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Abstract—This paper presents a novel method for accurate
margin calculation of single flux quantum (SFQ) logic cells in
a superconducting electronic circuit. The proposed method can
be utilized as a figure of merit to estimate the robustness of a
logic cell without the need for expensive Monte-Carlo simulations.
This is achieved through efficient state-space exploration of all
parameters in the cell structure. Using the proposed approach,
distinct parameter dispersion (DPD) based yield of SFQ cells
increases by 55% on average, compared with state-of-the-art
techniques.

I. INTRODUCTION

Development of the semiconductor technology has been
driven by the demand for higher performance and energy effi-
cient computing for decades. Although conventional CMOS-
based technology has been able to provide high performance
energy computing fast enough to keep up with the demand, it
has encountered serious challenges such as high temperature
and power consumption [1]. Hence, there is a significant
demand to search for new innovations that would permit
continuation of performance and energy efficiency scaling to
well beyond the end-of-scaling CMOS nodes.

Superconducting electronics (SCE), including rapid single
flux quantum (RSFQ) logic family, appears to be one of the
most promising technologies to replace CMOS devices, pri-
marily due to fast switching and low energy consumption. This
is as a result of special attributes of Josephson junctions (JIs),
basic circuit elements in SFQ logic, such as fast switching (~
1 ps) and low switching energy per bit of (~ 10719 J) at low
temperatures [2]. In particular, RSFQ technology uses quan-
tized voltage pulses in digital data generation, reproduction,
amplification, memorization, and processing [3]. Furthermore,
it has been demonstrated that RSFQ circuits are functional at
operating frequencies of up to 770 GHz [4].

In spite of many extraordinary characteristics of SFQ logic,
such as low energy dissipation and high performance com-
putation, architectures, design automation methodologies, and
device fabrication require solutions in order for the SFQ logic
to become a realistic option for realizing large-scale, high-
performance, and energy-efficient computing systems of the
future [2]. The increase in integration density of modern super-
conducting circuit processes allows the design of increasingly
complex circuits. However, design challenges of SFQ logic
and tool development has not received much attention in the
past decades.

RSFQ gates are implemented using two-terminal Josephson
junctions. This characteristic decreases the input and output
impedance, increases the sensitivity of the circuit to variations

of the component parameters and consequently complicates
the design of a single gate [5]. Fabrication process is also
significantly different from conventional CMOS process, and
process variations are larger in current fabrication processes
[5]. Additionally, cell variants are required in cell libraries
to allow automated place-and-route, with support for different
layouts depending on the configuration of inputs/outputs. Cell
variants are used based on trade-offs between propagation
speed, operating margins and bias current [6][7].

To develop reliable cell structures prone to process varia-
tions, accurate methods for reliability evaluation are necessary.
Critical margin calculation and yield analysis using Monte-
Carlo (MC) based simulations have been extensively used to
estimate the robustness of a logic cell [5][8].

Yield of a cell is defined as the ratio of number of cells
operating correctly to the total number of cells. Assuming each
parameter in the cell structure to have a normal distribution
with specified mean and standard deviation, yield can be
quantified using MC simulations. Although calculated yield
may be a good indicator of cell reliability, it is computationally
expensive. Furthermore, using MC based yield estimation
throughout the cell optimization process is inefficient. This
is primarily due to the fact that a large number of simulations
should be performed at each iteration of the optimization
process and after each change in the component parameters.
Therefore, it may only be used at the final stage of optimiza-
tion process to quantify the robustness of the optimized cells.

A simpler method of robustness evaluation called Critical
Margin calculation has been widely used in the literature
[O1[5][8]. In this method, a binary search over a predefined
range of values for each parameter is performed while all
other parameters are fixed at their nominal values. Every
time a parameter is changed, cell is tested. Upper and lower
bound values for each parameter calculated in this manner are
denoted as parameter margins. Critical margin is calculated as
the smallest margin among all parameters in the cell. However,
as this method only considers alteration of each parameter
while other parameters are fixed at their nominal values, it
can not capture the dependence of parameters on each other.
Hence, critical margin fails to evaluate the robustness of a cell
accurately [8].

