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Background on DVFS
! DVFS is a method through which different amount of 

energy is allocated to perform a task

! Power consumption of a digital CMOS circuit is:

! Energy required to run a task during T is:

! Lowering V (while simultaneously and proportionately 
cutting f) causes a quadratic reduction in E

! The target CPU frequency is calculated as follows:
" Given a task with workload, W, and latency constraint, D
" ftarget is hence calculated as W/D (Note that Ttask = D)

α= ⋅ ⋅ ⋅2
effP C V f

α : switching factor
Ceff : effective capacitance
V    : operating voltage
f      : operating frequency

= ⋅ ∝ 2E P T V (assuming f ∝ V,  T ∝ f –1)

Overview of prior DVFS works
! Most DVFS methods are concerned about CPU energy 

reduction only
" More precisely, dynamic portion of the CPU energy

! Most computing systems, however, comprise of many 
subsystems such as memory and peripheral devices

! Lowering CPU frequency can cause shorter battery lifetime 
due to increased energy consumption in the subsystems 

Power
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DVFS for the minimal system energy
! Two requirements 

" Satisfy timing constraint
" Minimize the system energy

! Timing constraint
" Different applications exhibit disparate execution time 

variation as a function of the CPU frequency change
" Accurate modeling of the task execution time as the 

CPU frequency is varied

! Minimal system energy
" Power consumption of each system component should 

be known
" Info. about each component state, i.e., active or idle is 

required

! These two requirements can be satisfied by using the 
“workload decomposition” approach

Workload decomposition
! CPU-bound vs. memory-bound applications show different 

execution time variation according to the CPU frequency

! Workload of a program consists of on-chip (Won) and off-
chip (Woff) workloads 
" Won : work performed inside the CPU, e.g., ALU operation
" Woff : work performed outside the CPU, e.g., off-chip 

memory access after cache miss

! Program execution time T

! Given a task with workload, Won and Woff, and latency 
constraint, D

= + = +
on off

on off
cpu ext

W W
T T T

f f
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System power breakdown
! Power consumption profile fluctuates greatly due to 

alternate execution of Won and Woff

" Won (Woff) requires the CPU (sub-module) power

! System power consumption can be broken into the 
following components:

fixed variable

idle

activestanding

remains unchanged 

idle + fixed

when each component
is not used

when each component 
is used for some task

obtained by simple measurements or using values in the spec

DC-DC converter, 
PLL, leakage, PCI 
bridges

CPU idle, memory is not 
accessed

CPU active, memory is 
accessed

Performance monitoring unit (PMU)
! Won is modeled as:

! PMU on the PXA255 processor chip can report up to 15 
different dynamic events during execution of a program
" Cache hit/miss counts, TLB hit/miss counts, No. of stall 

cycles, Total no. of instructions being executed, Branch 
misprediction counts

! For DVFS, we use the PMU to generate statistics for
" Total no. of instructions being executed (INSTR)
" No. of stall cycles due to on/off-chip data dependencies 

(STALL)
" No. of Data Cache misses (DMISS)

! We also record the no. of clock cycles from the beginning 
of the program execution (CCNT)

=

= = ⋅∑
1

N
on i avg

on on
i

W CPI N CPI
N : number of onchip instructions
CPIon : CPU clocks per instruction
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Frequency settings in BitsyX
! PXA255 can operate from 100MHz to 400MHz, with a core 

supply voltage of 0.85V to 1.3V 
! Internal bus connects the core and other functional blocks 

inside the CPU
! External bus is connected to SDRAM (64MB)
! Nine frequency combinations (f cpu, f int, f ext)
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Execution time and frequency settings
! Execution time variation over different frequency 

combinations – “math”, “crc”, “djpeg”, “qsort”, and “gzip”
" “math” is CPU-bound ( strongly dependent on f cpu ) 
" “gzip” is memory-bound (f int & f ext dependent )
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! Ton is calculated as:

! We define SPI as ratio of the number of stall cycles 
to the total instruction count
" SPIavg = STALL / INSTR, during a time quantum

Calculating Ton (I)

