains potentially 
heterogeneous servers in terms of request processing 
capability and power consumption, is connected to one bus in 
the power grid to obtain the electricity required for its 
operation. Service requests from distributed clients (of the 
cloud computing system) are free to be dispatched to any 
server in the cloud. The total profit in the cloud is the total 
revenue gained from serving the service requests, which 
depends on the average request response time as defined in the 
utility function of each specific client, subtracted by the total 
energy cost of the active datacenters and servers. 

We consider two different location-dependent dynamic 
pricing scenarios: real-time power-dependent pricing [31] and 
time-ahead pricing [29]. In the first case, the pricing signal 
announced by the power grid controller is dependent on the 
power consumption values of load devices and power 
generation values of distributed PV systems connected to 
different power buses. In the second case, the power grid 
controller announces the pricing signal first and the cloud 
computing system and other users perform demand side 
management in response. We consider the interaction system 
of smart power grid with distributed PV power generation and 
the cloud computing system. We provide the Stackelberg 
(sequential) game formulations with two players, i.e., the 
power grid controller and the cloud controller, under these two 
scenarios. In the first scenario, the cloud controller is the 
leading player and the power grid controller is the following 

player. In the second scenario they are the opposite. The 
objective of the power grid controller is to maximize its own 
profit and perform load balancing, i.e., minimizing the amount 
of power flowing from one power bus to another based on the 
power flow analysis results. The objective of the cloud 
controller is to maximize its own profit with respect to the 
location-dependent pricing signal. We derive the near-optimal 
or sub-optimal strategies for both players based on the 
backward induction method [38], using convex optimization 
[39] and the simulated annealing approach [41].  

Experimental results on IEEE 24-bus Reliability Test 
System [32] demonstrate the effectiveness of the proposed 
game theoretic optimization framework on profit 
maximization and load balancing. 

Compared with the conference version [1], this manuscript 
has the following extensions: (i) Most importantly, we 
consider realistic power grid structure (for example, the IEEE 
24-bus structure) in this manuscript, and analyze the 
robustness and stability of the power grid based on the DC 
power flow analysis. In this way we can achieve better 
analysis of power grid robustness and risk of overflow 
compared with the conference version due to accounting for 
the actual branching structures of the power grid. (ii) We 
consider renewable power generations in this manuscript. In 
the power-dependent pricing scenario in this manuscript, we 
set the power-dependent pricing signal at each power bus to be 
dependent on both load power consumption and renewable 
power generation, in order to incentivize the cloud computing 
controller to schedule workloads to power buses with more 
abundant renewable power generation due to reduced overall 
energy cost. In the time-ahead pricing scenario in this 
manuscript, the power grid controller will optimize the 
price(s) at each power bus in order to fully utilize the 
renewable power generations. (iii) We have added Section II 
on related works and more comprehensive experimental 
results based on two different cloud computing system 
specifications compared with the conference version. 

II.  RELATED WORK 
There is a plenty of research work on the energy cost 

minimization of geographically distributed data centers 
connected to the smart power grid with location-dependent 
dynamic energy pricing. Most of them [26], [27] optimize 
workload distribution by shifting/routing computation 
workloads towards data center located in regions with cheaper 
electricity or with excessive generated electrical energy from 
the renewable energy sources. Moreover, reference work [28] 
derives the optimal control of the cloud computing system in 
order to enhance the power grid stability and robustness, 
which is different from our paper since we assume two 
players/agents, the power grid controller and cloud controller, 
in the system, and study the interaction between them. 

Some research works have studied the interaction of the 
smart power grid with load devices using a game theoretic 
framework. For example, references [24], [34] propose a game 
theoretic framework of the smart power grid with distributed 
plug-in electric vehicles (PEVs), in which the power-
dependent pricing scenario is applied and PEVs achieve the 
Nash equilibrium in battery charging/discharging in one time 
slot. Moreover, reference [35] proposes a Stackelberg game-
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based framework of the smart power grid applying time-ahead 
pricing with distributed PEVs in one time slot. The power grid 
controller is the leading player and distributed PEVs constitute 
the second player in this formulation. Our paper is different 
from these works since (i) we consider the interaction between 
cloud computing and smart power grid, along with other load 
devices and renewable power generation, (ii) we consider the 
case of location-dependent dynamic energy pricing at multiple 
power buses and adopt power flow analysis to assess grid 
stability and robustness, and (iii) we consider both power-
dependent pricing and time-ahead pricing. 

III.  SYSTEM MODEL 
In this section, we introduce the notation and system 

models for both power and data networks. We focus on a 
specific time slot during system operation in rest of the paper. 

A.  The Smart Power Grid 
Consider a smart power grid and let 𝒩 with size 𝑁 denote 

the set of all power buses, indexed by integer i. The power 
buses are interconnected through branches forming the grid 
topology. Each bus 𝑖 ∈ 𝒩  is connected to non-renewable 
and/or renewable power generators and various load devices. 
In our system model, some loads of the power grid may 
include large data centers which support cloud computing. 
There are 𝑀  distributed data centers in this infrastructure, 
indexed by j. Each data center is connected to one power bus 
in the power grid to obtain the electricity required for its 
operation. We use 𝑏𝑢𝑠(𝑗) to denote the index of the power bus 
that the jth data center is connected to. 

Let 𝑃𝑏𝑢𝑠,𝑖 denote the amount of active power injection, i.e., 
total power generation minus total load, at bus i. Let 𝑃𝑏𝑢𝑠,𝑖

𝐺𝑒𝑛  and 
𝑃𝑏𝑢𝑠,𝑖
𝐿𝑜𝑎𝑑  denote the total power generation and load power 

consumption at bus i, respectively. We have: 

𝑃𝑏𝑢𝑠,𝑖 = 𝑃𝑏𝑢𝑠,𝑖
𝐺𝑒𝑛 − 𝑃𝑏𝑢𝑠,𝑖

𝐿𝑜𝑎𝑑 (1) 

For the overall power grid, the total power generation and load 
consumption balance with each other, i.e.,  

�𝑃𝑏𝑢𝑠,𝑖
𝐺𝑒𝑛

𝑁

𝑖=1

= �𝑃𝑏𝑢𝑠,𝑖
𝐿𝑜𝑎𝑑

𝑁

𝑖=1

 (2) 

