
1

Dynamic Voltage and Frequency Scaling
Under a Precise Energy Model Considering

Variable and Fixed Components of the
System Power Dissipation

Kihwan Choi
Won-bok Lee

Ramakrishna Soma
Massoud Pedram

University of Southern California

Outline

! Background

! Workload decomposition
" Execution time model
" System energy model

! Fine-grained DVFS policy

! Experimental results

! Conclusion

2

Background on DVFS
! DVFS is a method through which different amount of

energy is allocated to perform a task

! Power consumption of a digital CMOS circuit is:

! Energy required to run a task during T is:

! Lowering V (while simultaneously and proportionately
cutting f) causes a quadratic reduction in E

! The target CPU frequency is calculated as follows:
" Given a task with workload, W, and latency constraint, D
" ftarget is hence calculated as W/D (Note that Ttask = D)

α= ⋅ ⋅ ⋅2
effP C V f

α : switching factor
Ceff : effective capacitance
V : operating voltage
f : operating frequency

= ⋅ ∝ 2E P T V (assuming f ∝ V, T ∝ f –1)

Overview of prior DVFS works
! Most DVFS methods are concerned about CPU energy

reduction only
" More precisely, dynamic portion of the CPU energy

! Most computing systems, however, comprise of many
subsystems such as memory and peripheral devices

! Lowering CPU frequency can cause shorter battery lifetime
due to increased energy consumption in the subsystems

Power

0 1 2
Time

0 1 2

= 0.125cpuP=1max
cpuP

=1maxf = 0.5cpuf

= 0.9modP

= 1.9max
sysE

= 0.9modP

= 2.05sysE

~8% more energy consumption

cpuP

modP

3

DVFS for the minimal system energy
! Two requirements

" Satisfy timing constraint
" Minimize the system energy

! Timing constraint
" Different applications exhibit disparate execution time

variation as a function of the CPU frequency change
" Accurate modeling of the task execution time as the

CPU frequency is varied

! Minimal system energy
" Power consumption of each system component should

be known
" Info. about each component state, i.e., active or idle is

required

! These two requirements can be satisfied by using the
“workload decomposition” approach

Workload decomposition
! CPU-bound vs. memory-bound applications show different

execution time variation according to the CPU frequency

! Workload of a program consists of on-chip (Won) and off-
chip (Woff) workloads
" Won : work performed inside the CPU, e.g., ALU operation
" Woff : work performed outside the CPU, e.g., off-chip

memory access after cache miss

! Program execution time T

! Given a task with workload, Won and Woff, and latency
constraint, D

= + = +
on off

on off
cpu ext

W W
T T T

f f

=
 

− 
 

on

target off

ext

W
f

W
D

f

4

System power breakdown
! Power consumption profile fluctuates greatly due to

alternate execution of Won and Woff

" Won (Woff) requires the CPU (sub-module) power

! System power consumption can be broken into the
following components:

fixed variable

idle

activestanding

remains unchanged

idle + fixed

when each component
is not used

when each component
is used for some task

obtained by simple measurements or using values in the spec

DC-DC converter,
PLL, leakage, PCI
bridges

CPU idle, memory is not
accessed

CPU active, memory is
accessed

Performance monitoring unit (PMU)
! Won is modeled as:

! PMU on the PXA255 processor chip can report up to 15
different dynamic events during execution of a program
" Cache hit/miss counts, TLB hit/miss counts, No. of stall

cycles, Total no. of instructions being executed, Branch
misprediction counts

! For DVFS, we use the PMU to generate statistics for
" Total no. of instructions being executed (INSTR)
" No. of stall cycles due to on/off-chip data dependencies

(STALL)
" No. of Data Cache misses (DMISS)

! We also record the no. of clock cycles from the beginning
of the program execution (CCNT)

=

= = ⋅∑
1

N
on i avg

on on
i

W CPI N CPI
N : number of onchip instructions
CPIon : CPU clocks per instruction

5

Frequency settings in BitsyX
! PXA255 can operate from 100MHz to 400MHz, with a core

supply voltage of 0.85V to 1.3V
! Internal bus connects the core and other functional blocks

inside the CPU
! External bus is connected to SDRAM (64MB)
! Nine frequency combinations (f cpu, f int, f ext)

1331331.0265F5

1001001.0200F4

100501.0200F3

133660.85133F2

1.3

1.3

1.1

1.1

0.85

Vcpu [V]

100200400F9

10050100F1

10050300F6

100100300F7

100100400F8

Freq. Set f int [MHz] f ext [MHz]f cpu [MHz]

Execution time and frequency settings
! Execution time variation over different frequency

combinations – “math”, “crc”, “djpeg”, “qsort”, and “gzip”
" “math” is CPU-bound (strongly dependent on f cpu)
" “gzip” is memory-bound (f int & f ext dependent)

