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Abstract—This paper presents a row-based design methodol-
ogy covering cell placement, clock tree synthesis, and routing
steps for large SFQ circuits. The proposed placement tool initiates
by running a state-of-the-art CMOS placer, which places fixed-
height but variable-width cells in rows on the chip. Cells in each
row are then grouped together such that each group contains at
most k cells with the same logic level. Next, for clock routing,
this paper proposes HL-tree, which adopts an H-tree with PTL
connections to distribute the clock to groups, and within each
group, a linear path composed of splitters and JTLs provides
the clock to cells. Increasing k reduces the chip area, but also
may incur a performance loss. To evaluate the effectiveness of
the proposed approach, place-and-route results of a 32-bit Kogge-
Stone adder for different values of k are reported. By using this
new design methodology, the overall chip area can be reduced
by 27% compared with the results of a conventional CMOS
placement accompanied by an H-tree clock network.

Index Terms—Row-based design automation, single-flux quan-
tum (SFQ), placement, routing, clock tree synthesis.

I. INTRODUCTION

DEMAND for high performance and energy efficient
computing has been driving the development of the

semiconductor technology for decades [1]. Until recently,
conventional computing technology based on CMOS devices
and standard metal interconnects has been able to increase
computing performance and energy efficiency fast enough to
keep up with this increasing demand. Unfortunately, with
increasing challenges to physical scaling of CMOS devices
and the conclusive end of Moore’s law in sight, there is a
significant need to find new technologies and design method-
ologies that would allow continuation of performance and
energy efficiency scaling to well beyond the end-of-scaling
CMOS nodes (e.g., an all-around 5 nm gate-length transistor).

Superconducting computing based on the Josephson effect
has the potential to be one such solution. This is because
Josephson junctions (JJs) switch quickly (∼ 1 ps) and dissipate
little switching energy (∼ 10−19 J) [2] at low temperatures. In
particular, rapid single flux quantum (RSFQ) technology was
introduced in the 1980s, which uses quantized voltage pulses
in digital data generation, reproduction, amplification, memo-
rization, and processing [3]. Further, it has been demonstrated
that RSFQ circuits are functional at operating frequencies of
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up to 770 GHz [4]. Recent developments introduce various
approaches, such as new single flux quantum (SFQ) logic fami-
lies, including dual-rail RSFQ [5], self-clocked complementary
logic (SCCL) [6], reciprocal quantum logic (RQL) [7], re-
design of the current biasing network for RSFQ [8][9][10],
and application of low supply voltage for RSFQ circuits [11].
These techniques significantly reduce the power and energy
consumption of SFQ logic circuit realizations [12].

Although extraordinary characteristics such as high fre-
quency and low energy dissipation have been observed, many
problems, including architectures, design automation method-
ologies and tools, and device fabrication require solutions in
order for the SFQ logic to become a realistic option for real-
izing large-scale, high-performance, and energy-efficient com-
puting systems of the future [13]. The increase in integration
density of modern superconducting circuit processes allows
the design of increasingly complex circuits. The layout of such
large circuits requires automated placement and routing tools.
A comprehensive study on the status and capabilities of soft-
ware design tools for superconductive electronics (SCE) was
published in 1999 [14], and some of the main shortcomings
identified then were lack of uniform tool used, even within
institutions, and lack of standardized data formats. However,
design challenges of SFQ logic and tool development did not
receive much attention in the decade thereafter, and a follow-
up review published in 2013 [15] concluded that the status of
SCE software tools was little better than in 1999.

The focus of this paper is to propose a new design method-
ology for large SFQ circuits. An earlier SFQ design method-
ology presented in [16] places cells on a rectangular grid
using the min-cut placement algorithm. Moreover, each cell
is surrounded by a reserved space for clock channels within
which an H-tree synchronous clock is routed to construct a
zero-skew clock scheme. Data signals are routed over the gates
using passive transmission lines (PTLs). The major drawback
of this design methodology is that a considerable portion of
the chip area should be devoted to implementing the H-tree
network, which subsequently increases the chip area.