Next we will elaborate the components of 𝑃𝑏𝑢𝑠,𝑖
𝐺𝑒𝑛  and 𝑃𝑏𝑢𝑠,𝑖

𝐿𝑜𝑎𝑑 . 
Let 𝑃𝑏𝑢𝑠,𝑖

𝐺𝑒𝑛,𝑁𝑅  and 𝑃𝑏𝑢𝑠,𝑖
𝐺𝑒𝑛,𝑅  denote the non-renewable and 

renewable (PV) power generations, respectively, at power bus i. 
We have: 

𝑃𝑏𝑢𝑠,𝑖
𝐺𝑒𝑛 = 𝑃𝑏𝑢𝑠,𝑖

𝐺𝑒𝑛,𝑁𝑅 + 𝑃𝑏𝑢𝑠,𝑖
𝐺𝑒𝑛,𝑅 (3) 

On the other hand, the total load consumption at bus i is 
calculated via: 

𝑃𝑏𝑢𝑠,𝑖
𝐿𝑜𝑎𝑑 = 𝑃𝑏𝑢𝑠,𝑖

𝐷𝐶 + 𝑃𝑏𝑢𝑠,𝑖
𝐵𝑎𝑐𝑘 (4) 

where 𝑃𝑏𝑢𝑠,𝑖
𝐷𝐶  denotes the total power consumption of the data 

centers (if any) connected to bus i; and the term 𝑃𝑏𝑢𝑠,𝑖
𝐵𝑎𝑐𝑘  denotes 

the power consumption of any load other than data centers at 
bus i. Let 𝑃𝐷𝐶,𝑗 denote the power consumption of the jth data 

center. Then 𝑃𝑏𝑢𝑠,𝑖
𝐷𝐶  is calculated by 

𝑃𝑏𝑢𝑠,𝑖
𝐷𝐶 = � 𝑃𝐷𝐶,𝑗

𝑏𝑢𝑠(𝑗)=𝑖

. (5) 

If there is no datacenter connected to bus i, we have 𝑃𝑏𝑢𝑠,𝑖
𝐷𝐶 = 0. 

Power Flow Analysis: 
From the perspective of power flow analysis [33], we can 

derive the DC-equivalent power flow equations: 

𝑃𝑏𝑢𝑠,𝑖 = �𝐵𝑖𝑖′(𝜃𝑖 − 𝜃𝑖′)
𝑖′≠𝑖

,   ∀𝑖 ∈ 𝒩 (6) 

Here, 𝐵𝑖𝑖′  denotes the imaginary term in the complex value at 
row i and column 𝑖′ of the Y-bus (admittance) matrix of the 
grid, and 𝜃𝑖  denotes the angle of voltage phaser at bus i. In 
power flow equations, the only variables are angles 𝜃𝑖 for all 
buses 𝑖 ∈ 𝒩.  In practice, we select one bus as the slack bus 
with zero phaser angle. Therefore, the phaser angles at all the 
other buses are selected in terms of their differences with 
respect to the reference phaser angle in the slack bus [28][33]. 

Given the phaser angles 𝜃1, ..., 𝜃𝑁 obtained by solving the 
system of linear equations in Eqn. (6), we can calculate the 
active power flow over each branch (𝑖, 𝑖′) as: 

𝑃𝑖𝑖′ = 𝐵𝑖𝑖′(𝜃𝑖 − 𝜃𝑖′) (7) 

The amount of 𝑃𝑖𝑖′  values directly affects the problem of 
circuit overflow in a distributed power grid. That is, overflow 
occurs if active power at branch (𝑖, 𝑖′) reaches its maximum 
permitted level 𝑃𝑚𝑎𝑥. Thus, it is required to always limit 𝑃𝑖𝑖′  
below the level 𝑃𝑚𝑎𝑥. In summary, whether or not the circuit 
overflow problem occurs in a power grid depends on the grid 
topology, the Y-bus matrix, and the amount of active power 
injection at all power buses in the system. 

Power-Dependent Pricing and Time-Ahead Pricing: 
We consider location-dependent dynamic pricing in this 

paper, i.e., the power grid controller announces different 
prices for different power buses. We consider two different 
pricing scenarios: power-dependent pricing and time-ahead 
pricing. In the first scenario, i.e., the power-dependent pricing 
scenario, the power grid controller announces the price signal 
vector, denoted by 𝒑𝒓𝒊𝒄𝒆�𝑷𝑏𝑢𝑠𝐿𝑜𝑎𝑑� , based on the power 
consumption vector 𝑷𝑏𝑢𝑠𝐿𝑜𝑎𝑑 = {𝑃𝑏𝑢𝑠,1

𝐿𝑜𝑎𝑑, 𝑃𝑏𝑢𝑠,2
𝐿𝑜𝑎𝑑, … , 𝑃𝑏𝑢𝑠,𝑁

𝐿𝑜𝑎𝑑 } . In 
order to perform load balancing by incentivizing the cloud 
controller to shift the loads among data centers, we set the unit 
energy price at the ith power bus as a linear function of 
𝑃𝑏𝑢𝑠,𝑖
𝐿𝑜𝑎𝑑 − 𝑃𝑏𝑢𝑠,𝑖

𝐺𝑒𝑛 , i.e.,  

𝑝𝑟𝑖𝑐𝑒𝑖�𝑃𝑏𝑢𝑠,𝑖
𝐿𝑜𝑎𝑑� = 𝐶 ∙ �𝑃𝑏𝑢𝑠,𝑖

𝐿𝑜𝑎𝑑 − 𝑃𝑏𝑢𝑠,𝑖
𝐺𝑒𝑛 � + 𝑝𝑟𝑖𝑐𝑒𝐁 

= 𝐶 ∙ �𝑃𝑏𝑢𝑠,𝑖
𝐷𝐶 + 𝑃𝑏𝑢𝑠,𝑖

𝐵𝑎𝑐𝑘 − 𝑃𝑏𝑢𝑠,𝑖
𝐺𝑒𝑛 � + 𝑝𝑟𝑖𝑐𝑒𝐁 

(8) 

where 𝑝𝑟𝑖𝑐𝑒𝐁  and 𝐶  are constant values. This power-
dependent pricing scheme is similar to [31]. In this pricing 
scenario, (i) 𝑃𝑏𝑢𝑠,𝑖

𝐺𝑒𝑛  is a fixed constant value, and (ii) the other 
load devices than the data centers cannot perform demand side 
management (i.e., the 𝑃𝑏𝑢𝑠,𝑖

𝐵𝑎𝑐𝑘  values are fixed) due to the lack 
of a priori knowledge of the price signal. Fig. 1 (a) illustrates 
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the power-dependent pricing scenario, in which the price at 
each power bus depends on the power consumption of data 
centers (resource allocation results as we shall see later) and 
other load devices.  