The focus of this paper is to propose a new margin calcu-
lation method for SFQ cells with large number of parameters.
The primary goal of this method is to calculate a set of margins
for which the cell yield will be nearly one if all parameters
lie within specified margins. To the best of our knowledge, no
previous work has been done on accurate margin calculation



of SFQ cells. The key contributions of this paper can be
summarized as follows.

« We present a novel margin calculation algorithm to esti-
mate a set of margins for all parameters in a logic cell
such that if all parameters are spread inside these margins,
yield is nearly one.

o The proposed algorithm works irrespective of the cell
structure and topology.

o The proposed algorithm can be used to evaluate the
robustness of a cell throughout the optimization process
efficiently, using small number of simulations.

The rest of the paper is organized as follows. Theoretical
background are discussed in section II. Proposed margin
calculation methodology is presented in Section III. Simula-
tion results are reported in Section IV. Finally, the paper is
concluded in Section V.

1I. THEORETICAL BACKGROUND
A. SFQ Technology

Information in SFQ technology is represented by short pico-
second voltage pulses of quantized area rather than dc voltage
(as in CMOS). These SFQ pulses can be generated, repro-
duced, memorized and amplified using elementary components
called Josephson junctions (JJ) [9]. The area of the produced
pulses can be calculated as follows.
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where ®( represents a single quantum of superconducting flux,
V (t) denotes voltage across junction, h is the Planck constant
and e is the electron charge. Current-phase and voltage-phase
relation in JJs can be quantified as follows.
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where ¢ is the phase of the junction and J. denotes the critical
current density. If current density through a JJ is greater than
Je, a voltage pulse (V(t)) is formed across JJ. This causes
the JJ to exit the superconducting state and enter the normal
state. Once JJ returns to the superconducting state, junction
goes through a 2m-leap. For a detailed explanation of magnetic
flux quantization see [9]. Fig. 1(a) illustrates the schematic
view of a splitter cell. It consists of several JJs and inductors.
Additionally, JJs are biased by DC-currents, denoted by I.
An input pulse triggers a 2m-leap in J1. Consequently, a
pulse is generated which flows through J2 and J3 which
in turn generates pulses at outputs B and C (cf. Fig. 1(b)).
Both branches of the splitter cell are identical. Hence, current
flows equally through both branches. Furthermore, inductance
values should be chosen such that &, is reproduced over
appropriate time-width window. Operation of splitter cell is
shown in Fig. 1(b). Typical cells in SFQ design have a single
fan-out. Therefore, to propagate a pulse to multiple cells,
splitters should be used. Furthermore, generating multi-input
cell structures is not trivial. Input/output interfaces should be
modified to be able to support multiple inputs and outputs [7].
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Fig. 1. (a) Circuit diagram for Splitter cell. (b) Simulation
results.
B. Margin

Margins are defined as the amount of acceptable variations
in external parameters (e.g., bias current) and internal param-
eters (e.g., JJ critical current and inductance values) for which
the cell functions correctly [5]. In other words, margins of
a parameter are upper and lower limits for which the cell
will produce correct output behavior. Correct operation of a
cell is determined by pass/fail criteria. In this paper, pass/fail
is determined using a hardware description language (HDL)
model which describes the correct operation of a cell [10].
This model describes the order in which junctions switch and
the behavior of all internal nodes within the cell [5].

Throughout this paper, following terms and notations will
be used. Margins are reported as percentage of deviation from
nominal value. Assume a parameter j has a nominal value of
N;. Upper bound margin of u% means the cell still works
correctly if parameter j changes to N; * (14 w). Similarly, if
lower bound margin for this parameter is —{%, cell functions
properly if parameter j is set to IV, % (1 —1). A passing set is
defined as set of parameters for which cell functions correctly
(i.e., as specified by the HDL model). Likewise, a failing set
refers to set of parameters for which cell does not function
correctly.

C. Line Search

This is the most popular technique for margin calculation
[5]. Margin for each parameter is calculated while others are
fixed at their nominal values. Given a stopping criterion and an
initial range for each parameter, a binary search is performed
to calculate the upper bound and lower bound values for each
parameter such that cell functions correctly [10].