To reduce the chip area for large SFQ circuits and enable
automated placement and routing of such circuits, a row-
based design methodology is presented in this paper. More
specifically, we present a new design methodology based on
fixed-height but variable-width logic cells, where these cells
are placed in pre-defined rows on the chip to improve the
packing efficiency and automation capabilities of layout tools.
After running a state-of-the-art CMOS placer, cells in each
row are grouped together such that each group contains at
most k ≥ 1 cells with the same logic level. Furthermore, cells
in a group are horizontally abutted. The global clock is then
routed using a novel clock network, called HL-tree, which is
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Fig. 1. Proposed place-and-route algorithm. LAP stands for linear assignment
problem [25], and YSpace denotes the vertical space between each two row.

a combination of H-tree (a zero-skew clocking scheme) and
L-tree (a linear clock propagation mechanism) networks. In
HL-tree, an H-tree is adopted to distribute the clock to groups,
and within each group, a linear path composed of splitters and
JTLs provides the clock to all cells in that group.

Larger values of k result in a smaller H-tree, which means
that smaller reserved spaces are needed for the H-tree con-
struction, reducing the total chip area. As a result of this area
reduction, wirelengths may also decrease, which may in turn
decrease the longest delay on a PTL. However, due to the
sequential distribution of the clock in each group, a clock
skew is introduced which can incur a performance loss. Hence,
deriving the appropriate value of k is crucial in order to reduce
the chip area without degrading the maximum clock frequency.
As a special case, with k = 1, a complete H-tree solution,
same as [16] is obtained, which offers the largest chip area
among different values of k. To evaluate our method, we place
and route a 32-bit Kogge-Stone [18] [19] adder for different
values of k and discuss the effectiveness thereof.

The rest of the paper is organized as follows. Our SFQ
design methodology including placement, different clock tree
synthesis methods, and signal routing are discussed in Section
II. Section III presents analytical models for calculating the
maximum clock frequency of different clocking schemes.
Simulation results of a 32-bit Kogge-Stone adder are reported
in Section IV. Finally, the paper is concluded in Section V.

II. PROPOSED SFQ DESIGN METHODOLOGY

Our proposed design methodology is comprised of three
different phases: (i) cell placement, (ii) clock tree synthesis,
and (iii) routing. Details of each phase are explained in this
section. An overview of the place-and-route algorithm is also
depicted in Fig. 1.

A. Cell Placement

The output of logic synthesis, which is a gate-level netlist,
is input to the placement tool. In addition, the placement tool
needs dimensions and pin locations of each cell (gate). The
placement tool then assigns cells to positions on the chip such
that no two cells overlap with each other and a cost function

(e.g., chip area, total wirelength, or critical path delay) is mini-
mized. An important consideration in the placement problem is
that the placement solution must be routable. Hence, to avoid
multiple costly iterations between placement and routing steps,
routing-aware placement algorithms are of significant interest.

To simplify the design automation of the placement step,
row-based placement techniques are widely used in the VLSI
design community and semiconductor industry. These tech-
niques place (fixed-height, but variable width) cells in rows on
the chip. Furthermore, power interconnects run horizontally
through the top and bottom of cells. Therefore, when cells
are placed adjacent to each other, power interconnects form
two continuous parallel tracks in each row. Clock signal is
distributed through an H-tree network to all cells. Input and
output pins of cells are available at the top and/or bottom
sides of the cell, and are connected by interconnects routed in
the routing channels between adjacent rows. Connections from
one row to another are done either through the surrounding
“ring” or by using feed-through cells. A cell that complies
with these features will be referred to as a standard cell.

To efficiently place netlists with millions of cells, the
following three-step placement algorithm is typically used.
(i) Global placement: the non-overlapping cell constraint is
ignored in this step and approximate locations of cells are
obtained by placing cells in global bins. The main focus of
the global placer is to optimize the cost function by iterating
between the solution of some mathematical program (e.g., a
constrained quadratic or linear programming problem) and a
cell spreading (or bi-partitioning) step. (ii) Legalization: the
output of the global placement must be legalized to remove any
cell overlaps. (iii) Detailed placement: legalization is further
refined by using local adjustments such as cell movement or
swapping to reduce wirelength. The placement legality must
be preserved during the detailed placement. Legalization and
detailed placement are sometimes grouped as one step.

Modern global placement algorithms are based on analytical
methods in which a mathematical analysis is adopted to
optimize the cost function. For instance, SimPL [20] solves
large and sparse systems of linear equations (formulated us-
ing force-directed placement) by Conjugate Gradient method
[21]. More specifically, the force-directed method reduces the
placement problem to that of solving a set of simultaneous
linear equations to determine equilibrium (i.e., zero-force)
locations for cells based on Hooke’s law analogy. Next, cell
spreading is performed by inserting additional forces that pull
cells away from dense regions toward carefully placed anchors
(pseudo-fixed pins). On the other hand, min-cut placement
and simulated annealing-based placement are often used for
performing the legalization and detailed placement steps.