Cloud Controller performs 
resource allocation (i.e., 

determines         and        )jkp φ jk

           at each bus is 
determined
iprice

(a)

Grid Controller determines
              ,               , etc.

Cloud Controller and other 
devices perform demand side 

management

(b)

iprice ′iprice

 
Fig. 1. Illustration of (a) the power-dependent pricing and (b) time-ahead 

pricing scenarios. 

In the second pricing scenario, i.e., the time-ahead pricing 
scenario, the power grid controller announces the price signal 
first and the cloud computing system and other users (load 
devices) perform demand side management in response. In 
order for better performing load balancing, the power grid 
controller employs a dual price scheme similar to [29], i.e., it 
utilizes two potentially different unit energy prices 𝑝𝑟𝑖𝑐𝑒𝑖  and 
𝑝𝑟𝑖𝑐𝑒𝑖′ for the data centers and other load devices connected to 
the ith (1 ≤ 𝑖 ≤ 𝑁) power bus, respectively1. Intuitively, the 
peak power consumption of data center will cancel the trough 
power consumption of other load devices at each power bus 
under this dual-pricing policy. We also add regulations so that 
the average prices for data centers and for other load devices 
should not exceed 𝑝𝑟𝑖𝑐𝑒𝑎𝑣𝑔,𝑚𝑎𝑥  and 𝑝𝑟𝑖𝑐𝑒𝑎𝑣𝑔,𝑚𝑎𝑥

′ , 
respectively. 

The cloud controller and other load devices will perform 
demand side management accordingly. The cloud controller 
determines the data center power consumption at each ith 
(1 ≤ 𝑖 ≤ 𝑁) power bus, denoted by 𝑃𝑏𝑢𝑠,𝑖

𝐷𝐶 (𝒑𝒓𝒊𝒄𝒆), based on a 
joint consideration of the price vector 
𝒑𝒓𝒊𝒄𝒆 = {𝑝𝑟𝑖𝑐𝑒1, 𝑝𝑟𝑖𝑐𝑒2, … , 𝑝𝑟𝑖𝑐𝑒𝑁} for all the power buses, 
as shall be discussed later. On the other hand, the other load 
devices will employ distributed storage systems [23] or other 
load shaping techniques [30] to reduce the power consumption 
when the unit energy price is high. We assume a linearly 
decreasing relationship between 𝑃𝑏𝑢𝑠,𝑖

𝐵𝑎𝑐𝑘  and 𝑝𝑟𝑖𝑐𝑒𝑖′, i.e.,  

𝑃𝑏𝑢𝑠,𝑖
𝐵𝑎𝑐𝑘(𝑝𝑟𝑖𝑐𝑒𝑖′) = 𝑃𝑏𝑢𝑠,𝑖

𝐵𝑎𝑐𝑘(0) − 𝛼𝑖 ∙ 𝑝𝑟𝑖𝑐𝑒𝑖′. (9) 

Fig. 1 (b) illustrates this time-ahead pricing scenario. 

B.  Resource Allocation in the Cloud Computing System 
Fig. 2 shows the structure of the target resource allocation 

system in the cloud with a service request pool, 𝑀 distributed 
data centers as well as a central resource management node. 
Each jth data center is comprised of 𝐾𝑗 potentially 
heterogeneous servers. We use 𝑘 as the index of servers in a 
data center. 
                                                           

1 Of course the proposed optimization framework is general enough to 
support the uniform-pricing scheme, i.e., applying price 𝑝𝑟𝑖𝑐𝑒𝑖 for both data 
centers and other load devices. 

1jp

Data Center 1

Data Center M

Data Center j

Server 1

Server k

Server Kj

jkp

jjKp

Service 
Request 

Pool

 
Fig. 2. Architecture of the resource allocation problem in the cloud 

computing system. 

The service request pool contains service requests that are 
generated from all the clients. A service request can be 
dispatched to any server in the cloud computing system. The 
request dispatcher assigns a request to the kth server in the jth 
data center with probability 𝑝𝑗𝑘. These probability values are 
the optimization variables in the resource allocation 
optimization framework. 

In order to derive the analytical form of the average 
response time, service requests are assumed to follow a 
Poisson process with an average generating rate of 𝜆, which is 
predicted based on the behavior of the clients. According to 
the properties of the Poisson distribution, service requests that 
are dispatched to the kth server in the jth data center follow a 
Poisson process with an average rate of 𝑝𝑗𝑘 ∙ 𝜆, which is the 
average service request arrival rate of that server. 

Each kth server in the jth data center allocates a portion of its 
total resources, denoted by 𝜙𝑗𝑘  (0 ≤ 𝜙𝑗𝑘 ≤ 1), for servicing 
the requests. These 𝜙𝑗𝑘 values are also optimization variables 
in the resource allocation framework. By using the well-
known formula in M/M/1 queues [37], the average response 
time of service requests that are dispatched to that server is 
calculated as: 

𝑅𝑗𝑘�𝑝𝑗𝑘, 𝜙𝑗𝑘� = �
1

𝜙𝑗𝑘 ∙ 𝜇𝑗𝑘 − 𝑝𝑗𝑘 ∙ 𝜆
     if 𝑝𝑗𝑘 > 0,

0                                    if 𝑝𝑗𝑘 = 0,
 (10) 

where 𝜇𝑗𝑘  denotes the average service request processing 
speed when all the resources in the server are allocated for 
request processing. 