Circuit diagram for an AND2 (2-input AND gate) cell is
shown in Fig. 2. It has 20 parameters, including different
inductance values (L1 — L8), junctions (J1 — J9), and biasing
currents (/1 — I3). Calculated margins for all parameters in
AND?2 cell using Line Search (LS) method is depicted in
Fig. 3. As it can be observed, values for parameter J8 can
deviate from —72% to +25% of its nominal value while
other parameters are fixed. Binary search for each value is
performed using an initial bound of +100%. As search range
drops below the target accuracy search is terminated. Critical
margin is defined as the smallest margin among all parameters.
In the case of AND2 gate, the critical margin is equal to 25%.
Although critical margin is relatively easy to calculate, it is not
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Fig. 2. Circuit diagram for AND2 cell.
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Fig. 3. Margins for each parameter of AND2 (2-input AND)
gate calculated using Line Search (LS) method.

a good representative of the robustness of a cell as it assumes
all other parameters to be fixed at their nominal values and
ignores the dependence of variables on each other. This is
only valid if all the parameters are independent of each other
which is never the case [5]. Additionally, this method does not
guarantee that cell functions correctly if all parameters change
to their upper bound or lower bound margins simultaneously.

D. Yield Analysis

The yield of a cell can be quantified as the number of
cells working correctly divided by the total number of cells.
To estimate the yield reliably, each parameter should have a
statistical distribution specification and a large number of cell
simulations should be performed.

One method for relating the margin and yield concepts
can be defined as follows. Assume all parameters to have
independent normal distributions around their nominal values
and standard deviations (o) proportional to their corresponding
margins. Calculating the yield using these parameter variations
can be used to evaluate the accuracy of margin calculation
techniques [8].

In this paper, MC simulations are performed to evaluate the
accuracy of calculated margins similar to [8]. It is assumed
that all parameters have independent normal distribution and
each parameter has a mean value equal to its corresponding

nominal value. Additionally, each parameter can have two
different standard deviation (SD) values. 1) identical param-
eter dispersion (IPD) refers to the calculation in which all
parameters have the same standard deviation. In this analysis,
30 value is set to the critical margin of the cell. This method
indicates robustness of a cell if all parameters have same
variation while parameter spread is limited to smallest margin
among all parameters. 2) distinct parameter dispersion (DPD)
analysis assumes each parameter has a 30 value equal to
its own margin. If lower and upper bound margins for each
parameter are different, minimum value is chosen as the 3o
value. In this manner, the probability that MC samples lie
within the calculated margins for each parameter is more than
99%. This method is more realistic than IPD as different
parameters (e.g, inductors or Josephson junctions) may have
different fabrication processes and hence distinct parameter
spreads.

For the case of AND2 gate and LS margin calculation
method, IPD and DPD based yield values are equal to 92%
and 45%, respectively. As it can be observed, DPD based yield
is low. This indicates that although the critical margin value
calculated by this method may be accurate, reported margin for
each parameter is highly optimistic, as a direct consequence
of ignoring the dependence of different parameters on each
other.

III. PROPOSED METHOD

Based on the proposed margin and yield definitions, the
idea is to calculate a set of margins for all parameters in the
design, such that calculated yield is one if all parameters lie
within these margins. Our proposed solution is more accurate
than LS method as it considers the dependence of variables
on each other. In other words, the goal is to calculate a set of
margins for which IPD and DPD yields are near one. Proposed
method can be directly used as a figure of merit to indicate
the robustness of a cell design.

Two approaches are introduced for accurate margin calcu-
lation. 1) individual parameter update (IPU) and 2) simulta-
neous parameter update (SPU)

Inputs to both algorithms are the parameters in the cell
design and an HDL model describing the correct operation
of the cell. Details of both approaches are explained in the
following subsections.