10050300F6

133133265F5

100100200F4

10050200F3

13366133F2

100200400F9

10050100F1

100100300F7

100100400F8

Freq.
Set

fint

(MHz)

fext

(MHz)

fcpu

(MHz)

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9
Frequency combination

E
xe

cu
ti

o
n

 t
im

e
(n

o
rm

.)

math crc djpeg qsort gzip

math
gzip

6

0

2

4

6

8

10

12

0 2 4 6 8 10
SPIavg

C
P

Iav
g

gzip

0

2

4

6

8

10

12

0 2 4 6 8 10
SPIavg

C
P

Iav
g

gzip

! Ton is calculated as:

! We define SPI as ratio of the number of stall cycles
to the total instruction count
" SPIavg = STALL / INSTR, during a time quantum

Calculating Ton (I)

= = ⋅,
on

on on avg
oncpu

W
T W N CPI

f

= +avg avg avg
on offSPI SPI SPI

= +avg min avg
on on onCPI CPI SPI

Onchip CPI value
without any stall cycles

! Based on the following observation:
" The more D-cache miss events, the higher probability

of off-chip accesses

! We define DPI as ratio of the number of D-cache
miss events to the total instruction count
" DPIavg = DMISS / INSTR, during a time quantum

Calculating Ton (II)

= + 2 ()avg min
on onCPI CPI dpi spi DPI

Kn is constant: K1 < K2 < … < Kn

avgSPI

avgCPI

minSPI

max
onCPI

min
onCPI

avg
onCPI

()−
=

max min
on onCPI CPI

DF
n

Kn-1 < DPI ≤ KnDF*1

Kn-2 < DPI ≤ Kn-1DF*2

K1 < DPI ≤ K2DF*(n-1)

……

DPI ≤ K1CPIon
max-CPIon

min

DPI > Kn0

DPIDpi2spi(DPI)

7

Calculating Toff

! Toff is dependent on the f ext as well as f int

! Example: when a D-cache miss occurs, two operations are
performed:
" Data fetch from the external memory (f ext)
" Data transfer to the CPU core where the cache-line and

destination register are updated (f int)

! Due to lack of exact timing information, we have opted to
model Toff as:

! An α value of ~0.35 was obtained for tested applications
" The average error in predicting the execution time was

less than 2% for all nine frequency settings

α α⋅ − ⋅= + = + (1)off off
off off off

int ext int ext

W W
T T T

f f

System energy modeling on BitsyX
! Hard to get system energy without

workload decomposition

! Using workload decomposition

power

time
t1 t1+T

T

Timet1 t4t2

, n

off
ext FP

, n

std
sys FP

n

on
FT , n

off
ext FT

n

on
FP

, ()
nsys FP t

n

off
int,FT

t3

n

off
int,FP

Power

active power

standing power

= ⋅ + ⋅ + ⋅ + ⋅, , , , , ,n n n n n n n n

std on on off off off off
sys F sys F F F int F int F ext F ext FE P T P T P T P T

8

Accuracy of the system energy model
! The estimated energy consumption for “djpeg”

" The average error rate is less than 4%

785*1.3310183361836F5

7857662171728F4

7854562181699F3

785*1.334791481757F2

1733

1113

885

575

363

675

673

378

344

89

7851963F9

7851665F1

7851732F6

7851778F7

7851869F8

Freq
. set

,

()
n

std
sys FP

m W

()
n

on
FP

m W
,

()
n

off
ext FP

m W

k1 = 0.73 [nF], k2 = 6.2 [V2nF]

measured parameters

⋅ ⋅ + ⋅~
n n

off 2 cpu int
int,F 1 F n 2 nP k V f k f

()
n

off
in t,FP

m W

0

10

20

30

40

1 2 3 4 5 6 7 8 9

Frequency combination

E
n

er
g

y
co

n
su

m
p

ti
o

n
 [

J]

measured

estimated

Determining the optimal frequency setting
! Consider timing constraint followed by system energy

minimization
" For a timing constraint, we used performance loss (PFloss)

which is defined as:

! Pseudo code for optimal frequency selection
1. Ψ = { Fmin , …, Fmax }, Γ = {φ }, and Emin = ∞
2. for every frequency setting Fn in Ψ
3. if ()

4. Γ = Γ ∪ Fn ;

5. for every frequency setting Fn in Γ
6. calculate system energy using proposed model

7. if (≤ Emin)

8. Emin = Esys,Fn
; Fopt

i+1 = Fn ;