Power consumption in each server is comprised of a 
dynamic power consumption part when the server is active 
(i.e., when it is processing service requests) and a static power 
consumption part. The average dynamic power consumption 
in each kth server in the jth data center is proportional to the 
portion of time that the server is active, given by 
�𝑝𝑗𝑘 ∙ 𝜆� �𝜙𝑗𝑘 ∙ 𝜇𝑗𝑘�� , as well as the portion 𝜙𝑗𝑘  of the 
resources that have been allocated for request processing: 

𝑃𝑆𝑒𝑟𝑣,𝑗𝑘
𝑑𝑦𝑛 �𝑝𝑗𝑘� =

𝑝𝑗𝑘 ∙ 𝜆
𝜙𝑗𝑘 ∙ 𝜇𝑗𝑘

∙ 𝜙𝑗𝑘 ∙ 𝑃𝑆𝑒𝑟𝑣,𝑗𝑘
𝑑𝑦𝑛,𝑚𝑎𝑥          

=
𝑝𝑗𝑘 ∙ 𝜆
𝜇𝑗𝑘

∙ 𝑃𝑆𝑒𝑟𝑣,𝑗𝑘
𝑑𝑦𝑛,𝑚𝑎𝑥 , 

(11) 
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where 𝑃𝑆𝑒𝑟𝑣,𝑗𝑘
𝑑𝑦𝑛,𝑚𝑎𝑥 is the dynamic power consumption when the 

server is active and all resources have been allocated for 
service request processing. On the other hand, the (average) 
static power consumption in each kth server in the jth data 
center is the sum of a constant term 𝜀𝑗𝑘  and another term 
proportional to the portion 𝜙𝑗𝑘  of allocated resources for 
request processing: 

𝑃𝑆𝑒𝑟𝑣,𝑗𝑘
𝑠𝑡𝑎 �𝜙𝑗𝑘� = 𝜀𝑗𝑘 + 𝜙𝑗𝑘 ∙ �𝑃𝑆𝑒𝑟𝑣,𝑗𝑘

𝑠𝑡𝑎,𝑚𝑎𝑥 − 𝜀𝑗𝑘�. (12) 

The power consumption of each jth data center is the sum of 
the total power consumption of all its servers, i.e.,  

𝑃𝐷𝐶,𝑗 = � �𝑃𝑆𝑒𝑟𝑣,𝑗𝑘
𝑑𝑦𝑛 �𝑝𝑗𝑘� + 𝑃𝑆𝑒𝑟𝑣,𝑗𝑘

𝑠𝑡𝑎 �𝜙𝑗𝑘��
1≤𝑘≤𝐾𝑗

. (13) 

Let 𝑈(𝑅) = 𝛽 − 𝛾 ∙ 𝑅  denote the utility function of the 
cloud computing system with the average service request 
response time equal to 𝑅 . Then the total profit (in fact the 
profit rate) of the cloud computing system is calculated by2: 

𝜆 ∙ �𝛽 − 𝛾 ∙��
𝑝𝑗𝑘

𝜙𝑗𝑘 ∙ 𝜇𝑗𝑘 − 𝑝𝑗𝑘 ∙ 𝜆

𝐾𝑗

𝑘=1

𝑀

𝑗=1

� − 

�𝑝𝑟𝑖𝑐𝑒𝑖

𝑁

𝑖=1

� ��𝑃𝑆𝑒𝑟𝑣,𝑗𝑘
𝑑𝑦𝑛 �𝑝𝑗𝑘� + 𝑃𝑆𝑒𝑟𝑣,𝑗𝑘

𝑠𝑡𝑎 �𝜙𝑗𝑘��

𝐾𝑗

𝑘=1𝑏𝑢𝑠(𝑗)=𝑖

. 

(14) 

which depends on optimization variables 𝑝𝑗𝑘 's and 𝜙𝑗𝑘 's. 

IV.  OPTIMIZATION UNDER POWER-DEPENDENT PRICING 
We consider the interaction system of the power grid and 

cloud computing in the power-dependent pricing scenario, and 
provide the sequential game formulation comprised of two 
players. The cloud controller is the first player and the power 
grid controller is the second player as shown in Fig. 1 (a). 

We know that the power grid controller (the second player) 
always sets the price 𝑝𝑟𝑖𝑐𝑒𝑖  as a linear function of 𝑃𝑏𝑢𝑠,𝑖

𝐿𝑜𝑎𝑑 −
𝑃𝑏𝑢𝑠,𝑖
𝐺𝑒𝑛  under this pricing scenario as shown in Eqn. (8), which 

fact is known to the cloud controller. The objective of the cloud 
controller is to maximize its own profit with an anticipation 
of price signal vector 𝒑𝒓𝒊𝒄𝒆 = {𝑝𝑟𝑖𝑐𝑒1, 𝑝𝑟𝑖𝑐𝑒2, … , 𝑝𝑟𝑖𝑐𝑒𝑁} 
from the smart grid. We name this profit maximization 
problem the Resource Allocation with Anticipation of the Price 
signal (RAAP) problem. The control variables of the cloud 
controller are 𝑝𝑗𝑘 's and 𝜙𝑗𝑘 's. The other parameters are either 
constants or functions of these control variables. 

Based on the backward induction principle in Stackelberg 
games [38], the cloud computing controller maximizes its 
(anticipated) total profit given by Eqn. (14), where the 
anticipated price 𝑝𝑟𝑖𝑐𝑒𝑖  is a linear function of 𝑃𝑏𝑢𝑠,𝑖

𝐿𝑜𝑎𝑑 − 𝑃𝑏𝑢𝑠,𝑖
𝐺𝑒𝑛  

as shown in Eqn. (8), and 𝑃𝑏𝑢𝑠,𝑖
𝐺𝑒𝑛  is a fixed value. Constraints of 

the optimization problem include: 

0 ≤ 𝑝𝑗𝑘 ≤ 1, for ∀𝑗, 𝑘, (15) 

                                                           
2 Please note that Eqn. (10) is valid when 𝑝𝑗𝑘 = 0. 

0 ≤ 𝜙𝑗𝑘 ≤ 1, 𝑓𝑜𝑟 ∀𝑗, 𝑘, (16) 

��𝑝𝑗𝑘

𝐾𝑗

𝑘=1

𝑀

𝑗=1

= 1, (17) 

𝑝𝑗𝑘 ∙ 𝜆 < 𝜙𝑗𝑘 ∙ 𝜇𝑗𝑘, 𝑓𝑜𝑟 ∀𝑗, 𝑘, (18) 

where constraints (15) and (16) specify the domains of the 
optimization variables. Constraint (17) ensures that all service 
requests can get serviced. Constraint (18) shows the upper 
limit on the average service request arrival rate to a server, i.e., 
it should be smaller than the average service request 
processing rate of that server. 