A. Individual Parameter Update (IPU)

In this algorithm, a set of simulations are performed to
calculate the margin for each parameter. Psuedo code for
IPU algorithm is given in Algorithm 1. The process starts
by creating variables (X;) representing the value of each
component in the cell design. All variables are initialized to
their corresponding nominal value (line 0). In each iteration,
upper margin for one parameter (U}gj) is updated using LS
method, while other parameters are fixed (line 3). This is
achieved by UpdateByLS function which calculates the upper
bound for each parameter given input parameters. Next, the
mean value for X;, namely M3 X, is calculated as the average

of upper bound value (Ux ) and previous value (X =1y of the
corresponding parameter (11ne 4). A simulation is performed



while variable j is changed to M} X, and other parameters are
fixed. If the simulation for this set of parameters fails, M¥
value is updated until a passing set is achieved (lines 5- 9)
Once a mean value M X, is found such that cell functions
correctly for given set of variables, X; ¢ value is updated to
its corresponding mean value M (hne 10). The algorithm
continues by calculating the upper bound for next parameter
while some of the parameters are updated to their mean values
(X k,Vk = 1...7 — 1) and others are fixed at their previous
values (X; ', Vt = j...p) (cf., Alg. 1 line 3).

Parameter update and cell simulation continues until stop-
ping criteria is satisfied (lines 12-14), that is, once the absolute
difference between previous value (X]Z._l) and current value
(X]’@) for all parameters is less than a predefined threshold
value. Output of IPU algorithm is a set of upper bound margins
for all parameters. Lower bound margins can be calculated by
replacing lower bound values (Lé) by upper bounds in the
Alg. 1. If there are n parameters in the cell design, possible
set of values for all parameters forms an n-dimensional space.
Cartesian product of calculated margins defines a hyper-
rectangle in n-dimensional space. If all parameters lie within
the given hyper-rectangle, the cell functions as specified in the
HDL model.

Assuming a cell contains only three parameters (X, Y, and
7)), IPU algorithm works as follows. First, upper bound for
X is calculated while Y = Y° and Z = Z°. Mean value
for X is calculated as average of X° and U$. If the cell
works with the set of parameters (X = ML, Y% 7% X1 is
updated to M. Otherwise, it continues updating M3 until a
passing set of parameters is found. Next, the upper bound for
Y is calculated while X = X! and Z = Z°. Similarly, Y is
updated to its mean value Y = My (lines 5-9). Finally, upper
bound for Z is calculated considering X = X! and Y = Y''.
The algorithm continues updating parameters X, Y, and Z
until none of them can be updated anymore, or the difference
of current and previous values for all parameters drop below
a predefined threshold value.

B. Simultaneous Parameter Update (SPU)

Psuedo code for this algorithm is given in Algorithm 2.
This is different than the Alg. 1 as it updates all parameters
to their corresponding mean value simultaneously rather than
individually.

Initially, all parameters are set to their nominal values
and LS is performed to calculate the upper bound for each
parameter. At each iteration ¢, mean value (M)i(,) for all
parameters is calculated as the average of their upper bound
(U;gl) and previous value (X!~") (cf., Alg. 2 lines 2-4). If
the cell does not function correctly given these mean values,
all mean values are updated until a set of passing points is
found. This is achieved through averaging mean value and
previous value for each parameter (lines 5-9). Once a passing
set is found, all parameters are updated to their mean values
(lines 10-12). Additionally, upper bounds for all parameters
are updated using LS method (line 16, UpdAlIByLS function
updates all upper bounds.) Similar to Alg. 1 stopping criteria is
met once the absolute difference between previous and current
value for all parameters is below the predefined threshold.

Algorithm 1 Individual Parameter Update (IPU)

Initialize X;° for j = 1...p
Initialize j=1, i=1, stop=false

1: while (!stop) do
2:  for each j in j=1...p

3: U, = UpdateByLS(X, X VE=1..5-1,t=
j---p) i i1

4 M;( = 7Xj * J

i 2 .

5: if (!pass(X};,,M}(j,Xf’l,Vk =1.j—1,t=j+
1...p)) '_ .