For the SFQ placement problem, we assume that the input
netlist is path-balanced1 and all fan-outs are implemented with
splitters. Our placement tool then initiates by running a global
placement (using SimPL [20]) followed by detailed placement
and legalization, which together generate a legal solution
with the minimum total wirelength. Our proposed clock tree
network can work with this initial placement solution (this is
when we have k = 1), but results in a large H-tree for clock
routing. Accordingly, in our proposed placement approach and
when k > 1, this initial placement solution is refined to
minimize the clock tree cost. For this purpose, the logic level
of each cell in the netlist is needed, which can be generated by

1In a path-balanced netlist, all paths from any primary input to any primary
output have the same logical depth [22]. Any netlist can be path-balanced by
inserting D flip-flops (DFFs) to paths with a smaller depth.
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TABLE I
WIDTHS OF STANDARD CELLS USING MIT-LL SFQEE5 [26]. ALL

STANDARD CELLS HAVE A HEIGHT OF 120 µM, EXCEPT FOR SPLITTER
CELLS USED IN THE H-TREE AND HL-TREE WHICH HAVE A HEIGHT OF 40

µM.

Cell Splitter NOT DFF AND OR XOR NDRO

Width (µm) 30 30 40 50 50 50 50

the logic synthesis tool. The logic level of a cell captures the
stage of the clock signal that is received by that cell. More
precisely, if the longest path from any primary input of the
circuit to a SFQ logic cell in a circuit has a logical depth (in
terms of node count) of l, then the clock stage associated with
that cell is l and the cell will be given level l.

After the initial placement solution is generated by SimPL
[20], for each row, starting from left, we select the first cell.
Assume that the logic level of this cell is i. We then move to
the right and select the first k−1 level i cells. This creates our
first group which is placed at the first column in that row. We
continue the same process to create other groups. Moreover,
cells in each group are horizontally abutted. In other words,
horizontal spaces between cells in a group are removed to
reduce the chip area. By this approach, a group can contain
at most k cells; however, the width of each column is chosen
based on the group with the largest width in that column and
other groups in the column are left aligned.

B. Standard Cells
As stated above, our placement tool utilizes a row-based

methodology. That is, the chip is partitioned into several rows
for placing standard cells. Each SFQ standard cell in our
library is composed of two parts (cf. Fig. 2): (i) A logic
design part (logic part for short), which implements a Boolean
function such as AND, OR, INV, etc. (ii) A built-in clock
distribution part (clock part for short), which is placed above
the logic part. The clock part contains a splitter which provides
the clock signal to the corresponding logic part, and also
passes the clock pulse to the next cell. When the logic part
does not need a clock signal (e.g., splitter or merger cells),
the clock part implements a JTL to pass the clock pulse to the
next cell. As a side note, if cells in a row are sorted based
on their logic level, the built-in clock part without requiring a
PTL can distribute the clock signal to all cells in that row.

In our SFQ standard cell library, using the MIT-LL SFQ5ee
process technology [26], all cells have the same height of 120
µm. More specifically, heights of logic and clock parts of each
standard cell are 80 µm and 40 µm, respectively. However,
widths of standard cells, as reported in Table I, vary from 30
µm to 50 µm. On the other hand, splitter cells that are used
for implementing the H-tree clock network have a height of
40 µm and a width of 30 µm.

For the clock part, four different templates exist which
are shown in Fig. 3. This built-in clock is used to linearly
(sequentially) propagate the clock pulse to all cells in a group.
Accordingly, in a group with k cells, from left to right, Fig. 3
(a), Fig. 3 (b), and Fig. 3 (c) are picked for clock parts of the
first cell, k−2 intermediate cells, and the last cell, respectively.
Fig. 3 (d) shows the clock part for a special case where k = 1
or k > 1 but a group has only one cell. Furthermore, we do
not use JTLs for data signal routing, since (i) JTLs require JJs
and hence occupy the active layer, which in turn complicates
the placement problem, and (ii) JTLs are slower than PTLs

JTL
PTL
JTL Pin
PTL Pin
Splitter
Bias Pillar

Clock 
In

Clock 
Out

OutputInput 1
Logic part

Clock part 
(Splitter/JTL)

Input 2

Fig. 2. A sample standard cell composed of clock and logic parts. Clock part
has different templates which are shown in Fig. 3.