The overall optimization problem is a nonlinear 
programming problem and cannot be solved using 
conventional convex optimization methods because the 
objective function (14) is neither convex nor concave of 
optimization variables. In fact, this problem is essentially a 
variant of the generalized process sharing (GPS) problem 
discussed in [42], in which a theoretical bound in performance 
could be achieved compared with the actual optimal solution. 
Hence, we adopt an iterative near-optimal solution of this 
optimization problem as shown in Algorithm 1. At each 
iteration, Algorithm 1 has an optimal resource allocation 
phase and an optimal request dispatch phase as follows. 

Algorithm 1: Near-Optimal Solution of the RAAP Problem. 

Initialize the 𝑝𝑗𝑘 values. 

Do the following procedure iteratively: 
Optimal resource allocation: Find the optimal 𝜙𝑗𝑘 values that 
maximize (14) based on the derived 𝑝𝑗𝑘 's. 

Optimal request dispatching: Find the optimal 𝑝𝑗𝑘  values that 
maximize (14) based on the derived 𝜙𝑗𝑘 's. 

Until the solution converges. 

The Optimal Resource Allocation Phase: In this phase, the 
cloud controller finds the optimal 𝜙𝑗𝑘 's in order to maximize 
Eqn. (14) when the 𝑝𝑗𝑘 values are given. The constraints are 
Eqns. (16) and (18). This problem is a convex optimization 
problem since the objective function (14) is a concave 
function of 𝜙𝑗𝑘 's when the 𝑝𝑗𝑘  values are given (please note 
that 𝑝𝑟𝑖𝑐𝑒𝑖  in (14) also depends on 𝜙𝑗𝑘 's), and constraints (16), 
(18) are linear inequality constraints. It can be optimally 
solved within polynomial time complexity using standard 
convex optimization techniques. Note that when 𝑝𝑗𝑘 = 0, it is 
possible that the optimal 𝜙𝑗𝑘 value is infinitesimal. In order to 
find the valid 𝜙𝑗𝑘  values, we add the following constraint 
when solving this optimization problem: 

𝜙𝑗𝑘 ≥ 𝛿, for ∀𝑗, 𝑘, (19) 

where 𝛿 ≪ 1 is a small positive value. 
The Optimal Request Dispatch Phase: In this phase, the 
cloud controller finds the optimal 𝑝𝑗𝑘 values to maximize Eqn. 
(14) when the 𝜙𝑗𝑘 values are given. The constraints are Eqns. 
(15), (17), and (18). This problem is also a convex 
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optimization problem since the objective function (14) is a 
concave function of 𝑝𝑗𝑘 's when the 𝜙𝑗𝑘  values are given in 
prior (please note that 𝑝𝑟𝑖𝑐𝑒𝑖  in (14) also depends on 𝑝𝑗𝑘 's), 
and therefore, it could be solved optimally with polynomial 
time complexity using standard technique. 

V.  OPTIMIZATION UNDER TIME-AHEAD PRICING 
In the time-ahead pricing scenario, we consider the 

interaction system of the power grid and cloud computing and 
provide the Stackelberg game formulation that is comprised of 
two players. Different from the power-dependent pricing 
scenario discussed in Section IV, the power grid controller is 
the first player and the cloud computing controller is the 
second player in this pricing scenario. 

The objective of the power grid controller (the first player) 
is to achieve an optimal balance between maximizing its own 
profit and load balancing among power buses, with an 
anticipation of the demand side managements performed 
by various load devices including data centers in response 
to price signals. Based on the backward induction principle 
[38], the power grid controller aims to find the optimal dual 
price vectors 𝒑𝒓𝒊𝒄𝒆 = {𝑝𝑟𝑖𝑐𝑒1, 𝑝𝑟𝑖𝑐𝑒2, … , 𝑝𝑟𝑖𝑐𝑒𝑁}  and 
𝒑𝒓𝒊𝒄𝒆′ = {𝑝𝑟𝑖𝑐𝑒1′ , 𝑝𝑟𝑖𝑐𝑒2′ , … , 𝑝𝑟𝑖𝑐𝑒𝑁′ }. Moreover, the power 
grid controller will also determine the amount of non-
renewable energy generations 𝑃𝑏𝑢𝑠,𝑖

𝐺𝑒𝑛,𝑁𝑅 's at all power buses 
(please note that the amount of renewable energy generations 
𝑃𝑏𝑢𝑠,𝑖
𝐺𝑒𝑛,𝑅 's are determined by environmental conditions and thus 

cannot be adjusted.) 
Let 𝐶𝑖�𝑃𝑏𝑢𝑠,𝑖

𝐺𝑒𝑛,𝑁𝑅�  denote the cost for generating 𝑃𝑏𝑢𝑠,𝑖
𝐺𝑒𝑛,𝑁𝑅 

amount of non-renewable energy, which is a convex and 
increasing function of 𝑃𝑏𝑢𝑠,𝑖

𝐺𝑒𝑛,𝑁𝑅. Then the total profit3 (revenue 
- cost) of the power grid controller is given by: 

𝑇𝑜𝑡𝑎𝑙_𝑃𝑟𝑜𝑓𝑖𝑡 = 

��𝑝𝑟𝑖𝑐𝑒𝑖 ∙ 𝑃𝑏𝑢𝑠,𝑖
𝐷𝐶 (𝒑𝒓𝒊𝒄𝒆) + 𝑝𝑟𝑖𝑐𝑒𝑖′ ∙ 𝑃𝑏𝑢𝑠,𝑖

𝐵𝑎𝑐𝑘(𝑝𝑟𝑖𝑐𝑒𝑖′)�
𝑁

𝑖=1

 

−�𝐶𝑖�𝑃𝑏𝑢𝑠,𝑖
𝐺𝑒𝑛,𝑁𝑅�

𝑁

𝑖=1

 

(20) 

where 𝑃𝑏𝑢𝑠,𝑖
𝐷𝐶 (𝒑𝒓𝒊𝒄𝒆)  and 𝑃𝑏𝑢𝑠,𝑖

𝐵𝑎𝑐𝑘(𝑝𝑟𝑖𝑐𝑒𝑖′)  (1 ≤ 𝑖 ≤ 𝑁)  are the 
(anticipated) power consumption values after the load devices 
(including data centers) have performed demand side 
managements based on the dual price vectors. We consider 
two possible objective functions of the power grid controller. 
In the first case, the power grid controller maximizes the 
following objective function: 