6: while (!pass(X,g,M;‘(j,X;—l,Vk =1.j—1,t=
j+1..p) do

4 MX Xz 1

7: M)L( =

8: end while

9: end if

10: X; =M,

11: end for

12:if (abs (X} — X/ ') < threshold, Vj = 1...p)

13: stop = true

14: end if

15: i=1i+l
16: end while

Assuming a cell with three parameters (X,Y and Z2),
the SPU algorithm works as follows. Initially upper bounds
(US,UY, and U$) are calculated using LS method. Mean
values are calculated as average of upper bound and initial
values (X°,Y9, and Z°). Until cell functions correctly, mean
values are updated by averagmg mean values and previous

values (e.g., Ml x = M) Once cell passes the test, all
parameters are updated to their mean values and upper bound
for each parameter is updated using LS approach. The final
X; values denote a set of margins representing the upper
bounds for all parameters. Similar to Alg. 1, lower bound
margins can be calculated by replacing lower bounds (L )
with upper bounds. Upper bound and lower bound margiﬁs
for each parameter define an interval. Consequently, a hyper-
rectangle is formed as Cartesian product of all intervals. If
all parameters lie within this hyper-rectangle, the cell should
function correctly.

Alg. 2 uses fewer number of simulations to calculate the
margins compared with Alg. 1. The reason is that Alg. 2
updates all parameters at once, rather than individually in
the case of Alg. 1. Therefore, it moves faster towards the
boundaries of hyper-rectangle of passing points. On the other
hand, resulting margins may be more conservative compared
with Alg. 1 as it is searches for multiple parameters (i.e., a
set of parameters) for which cell functions correctly. This is
in contrary with searching for a single parameter by changing
individual variables as in Alg. 1.

Intuitively, Alg. 1 is similar to taking small steps toward
finding margins (boundaries of hyper-rectangle) whereas Alg.
2 takes larger steps towards boundaries.

Consequently, a hybrid approach is presented to calculate a
larger set of margins than that of Alg. 2 using fewer number



Algorithm 2 Simultaneous Parameter Update (SPU)

Algorithm 3 Hybrid Margin Calculation (HMC)

Initialize X;°,U;° for j = 1...p
Initialize j=1, i=1, stop=false

1: while (!stop) do

2:  for each j in j=1..p
. U;(71 +X;71
3: M;{J = Jf
4: end for ‘
5: if (!pass(Mg(ij =1...p)
6: while (!pass(M}}j,Vj =1...p)) do
i i—1
. 7 — ]\/[Xj + X;
7: X, =5
8 end while
: end if
10:  for each j in j=1...p
11: X; = M&j

12:  end for ‘

13:if (abs (X! — XI™') < threshold, Vj = 1...p)
14: stop = true

15: end if

16: Ut = UpdAlIByLS(X?, Vj = 1...p)

17: i=i+1

18: end while

of simulations than Alg. 1.

C. Proposed Hybrid Approach

Hybrid margin calculation (HMC) approach starts by using
Alg. 2 to calculate an initial set of margins. To reduce
total number of simulations during running Alg. 2, we only
calculate upper bounds (Ux;) once and not in every iteration
(i.e., line 16 in Alg. 2 is skipped.) Let’s denote these margins
as a passing set, namely P. Furthermore, a set of mean values
for which cell fails to function correctly and is farthest away
from P is recorded using Alg. 2. This set of points is called F'.
It is worth mentioning that since initial upper bound margins
are calculated using LS method, there is no guarantee that set
of upper bound values is a passing set. Hence, this set can be
a candidate for F' (cf., Section II-C). Also, an empty vector is
initialized to keep track of passing sets generated throughout
HMC method as B (Alg. 3 line 0).

At first, we find passing sets by changing only one param-
eter from set F' as follows. Mean value for each parameter is
calculated as the average of its corresponding Py, and Fx,
values (line 2). If the cell functions correctly using set of
parameters (X,i,M)i(j,XZ_l,Vk =1.j—-1,t=7j+1.p),
this set is added to vector B (lines 3-5). After iterating all pa-
rameters, we check vector B. There are two possible cases. 1)
Vector B is not empty, hence at least one passing set is found.
In this case, function findOptimalSet(B) finds the passing
set for which sum of all margins is maximized. Consequently,
optimal set B,y is the output of the algorithm (lines 7-9). 2)
Vector B is empty. Hence, we have not found any passing sets
yet. In this case, all parameters are set to their corresponding
values in Fx,. At each iteration, we update one parameter to
its mean value (M ;) and check whether the circuit works given
updated parameter. If (X}, X; ', Vk = 1..j,t = j + 1..p)