(a) (b) (c) (d)

JTL PinJTL PTL Pin Splitter

Fig. 3. Four templates for the clock part of our standard cells.

especially for long-distance communications. Therefore, data
nets are routed using PTLs.

C. Clock Tree Synthesis
Clock tree synthesis is a process that makes sure that the

clock signal is properly distributed to all sequential elements
in a circuit. Clock routing is performed before signal routing
to avoid competition for resources occupied by signal nets. In
SFQ circuits, a D flip-flop (DFF) is included in each logic cell
(except for splitters and mergers). As a result, the clock tree
network is significantly larger in SFQ circuits compared with
that of CMOS circuits. Accordingly, the clock tree synthesis
must be given a very high priority in SFQ designs.

Assuming that a zero-skew clock scheme (i.e., the clock
tick simultaneously arrives at all registers) is available, which
can be done using the H-tree clock network, one may directly
use the output of the CMOS placement tool for placing SFQ
circuits. This approach has been adopted in [16], which uses
the min-cut placement algorithm for deriving cell positions.
Although the results can be improved by using state-of-the-
art placement tools, such as SimPL [20], the main issue is
the implementation of the H-tree clock in SFQ circuits. Since
almost all SFQ cells require a clock signal, a huge H-tree
network is needed especially in large circuits, which in turn
decreases the chip density (i.e., portion of the chip used for
logic cells).

To alleviate the high cost of the clock network in large SFQ
circuits, we propagate the clock to all cells using a novel clock
network called HL-tree. After grouping at most k cells of the
same logic level in each row, the global clock is simultaneously
transfered to the first cell from the left of each group using a
partial H-tree. Inside each group, the clock signal is propagated
from the initial cell to the rest of the cells in that group using
the built-in clock part. By using our HL-tree, since horizontal
spaces between cells in a group are removed, the chip area
is reduced. Consequently, total wirelength may also decrease.
This is especially important if the maximum wirelength that
results in the longest PTL delay is decreased. However, due to
the sequential distribution of the clock inside groups, a clock
skew is introduced. Hence, we place and route the netlist for
different values of k.

Two other clock networks have also been considered in this
work. (i) H-tree: for k = 1, a large H-tree is implemented to
transfer the clock to all cells in the circuit. In this case, the
built-in clock part of standard cells is not needed and thus
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is removed. (ii) L-tree: after obtaining the initial placement
solution, cells in each row are sorted in the increasing order
of their logic level. The clock signal is provided from the
left side of the chip, and a combination of PTLs and splitters
distribute the clock signal to the first cell in each row. Clock
signal is then transfered to all cells with the same logic level as
the first cell using the built-in clock part. Moreover, the clock
signal is propagated from the last cell of the group with the
max number of cells of logic level i, among all rows, to all the
first cells of the logic level i+1, in all the other rows, using a
combination of PTLs and splitters. Further, the clock signal is
propagated to the first cell of level i+1 in the same row using a
splitter and JTL connection. In this way, clock is synchronized
when each logic level has finished its computation. Although
this method, compared with the H-tree and HL-tree networks,
leads to a much lower chip area, it significantly degrades the
performance. This is because of the large clock skew imposed
by the large number of same level cells that may appear in a
row (in HL-tree, we can control this undesired clock skew by
choosing relatively small k values). The HL-tree and L-tree
clocking networks are shown in Fig. 4.

D. Routing

Given a placed netlist, a signal routing solution determines
the necessary wiring, including net topologies and specific
routing segments, to connect cells while meeting design rule
constraints and routing resource capacities. Inputs to the
routing problem are given in open standard library exchange
format (LEF) and design exchange format (DEF) files, which
together represent the complete physical layout of an inte-
grated circuit in an ASCII format. Specifically, LEF includes
design rules and abstract information about the cells, whereas
DEF represents the netlist and circuit layout.

Routing of signal nets is performed in two steps. (i) Global
routing, whereby wire segments are tentatively assigned to
coarse-grain routing regions. If routing resources (e.g., number
of metal layers) are insufficient, global routing may fail.
Therefore, the global router can determine if a given placement
is routable in the given technology. (ii) Detailed routing,
whereby specific routing tracks, vias, and appropriate seg-
ments of metal layers are assigned to each net in a manner that
is consistent with the given global route of the net in question.
Accordingly, the detailed router must account for design rules.