≤ + ⋅(1)
maxn

i
loss FF

T PF Ti+1

, nsys FE

Timing
constraint

Energy
minimization

()−
= n max

max

F F

loss
F

T T
PF

T

9

The software architecture
! The software architecture comprises of a proc interface

module and a policy setting module tightly linked with the
Linux scheduler, the PMU, and the freq. and voltage control
circuitry on the BitsyX board

“proc” Interface Module

Linux
Scheduler

Policy Setting Module

PMU Access
Module

DVFS
Module

Kernel Space

DVFS

PXA255 Processor

External PFloss input parameter

Experimental results (I)

! Compared two DVFS techniques:
" SE-DVFS : proposed DVFS (saving the system energy)
" CE-DVFS : conventional DVFS (saving the CPU energy)

! Resulting performance loss factors:

0

10

20

30

40

50

60

70

80

math crc djpeg qsort gzip

A
ct

u
al

 p
er

fo
rm

an
ce

 [
%

]

10% 20% 30% 40% 50%

Target PFloss

0

10

20

30

40

50

60

70

80

math crc djpeg qsort gzip

A
ct

u
al

 p
er

fo
rm

an
ce

 [
%

]

10% 20% 30% 40% 50%

Target PFloss

0

10

20

30

40

50

60

70

80

math crc djpeg qsort gzip

A
ct

u
al

 p
er

fo
rm

an
ce

 [
%

]

10% 20% 30% 40% 50%

Target PFloss

0

10

20

30

40

50

60

70

80

math crc djpeg qsort gzip

A
ct

u
al

 p
er

fo
rm

an
ce

 [
%

]

10% 20% 30% 40% 50%

Target PFloss

SE-DVFSCE-DVFS

10

Experimental results (II)

! System energy consumption of the two DVFS approaches
compared to the case without any DVFS
" CE-DVFS : always more energy consumed
" SE-DVFS : system energy saving for some applications

-30

-25

-20

-15

-10

-5

0

5

10

math crc djpeg qsort gzip

S
ys

te
m

 e
n

er
g

y
sa

vi
n

g
 [

%
]

10% 20% 30% 40% 50%

Target PFloss

-30

-25

-20

-15

-10

-5

0

5

10

math crc djpeg qsort gzip

S
ys

te
m

 e
n

er
g

y
sa

vi
n

g
 [

%
]

10% 20% 30% 40% 50%

Target PFloss

-30

-25

-20

-15

-10

-5

0

5

10

math crc djpeg qsort gzip

S
ys

te
m

 e
n

er
g

y
sa

vi
n

g
 [

%
]

10% 20% 30% 40% 50%

Target PFloss

-30

-25

-20

-15

-10

-5

0

5

10

math crc djpeg qsort gzip

S
ys

te
m

 e
n

er
g

y
sa

vi
n

g
 [

%
]

10% 20% 30% 40% 50%

Target PFloss

SE-DVFSCE-DVFS

Experimental results (III)

! Actual power consumption of the two DVFS methods

! For “gzip” with 30% target PFloss, SE-DVFS results in
11.4% lower total system energy than CE-DVFS

1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8
Time [sec]

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 [

m
W

]

gzip, with 30% Target PFloss

avg. power : 2619mW, 6.531sec

Energy : 17.105J
1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8
Time [sec]

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 [

m
W

]

gzip, with 30% Target PFloss

avg. power : 2619mW, 6.531sec

Energy : 17.105J
1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8
Time [sec]

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 [

m
W

]

gzip, with 30% Target PFloss

avg. power : 2720.3mW, 5.568sec

Energy : 15.147J
1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8
Time [sec]

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 [

m
W

]

gzip, with 30% Target PFloss

avg. power : 2720.3mW, 5.568sec

Energy : 15.147J

SE-DVFSCE-DVFS

11

Experimental results (IV)

! CE-DVFS vs. SE-DVFS
" SE-DVFS results in 2% ~ 18% higher system energy

savings compared to CE-DVFS

0

10

20

30

math crc djpeg qsort gzip

S
ys

te
m

 e
n

er
g

y
d

if
fe

re
n

ce
 [

%
]

10% 20% 30% 40% 50%
Target PFloss

0

10

20

30

math crc djpeg qsort gzip

S
ys

te
m

 e
n

er
g

y
d

if
fe

re
n

ce
 [

%
]

10% 20% 30% 40% 50%
Target PFloss

Conclusions

! A DVFS policy for the actual system energy reduction
was proposed and implemented, which uses online
decomposition of the application workload into on-chip
and off-chip components

! Based on actual current measurements in the BitsyX
platform, up to 18% more system energy saving was
achieved with the proposed DVFS compared with the
results in the previous DVFS techniques

! For both CPU and memory-bound programs, given
timing constraints were also satisfied