𝑤1 ∙ 𝑇𝑜𝑡𝑎𝑙_𝑃𝑟𝑜𝑓𝑖𝑡 − 𝑤2 ∙ max
𝑖,𝑖′

𝑃𝑖𝑖′  (21) 

where max𝑖,𝑖′ 𝑃𝑖𝑖′  denotes the (anticipated) maximum amount 
of power flowing over branch (𝑖, 𝑖′) . A larger value in 
max𝑖,𝑖′ 𝑃𝑖𝑖′  indicates worse load balancing since the amount of 
𝑃𝑖𝑖′  directly affects the problem of circuit overflow in a power 

                                                           
3 Please note that this total profit is an anticipated value calculated by the 

power grid controller. 

grid. In the second case, the power grid controller maximizes 
𝑇𝑜𝑡𝑎𝑙_𝑃𝑟𝑜𝑓𝑖𝑡, subject to some constraint on max𝑖,𝑖′ 𝑃𝑖𝑖′ . The 
constraints of the optimization problem are that the average 
unit energy prices for data centers and for other load devices 
(i.e., the average values in 𝒑𝒓𝒊𝒄𝒆 and 𝒑𝒓𝒊𝒄𝒆′ , respectively) 
should not exceed 𝑝𝑟𝑖𝑐𝑒𝑎𝑣𝑔,𝑚𝑎𝑥  and 𝑝𝑟𝑖𝑐𝑒𝑎𝑣𝑔,𝑚𝑎𝑥

′ , 
respectively. Moreover, Eqn. (2) needs to be satisfied when 
determining the 𝑃𝑏𝑢𝑠,𝑖

𝐺𝑒𝑛,𝑁𝑅  values to make the total power 
generation balanced with total power consumption in the power 
system. 

We name this optimization problem performed in the 
power grid controller the Optimal Pricing with Anticipation of 
Demand side managements (OPAD) problem. Please note that 
the OPAD problem is the optimization of the grid controller's 
action with anticipation of what the cloud computing system 
and other load devices will perform given the grid controller's 
action, and thereby the optimization of OPAD problem is 
performed purely by the grid controller. We introduce an 
effective sub-optimal solution of the OPAD problem in the 
following. 

Effective Sub-Optimal Solution of the OPAD Problem: 
Suppose that the price vector 𝒑𝒓𝒊𝒄𝒆 is announced by the 

power grid controller, then the objective of the cloud 
controller is to maximize its total profit given by Eqn. (14). 
The optimization variables are 𝑝𝑗𝑘 's and 𝜙𝑗𝑘 's. This profit 
maximization problem is a simplified version of the RAAP 
problem defined in Section IV since 𝒑𝒓𝒊𝒄𝒆 is given in prior. 
However, it is still not a convex optimization problem. We 
propose an iterative sub-optimal solution similar to Algorithm 
1. Each iteration in the solution is comprised of an optimal 
resource allocation phase that finds the optimal 𝜙𝑗𝑘 's with 
given 𝑝𝑗𝑘  values, and an optimal request dispatch phase that 
finds the optimal 𝑝𝑗𝑘 's with given 𝜙𝑗𝑘  values. We solve a 
convex optimization with polynomial time complexity in each 
phase. Details are omitted due to space limitation. Based on 
the 𝑝𝑗𝑘  and 𝜙𝑗𝑘  values obtained from the above profit 
maximization problem, we calculate 𝑃𝑏𝑢𝑠,𝑖

𝐷𝐶 (𝒑𝒓𝒊𝒄𝒆) at each ith 
(1 ≤ 𝑖 ≤ 𝑁) power bus using Eqns. (5), (13).  

On the other hand, suppose that the other price vector 
𝒑𝒓𝒊𝒄𝒆′ has been announced by the power grid controller, then 
the power consumption of the other load devices than the data 
centers at each ith (1 ≤ 𝑖 ≤ 𝑁) power bus, i.e., 𝑃𝑏𝑢𝑠,𝑖

𝐵𝑎𝑐𝑘(𝑝𝑟𝑖𝑐𝑒𝑖′), 
is calculated using Eqn. (9).  

Since the OPAD problem is integrated with a cloud 
computing profit maximization problem, it is not possible to 
derive the analytical form of 𝑃𝑏𝑢𝑠,𝑖

𝐷𝐶 (𝒑𝒓𝒊𝒄𝒆) as a function of the 
price vector 𝒑𝒓𝒊𝒄𝒆. Therefore, the OPAD problem is a hard 
problem to be solved optimally in polynomial time. We 
propose to use the simulated annealing method to find the an 
effective sub-optimal solution of the OPAD problem. As 
pointed out in [43], the simulated annealing approach can 
converge to the optimal solution with probability one if the 
"temperature" in the algorithm reduces in infinite small speed. 
In actual implementations simulated annealing is an effective 
sub-optimal solution and the optimality gap can be obtained 
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from [43]. In this problem, the optimization variables are price 
vectors 𝒑𝒓𝒊𝒄𝒆 and 𝒑𝒓𝒊𝒄𝒆′, and the 𝑃𝑏𝑢𝑠,𝑖

𝐺𝑒𝑛,𝑁𝑅  values. When we 
are optimizing objective function (21) in the first case, we 
adopt a two-step optimization procedure in order to minimize 
the computation overhead, as shown in Algorithm 2. In the 
first step, we optimize the price vectors 𝒑𝒓𝒊𝒄𝒆 and 𝒑𝒓𝒊𝒄𝒆′ and 
use certain heuristics to determine the 𝑃𝑏𝑢𝑠,𝑖

𝐺𝑒𝑛,𝑁𝑅 values, whereas 
in the second step we optimize the 𝑃𝑏𝑢𝑠,𝑖

𝐺𝑒𝑛,𝑁𝑅 values to maximize 
objective function (21). Algorithm 3 illustrates the detailed 
procedure of the first step as an example. In the second case 
when we maximize 𝑇𝑜𝑡𝑎𝑙_𝑃𝑟𝑜𝑓𝑖𝑡  subject to a constraint on 
max𝑖,𝑖′ 𝑃𝑖𝑖′ , we also adopt a two-step optimization procedure. 
In the first step, our focus is to make sure that the constraint on 
max𝑖,𝑖′ 𝑃𝑖𝑖′  is satisfied, and after the constraint is satisfied, we 
enter the second step to maximize 𝑇𝑜𝑡𝑎𝑙_𝑃𝑟𝑜𝑓𝑖𝑡. Details are 
omitted due to space limitation. 

 

Algorithm 2: Overview of the Effective Sub-Optimal Solution of 
the OPAD Problem in the First Case. 