Authors in [27], have proposed an advanced SFQ-specific
routing methodology using PTLs, considering timing variabili-
ties of active devices and PTLs, by adding additional PTLs for
delay insertion using an integer linear programming method.
On the other hand, our routing tool is built on top of the
open-source Qrouter tool [23], which is developed based on
the standard Lee maze router algorithm. Given LEF and DEF
files, the routing area is partitioned into a two-dimensional grid
of routing tracks. A wave propagation method connects the
identified source and target nodes while avoiding obstructions
during propagation and calculating the corresponding cost
along multiple paths. The L-shaped or doglegged paths with
the lowest cost are then traced back to the source node from the
target and committed to memory. The grid positions occupied
by routed paths become obstructions for future routes on other
nets (or become additional source or target nodes for further
routing of the same net).

There are two steps to complete the routing of a circuit. The
first step seeks to find the routing solution for each net one
at a time according to some net ordering, while keeping track

i A cell with 
logic level i

JTL
PTL 1
PTL 2

JTL Pin
PTL Pin
Splitter
Via

a) L-tree  

b) HL-tree 

2 2 2 1 1 11

3 3 334 4 44

Clock

221 1 21 2

Clock Splitter with PTL receiver/transmitter

1 1 2 2 32

Fig. 4. (a) L-tree and (b) HL-tree (k = 4) clock networks. Numbers in each
cell indicate the logic level of the cell. L-tree placement shown in (a) routes
the clock signal inside each group without PTLs, whereas HL-tree placement
requires PTLs to transfer the clock signal to the first cell of each group.

of any failed net in a list. In the second step, each net that
had previously failed is routed again, this time allowing the
router to create shorts with other routed nets. Subsequently, all
such shorted nets are removed and added to the list of failed
routes. This process continues until all nets have been routed.
To avoid an infinite loop in this iterative rip-up-and-re-route
process, the same sequence of rip-up and re-route for two nets
is not allowed to happen more than once. In addition, four
corners of our standard cells are reserved for bias pillars, and
clock and signal PTLs cannot be routed through these reserved
zones. We handle such cases by introducing “no-route zones”
in the Qrouter tool.

III. PERFORMANCE MODELING

The minimum clock period (TCLK) of the HL-tree clock
network is calculated as follows (cf. Fig. 5):

TCLK = max
u,v∈G,i,j∈C,(i,j)∈N

u6=v,i6=j

{skewu,v + (pu,i − 1)tsplit+

tc2qi + tpdi,j
+ tsetupj

}+ tmargin, (1)

where G, C, and N denote the sets of all groups, cells, and
nets, respectively, in the netlist, skewu,v is the difference
between clock arrival times of the first cells in groups u and v,
pu,i is the position of cell i in group u (assuming that the first
cell from the left in a group is in position 1), tsplit denotes
the delay of propagating clock through the built-in clock part
of cells which is equal to the splitter delay, tc2qi represents
the clock to Q delay of cell i, tpdi,j is the propagation delay
(including PTL receiver and transmitter delays) from cell i to
cell j, tsetupj

represents the setup time of cell j, and tmargin

accounts for the required margin due to parameter spread. The
aforesaid equation calculates propagation delays for all pairs
of connecting cells and returns the maximum value as the
maximum achievable clock period.

In Equation (1), tsplit and tc2qi are much smaller than tpdi,j

due to the fact that tpdi,j
is composed of PTL transmiter
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Fig. 5. The maximum clock frequency evaluation for HL-tree clock network.

and receiver delays as well as the propagation delay through
the PTL wire, which is dependent on the longest path in the
design; however, tsplit is a constant value, i.e., the propagation
delay through a splitter cell. Hence, the bottleneck for the
maximum achievable frequency is the longest path in the
design which should be reduced as much as possible. On the
other hand, if a complete H-tree is used to propagate the clock
signal to all cells in the design, pu,i is equal to 1 for all cells,
eliminating the term (pu,i − 1)tsplit from Equation (1).