= = ⋅,  
on

on on avg
oncpu

W
T W N CPI

f

= +avg avg avg
on offSPI SPI SPI

= +avg min avg
on on onCPI CPI SPI

Onchip CPI value 
without any stall cycles

! Based on the following observation:
" The more D-cache miss events, the higher probability 

of off-chip accesses

! We define DPI as ratio of the number of D-cache 
miss events to the total instruction count
" DPIavg = DMISS / INSTR, during a time quantum

Calculating Ton (II)

= + 2 ( )avg min
on onCPI CPI dpi spi DPI

Kn is constant: K1 < K2 < … < Kn

avgSPI

avgCPI

minSPI

max
onCPI

min
onCPI

avg
onCPI

( )−
=

max min
on onCPI CPI

DF
n

Kn-1 < DPI ≤ KnDF*1

Kn-2 < DPI ≤ Kn-1DF*2

K1 < DPI ≤ K2DF*(n-1)

……

DPI ≤ K1CPIon
max-CPIon

min

DPI > Kn0

DPIDpi2spi(DPI)
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Calculating Toff

! Toff is dependent on the f ext as well as f int

! Example: when a D-cache miss occurs, two operations are 
performed:
" Data fetch from the external memory (f ext)
" Data transfer to the CPU core where the cache-line and 

destination register are updated (f int)

! Due to lack of exact timing information, we have opted to 
model Toff as:

! An α value of ~0.35 was obtained for tested applications
" The average error in predicting the execution time was 

less than 2% for all nine frequency settings

α α⋅ − ⋅= + = + (1 )off off
off off off

int ext int ext

W W
T T T

f f

System energy modeling on BitsyX
! Hard to get system energy without 

workload decomposition

! Using workload decomposition

power

time
t1 t1+T

T

Timet1 t4t2
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off
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Accuracy of the system energy model
! The estimated energy consumption for “djpeg”

" The average error rate is less than 4%
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Determining the optimal frequency setting
! Consider timing constraint followed by system energy 

minimization
" For a timing constraint, we used performance loss (PFloss) 

which is defined as:

! Pseudo code for optimal frequency selection
1.    Ψ = { Fmin , …, Fmax }, Γ = {φ }, and Emin =  ∞
2.    for every frequency setting Fn in Ψ
3.         if (                                     )

4.                  Γ = Γ ∪ Fn ;

5.    for every frequency setting  Fn in Γ
6.        calculate system energy using proposed model

7.                 if (          ≤ Emin )

8.                        Emin = Esys,Fn
; Fopt

i+1 = Fn ;

≤ + ⋅(1 )
maxn

i
loss FF

T PF Ti+1

, nsys FE

Timing 
constraint

Energy 
minimization

( )−
= n max

max

F F

loss
F

T T
PF

T
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The software architecture
! The software architecture comprises of a proc interface 

module and a policy setting module tightly linked with the 
Linux scheduler, the PMU, and the freq. and voltage control 
circuitry on the BitsyX board

“proc” Interface Module

Linux 
Scheduler

Policy Setting Module

PMU Access 
Module

DVFS
Module

Kernel Space

DVFS

PXA255 Processor

External PFloss input parameter

Experimental results (I)

! Compared two DVFS techniques:
" SE-DVFS : proposed DVFS (saving the system energy)
" CE-DVFS : conventional DVFS (saving the CPU energy)

! Resulting performance loss factors:
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Experimental results (II)

! System energy consumption of the two DVFS approaches 
compared to the case without any DVFS
" CE-DVFS : always more energy consumed
" SE-DVFS : system energy saving for some applications
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Experimental results (III)

! Actual power consumption of the two DVFS methods

! For “gzip” with 30% target PFloss, SE-DVFS results in  
11.4% lower total system energy than CE-DVFS
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Experimental results (IV)

! CE-DVFS vs. SE-DVFS
" SE-DVFS results in 2% ~ 18% higher system energy 

savings compared to CE-DVFS
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Conclusions

! A DVFS policy for the actual system energy reduction 
was proposed and implemented, which uses online 
decomposition of the application workload into on-chip 
and off-chip components

! Based on actual current measurements in the BitsyX
platform, up to 18% more system energy saving was 
achieved with the proposed DVFS compared with the 
results in the previous DVFS techniques

! For both CPU and memory-bound programs, given 
timing constraints were also satisfied