Step I: Optimize the price vectors 𝒑𝒓𝒊𝒄𝒆 and 𝒑𝒓𝒊𝒄𝒆′ and use certain 
heuristics to determine the 𝑃𝑏𝑢𝑠,𝑖

𝐺𝑒𝑛,𝑁𝑅 values, as shown in Algorithm 3. 

Step II: Optimize the 𝑃𝑏𝑢𝑠,𝑖
𝐺𝑒𝑛,𝑁𝑅  values to maximize (21) also using 

simulated annealing. 

 

Algorithm 3: Detailed Procedure of the First Step of the Effective 
Sub-Optimal Solution of the OPAD Problem. 

Initialize the temperature 𝑇. 
Initialize 𝑂𝑏𝑗𝑚𝑎𝑥 to be a large negative number. 
Do the following procedure: 

Randomly change the price vectors 𝒑𝒓𝒊𝒄𝒆 and 𝒑𝒓𝒊𝒄𝒆′ satisfying 
the average price constraints. 
Initialize the 𝑝𝑗𝑘 values. 

Do the following procedure iteratively: 
Optimal resource allocation: Find the optimal 𝜙𝑗𝑘 's that 
maximize (14) based on the derived 𝑝𝑗𝑘 values and 𝒑𝒓𝒊𝒄𝒆. 

Optimal request dispatching: Find the optimal 𝑝𝑗𝑘 's that 
maximize (14) based on the derived 𝜙𝑗𝑘 values and 𝒑𝒓𝒊𝒄𝒆. 

Until the solution converges. 

Calculate 𝑃𝑏𝑢𝑠,𝑖
𝐷𝐶 (𝒑𝒓𝒊𝒄𝒆) for 1 ≤ 𝑖 ≤ 𝑁 using (5), (13), based on 

the derived 𝜙𝑗𝑘 and 𝑝𝑗𝑘 values. 

Calculate 𝑃𝑏𝑢𝑠,𝑖
𝐵𝑎𝑐𝑘(𝑝𝑟𝑖𝑐𝑒𝑖′) for 1 ≤ 𝑖 ≤ 𝑁 using (9). 

Use certain heuristics to set the 𝑃𝑏𝑢𝑠,𝑖
𝐺𝑒𝑛,𝑁𝑅 values such that Eqn. (2) 

is satisfied. 
𝑂𝑏𝑗 ←  the value of the objective function (21) based on the 
calculated 𝑃𝑏𝑢𝑠,𝑖

𝐷𝐶 (𝒑𝒓𝒊𝒄𝒆), 𝑃𝑏𝑢𝑠,𝑖
𝐵𝑎𝑐𝑘(𝑝𝑟𝑖𝑐𝑒𝑖′), and 𝑃𝑏𝑢𝑠,𝑖

𝐺𝑒𝑛,𝑁𝑅 values. 

If 𝑂𝑏𝑗 ≥ 𝑂𝑏𝑗𝑚𝑎𝑥: Accept the change of 𝒑𝒓𝒊𝒄𝒆 and 𝒑𝒓𝒊𝒄𝒆′. 

Else: Accept the change with probability 𝑒(𝑂𝑏𝑗−𝑂𝑏𝑗𝑚𝑎𝑥) 𝑇⁄ . 

𝑂𝑏𝑗𝑚𝑎𝑥 ← 𝑂𝑏𝑗 if the change has been accepted. 
Decrease the temperature 𝑇. 

Until the temperature 𝑇  has decreased to a certain value, i.e., the 
algorithm has cooled down. 

VI.  EXPERIMENTAL RESULTS 
In this section, we implement the interaction system of 

smart power grid and cloud computing and demonstrate the 
effectiveness of the proposed Stackelberg game-based 
optimization framework. We use normalized amounts of most 
of the parameters in the system instead of their actual values. 

We test on the power grid topology from the IEEE 24-bus 
Reliability Test System as shown in Fig. 3, which is 
comprised of 24 power buses and 38 branches. Some of the 
power buses are equipped with non-renewable power 
generation facilities or electric loads (other than data centers), 
as noted in Fig. 3. For power buses equipped with non-
renewable power generation facilities, the amounts of non-
renewable power generation are assumed to be fixed in the 
power-dependent pricing scenario and are optimization 
variables in the time-ahead pricing scenario. For power buses 
equipped with electric loads, we assume that the parameter 
𝑃𝑏𝑢𝑠,𝑖
𝐵𝑎𝑐𝑘(0) is uniformly distributed between 10 and 20 if a data 

center is connected to bus i, and is uniformly distributed 
between 20 and 40 if no data center is connected. The 𝛼𝑖 
parameters are set to be 6. Moreover, we add renewable power 
generation facilities to each power bus, and the amount of 
renewable power generation at each power bus is assumed to 
be uniformly distributed between 0 and 20. In general, we 
properly set the power generation and consumption values 
such that the renewable and non-renewable power generations, 
and data center and other load device power consumptions are 
comparable in magnitude with each other. 

 
Fig. 3. Power bus topology of the IEEE 24-bus reliability test system [32]. 

We consider two different cloud computing environments 
in our evaluation, a smaller one and a larger one. The smaller 
cloud computing system comprises four data centers in the 
interaction system, comprised of 6 servers, 10 servers, 12 
servers, and 20 servers, respectively. The four data centers are 
connected to BUS2, BUS7, BUS13, and BUS15, respectively, 
in the 24-bus Reliability Test System. The average service 
request generating rate in this cloud computing system is 
assumed to be 30. The larger cloud computing system 
comprises six data centers in the interaction system, comprised 
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of 5 servers, 8 servers, 10 servers, 12 servers, 14 servers, and 
20 servers, respectively. The six data centers are connected to 
BUS2, BUS7, BUS13, BUS15, BUS16, BUS18, respectively, 
in the 24-bus Reliability Test System. The average service 
request generating rate in this case is assumed to be 50. In 
both cloud computing systems, the maximum average service 
request processing rate 𝜇𝑗𝑘  in each server (i.e., when all its 
resources are allocated for request processing) is a uniformly 
distributed random variable between 1 and 2. The maximum 
dynamic power consumption 𝑃𝑆𝑒𝑟𝑣,𝑗𝑘

𝑑𝑦𝑛,𝑚𝑎𝑥  of each server is 
uniformly distributed between 1.5 and 3. The maximum static 
power consumption 𝑃𝑆𝑒𝑟𝑣,𝑗𝑘

𝑠𝑡𝑎,𝑚𝑎𝑥  of each server is a uniformly 
distributed random variable between 0.5 and 1. For the utility 
function in the cloud, parameter 𝛽 is set to 6 and 𝛾 is 1. 