The maximum clock frequency for the case of L-tree clock
network is mainly dependent on the maximum number of same
level cells in a row. The minimum clock period for L-tree clock
network is obtained as follows:

TCLK =max
l∈L
{(max

u∈G
(pu,l)− 1) · tsplit+

max(tBT , tpdl,l+1
)}, (2)

where L and G represent the set of all logic levels and the
set of all cell groups, respectively. tBT denotes the delay of
the binary tree which is used to propagate clock from the
last cell in level i to all the first cells in level i + 1 among
different rows, which consists of delays of splitters, PTL
transmitters and receivers, and is logarithmically dependent
on the the number of groups with logic level i + 1. The
maximum propagation delay between all cells of level l to all
cells of level l + 1 (tpdl,l+1

) is also a function of the longest
path in the design. Consequently, the maximum value of the
signal propagation delay (tpdl,l+1

) and the clock propagation
delay between consecutive levels (tBT ) should be added to the
minimum clock period. As it could be observed, the maximum
clock frequency for the L-tree design is lower than those of
H-tree and HL-tree designs because of the large overhead
of linear clock propagation in cells of the same logic level,
and also the binary tree delay to transfer the clock signal to
next level logic. The maximum clock frequency in the L-tree
design is achieved when all the cells of same logic level are
distributed uniformly among the rows, and number of cells in
different logic levels are close to each other. For instance, if
there are n cells, l logic levels, and k rows, then the maximum
possible clock frequency happens when there are

n

l
cells in

each logic level and each row consists of
n

l · k
cells.

IV. SIMULATION RESULTS

To implement the global placement, we adopt a methodol-
ogy similar to SimPL [20]. The main purpose of the global

placement is to reduce the total interconnect length which
could be approximated by half-perimeter wirelength (HPWL)
denoted by:

HPWL = HPWLx +HPWLy (3)

where

HPWLx =
∑
e∈E
|max(xi)|i∈e − |min(xi)|i∈e (4)

HPWLy could be calculated in a similar manner. A set
of cells with connections to each other represents a graph
G(V,E) with set of edges E, where e denotes a hyperedge (a
multi-pin net), and set of vertices V denoting cells, with edge
weights wij representing the cost of each net. Consequently,
the total wirelength, θ, can be calculated as:

θ =
∑
i,j

wi,j((xi − xj)2 + (yi − yj)2) (5)

which could be rewritten in each of the x and y coordinates
as follows [20]:

θx =
1

2
~xTAx~x+BT

x ~x+ const. (6)

The Hessian matrix A represents the connection between
movable cells and B denotes the connections between movable
and fixed cells. Based on [20], (6) could be reduced to:

Ax~x = −Bx (7)

For the placement problem, an initial random placement of
cells is generated. Then, based on the Bound2Bound (B2B)
net model [24] and the initial location of fixed and movable
cells, A and B matrices are calculated and (7) is solved using
Conjugate Gradient method [20][21].

Once the new locations are calculated, A and B matrices
are updated and (7) is solved again. This step continues until
the HPWL reduction decreases to less than a preset threshold
value. This step is usually completed in 5-13 iterations de-
pending on the number of cells in the design. Next, based on
an algorithm similar to look-ahead legalization (LAL) [20],
grids are formed throughout the chip and in each grid cell,
based on the location of the fixed and movable cells, pseudo
pins are located and matrices A and B are updated. Solving
(7), generates the new location of the cells, and cells are
moved toward the lower density areas of each grid cell to
remove overlaps. LAL algorithm is performed until the ratio
of cell area to whitespace area in each grid cell is less than a
preset threshold value (called the overfill ratio). Legalization
and detailed placement are then performed to generate the
solution with the minimum wirelength. Furthermore, based on
the logic level of the cells, placement algorithm modifies the
cell locations based on our proposed SFQ-specific placement
method.

In this method, cells with the same level are grouped
together based on their initial ordering, produced by the global
placement. We start by the first cell with logic level i, and
group that cell with the first k − 1 cells of the same logic
level in the same row. We repeat this process for all cells in
each row until all cells are grouped. Furthermore, in each cell
group, a linear assignment problem (LAP) [25] is formulated
as follows. The area dedicated to the placement of n cells
is subdivided into n slots with an equal size, and the cost
of assigning each cell to each slot is calculated in terms of
the HPWL. The corresponding LAP is then solved to come
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32

Fig. 6. Part of the layout of the 32-bit Kogge-Stone adder after SFQ-specific placement and routing.

TABLE II
COMPARISON OF DIFFERENT CLOCKING SCHEMES IN TERMS OF THE

TOTAL CHIP AREA AND THE MAXIMUM CLOCK FREQUENCY FOR A 32-BIT
KOGGE-STONE ADDER. M DENOTES THE NUMBER OF PTL LAYERS USED

FOR ROUTING.