A.  Experiments under Power-Dependent Pricing 
In the first experiment, we consider the interaction system 

under the power-dependent pricing scenario. We set the 
amount of non-renewable energy generation at each bus to be 
a fixed value 20. Also the amount of electric loads other than 
data centers at each power bus is assumed to be a fixed value 
𝑃𝑏𝑢𝑠,𝑖
𝐵𝑎𝑐𝑘(0). For the power-dependent pricing function, we set 

the base price 𝑝𝑟𝑖𝑐𝑒𝐁 to be 0.3 and change the value of 𝐶 in the 
experiment. Please note that parameters 𝑝𝑟𝑖𝑐𝑒𝐁  and 𝐶  are 
essentially relative values. 

We compare the profit maximization capability of the 
smaller and larger cloud computing systems using the 
proposed Stackelberg game-based optimization method and 
baseline algorithm. The baseline system distributes service 
requests with equal probability to each server in the cloud 
computing system. Fig. 4 and Fig. 5 illustrate the normalized 
total profits of the smaller and larger cloud computing systems, 
respectively, versus the 𝐶  value in the power-dependent 
pricing function. We can observe that the proposed game 
theoretic method consistently outperforms the baseline 
algorithm. When 𝐶 = 0.10  for the larger cloud computing 
system, the total profit of the cloud computing system 
obtained by the proposed optimization method is 204.6% of 
that in the baseline algorithm. When 𝐶 = 0.14 or more, the 
total profit in the baseline system drops below zero, and is 
thereby not even comparable with the proposed near-optimal 
method. 

 
Fig. 4. The normalized total profit of the smaller cloud computing system 
versus the 𝐶 value in the power-dependent pricing function of the proposed 

method and baseline algorithm. 

 
Fig. 5. The normalized total profit of the larger cloud computing system 
versus the 𝐶 value in the power-dependent pricing function of the proposed 

method and baseline algorithm. 

B.  Experiments under Time-Ahead Pricing 
In the second experiment, we consider the interaction 

system under the time-ahead pricing scenario. We compare the 
capability in profit maximization and load balancing of the 
smart power grid system using the proposed Stackelberg 
game-based optimization method and baseline algorithm. The 
baseline algorithm sets the same price 𝑝𝑟𝑖𝑐𝑒𝑎𝑣𝑔,𝑚𝑎𝑥  for data 
centers and other load devices over all power buses. We first 
consider the case in which the power grid controller adopts the 
uniform-pricing scheme, i.e., applying the same price vector 
𝒑𝒓𝒊𝒄𝒆  for both data centers and other load devices, and it 
optimizes the price vector 𝒑𝒓𝒊𝒄𝒆  together with the 𝑃𝑏𝑢𝑠,𝑖

𝐺𝑒𝑛,𝑁𝑅 
value, in order to maximize the objective function (21).  Fig. 6 
illustrates the tradeoff curve (obtained by adjusting parameters 
𝑤1  and 𝑤2 ) between higher profit and lower risk of circuit 
overflow for the power grid, assuming the case of larger cloud 
computing system. We can observe that simultaneous 
enhancement in total profit and reduction in the risk of circuit 
overflow (which is represented by the maximum 𝑃𝑖𝑖′  value) 
can be achieved using the proposed Stackelberg game-based 
method. 

Next, we consider the case in which the power grid applies 
the dual-pricing policy. In this case, the proposed system 
optimizes the price vectors 𝒑𝒓𝒊𝒄𝒆  and 𝒑𝒓𝒊𝒄𝒆′ , and the 
𝑃𝑏𝑢𝑠,𝑖
𝐺𝑒𝑛,𝑁𝑅  values, in order to maximize the objective function 

(21). Fig. 7 and Fig. 8 illustrate the tradeoff curves (obtained 
by adjusting parameters 𝑤1 and 𝑤2) between higher profit and 
lower risk of circuit overflow for the power grid, assuming the 
cases of smaller cloud computing system and larger cloud 
computing system, respectively. We can observe again that 
simultaneous enhancement in total profit and reduction in the 
risk of circuit overflow can be achieved using the proposed 
Stackelberg game-based method. When taking an overall look 
of Fig. 6 to Fig. 8, we can observe that the proposed game 
theoretic optimization method is extremely powerful in 
performing load balancing, i.e., it reduces the maximum 𝑃𝑖𝑖′  
value in the smart power grid system by a factor up to 50X. 
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Fig. 6. The tradeoff between total profit of the smart power grid system 
and risk of circuit overflow in the smart power grid using uniform-pricing 

scheme. 

 
Fig. 7. The tradeoff between total profit of the smart power grid system 

and risk of circuit overflow in the smart power grid using dual-pricing scheme, 
smaller cloud computing system. 

 
Fig. 8. The tradeoff between total profit of the smart power grid system 

and risk of circuit overflow in the smart power grid using dual-pricing scheme, 
larger cloud computing system. 

VII.  CONCLUSION 
In this paper, we consider an interaction system of the 

smart power grid with distributed PV power generation and 
the cloud computing system, jointly taking into account the 
service request dispatch and routing problem in the cloud with 
the power flow analysis in power grid. The smart power grid 
employ dynamic pricing policies to incentivize the cloud 
controller to shift the computation load towards data centers 
located in regions with cheaper electricity. Data centers also 
provide opportunities to help the power grid with respect to 
robustness and load balancing. We provide the Stackelberg 
game formulation of the interaction system under two 

different pricing scenarios: real-time power-dependent pricing 
and time-ahead pricing. The two players in the Stackelberg 
games are the power grid controller that sets the pricing signal 
and the cloud controller that performs resource allocation 
among data centers. The objective of the power grid controller 
is to maximize its own profit and perform load balancing 
among power buses, i.e., minimizing the power flow from one 
power bus to the others, whereas the objective of the cloud 
controller is to maximize its own profit with respect to the 
location-dependent pricing signal. Based on the backward 
induction method, we derive the near-optimal or sub-optimal 
strategies of the two players in the Stackelberg game using 
convex optimization and heuristic search techniques. 
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