Clock Network Chip Area (mm2) Clock Frequency (GHz)

M = 4 M = 5 M = 4 M = 5

H-Tree 29 29 17.9 17.9
HL-Tree (k = 2) 24 24 17.4 18.5
HL-Tree (k = 3) 22 22 10.6 18.1
HL-Tree (k = 4) 21 21 10.4 16.7

up with the best ordering of the cells in the group to further
refine the placement and improve HPWL. Note that for the
case of L-tree placement, all groups of the same logic level are
attached to each other, and groups are sorted in the increasing
order of the logic level.

Clock nets are then connected from the global clock pin

(denoted by GCLK) to all cells in the circuit using H-tree,
HL-tree, or L-tree clock networks. These new clock nets are
also added to the netlist, and the updated netlist is passed to the
Qrouter tool [23] to complete clock and signal routings. The
router algorithm starts with the original placement and tries
to connect all the nets. If there are no failed nets, the routing
is finished. However, if some nets cannot be connected due
to high congestion in the routing tracks, the vertical space
between each two row (YSpace) is increased. We use a binary
search algorithm to find the minimum total area for which
there are no failed nets after the routing is performed.

We have tested our placement and routing methodology on
a 32-bit Kogge-Stone [19] adder, and generated final routing
results for H-tree, L-tree and HL-tree clocking schemes. For
the adopted adder, the total number of cells and data nets
(signals) are 1, 645 and 2, 147, respectively, and the maximum
logic level of a cell is 13. The total number of nets added for
clock routing in the case of L-tree, HL-tree (k = 4), and H-tree
are equal to 296, 1, 045, and 2, 415, respectively.
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Results of the total chip area after routing with 4 and 5 PTL
layers and different clocking schemes (H-tree, HL-tree with
group sizes of 2, 3, and 4) are shown in Table II. The minimum
chip area which could be achieved using H-tree is 1.38× larger
than that of HL-tree. Based on our simulations, performing
cell reordering based on logic level after the placement makes
the routing of the signals easier, and results in a lower chip
area compared with the case where conventional placement
is performed. Part of the final layout of HL-tree with (K =
2) placement and routing is depicted in Fig. 6. Using (1),
maximum achievable frequencies for H-tree, HL-tree using
groups of size 2, 3, and 4 approaches are reported in Table II.

In our current designs, the maximum wirelength due to the
large size of current cells is significantly large. For instance,
in the case of H-tree design, the longest path length is 4, 170
µm, which is propagated using PTLs. Assuming a propagation
velocity of 100 µm/ps for PTLs, the longest path delay is 41.7
ps, which significantly affects the maximum clock frequency.
The same issue degrades the maximum clock frequency of
HL-tree networks for group size of 3 and 4 using 4 metal
layers. By increasing the number of metal layers, this issue
can be resolved and frequency can be increased by more
than 1.7×. To further address this issue, we are redesigning
our logic cells to reduce the overall chip area and hence the
longest wirelength. Another approach to alleviate the longest
path problem is to use repeaters for long wires.

V. CONCLUSION

We presented a row-based design methodology, where fixed-
height cells are placed in rows on the chip. To obtain a low
cost and more practical clock network, a space is reserved
above each row which uses a combination of splitters/JTLs
and PTLs to distribute the clock signal to all cells in a row.
After obtaining the output of a state-of-the-art conventional
placer, cells of the same logic level in each row are divided
to subgroups, and clock is propagated to first cell of each
subgroup using a partial H-tree. Furthermore, to reduce the
use of PTL wires for clock routing within each row, clock
is propagated from each cell of subgroup to the next cells,
using a combination of JTLs/Splitters. Therefore, most of the
PTL resources are available for signal routing which results
in smaller number of PTL layers and/or smaller chip area to
complete the signal routing by using HL-tree approach com-
pared with a H-tree clocking methodology. Simulation results
of a 32-bit Kogge-Stone adder also point to the effectiveness
of our proposed design methodology in reducing the overall
chip area. Also, it is observed that by increasing the number of
PTL layers in the process fabrication, chips with smaller area
can be achieved. For instance, by increasing the PTL layers
from three to four and using our HL-tree placement approach,
we can reduce the chip area by 23%. As a future work, we
will integrate new constraints that capture the logic levels into
the mathematical formulation of the force-directed placement
in order to come up with the minimum total HPWL while
maintaining the ascending order of levels in each row.
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