Calculate Px,, Fx, forj=1..p
Initialize j=1, i=1, stop=false, B = {}

1: for each j in j=1...

i Fx, + Px;
2: X, = 5
3 if (pass(FXk,Mﬁ(j,Vk =1.5—-1,5+1..p)
4: add ({Fx,,M% Vk=1..j— 1,7+ 1..p}) to B
5: end if ’
6: end for
7. if (!B.empty())
8:  Bopt = findOptimalSet(B)
9: return B,
10: end if
11: Initialize X; to Fx, forj=1..p
12: while (!stop) do
13: for each j in j=1...

oy

14: Mg(j =2 _-J
15: X =M,
16: if (pass (X}, X} '.Vk=1..j,t =j+ 1..p))
17: return { X}, X; "', Vk =1...5,t = j + 1..p}
18: end if
19: for each j in j=1...p
20: Fx, = Mk
21: end for ’

22: end for
23: if (abs (Flx, — Px;) < threshold, Vj = 1...p)
24: stop = true

25: return {Px;,Vj = 1...p}
26: end if
27 i=1i+1

28: end while

defines a passing set algorithm is terminated and this set is
returned (lines 14-17). Otherwise, we continue updating next
parameter. If all parameters are updated to their mean value
and yet no passing set is found, we update set F' by changing
all values to their corresponding mean value (lines 19-21).
Stopping criteria is met once the absolute difference of all
Px,s and Fx,s drop below the predefined threshold value.
In this situation, set P is returned. This essentially means
that margins calculated using Alg. 2 are the largest possible
margins and can not be improved anymore.

Calculated margins for AND2 gate (2 input AND gate)
using Alg. 3 is depicted in Fig. 4. As it can be observed,
there is significant difference between LS method and pro-
posed method especially in lower bound margins of multiple
parameters (e.g., L8 and I2).

IV. SIMULATION RESULTS

To evaluate the effectiveness of the proposed approach and
compare it with the conventional LS method, we have used
IPD and DPD yield analysis methods (cf., Section II). For
this purpose, we have calculated margins as well as critical
margin for several logic gates using both proposed HMC and
LS methods. We have used PSCAN?2 for LS based margin cal-
culation and circuit simulations [11]. For the case of IPD yield
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Fig. 4. Margins for different parameters of AND2 gate
calculated using HMC and LS methods.

analysis 3o value of all parameters are set to the calculated
critical margin. During DPD yield analysis, 30 value for each
parameter is set to its corresponding margin. Calculated yields
for both methods using IPD and DPD yield analysis techniques
for multiple logic gates are reported in Table I. Total number of
10,000 MC simulations are performed to calculate the yield
for each gate and each of the margin calculation methods.
Table I illustrates the fact that HMC method calculates margins
more accurately compared with LS method especially when
standard deviation for each parameter is proportional to its
margin (i.e., DPD yield analysis). Although average IPD yield
using LS method is relatively high, DPD yield is quite low
compared with HMC method. Using HMC method average
DPD yield increases by 55% compared with LS method.
The results show that predictions based on LS method are
highly optimistic as a result of ignoring dependency among
different parameters. In general, DPD would capture parameter
dependent margin of SFQ gates more accurately and therefore
is a much more accurate indication of the true yield of the
circuit without overthinking margin criticalities with respect
to different parameters. Using IPD analysis would enforce
the worst-case margin of the most critical parameter of the
circuit on all other circuit parameters; hence, tends to be overly
pessimistic. Therefore, it results in over constraining the design
space of the circuit. Additionally, total number of simulations
for both proposed algorithms is reported in Table I. It is shown
that average number of simulations for HMC method increases
by less than 20% compared with LS method.

V. CONCLUSION

This paper presents a novel method for accurate margin
calculation of single flux quantum (SFQ) logic cells in a
superconducting electronic circuit. The proposed approach can
be directly used as a figure of merit to estimate the robustness
of a logic cell. This is achieved through efficient state-space
exploration of all parameters in the cell structure. Using
proposed approach, distinct parameter dispersion (DPD) based
yield of SFQ cells increases by 55% on average, compared
with state-of-the-art techniques.

TABLE 1. Results of yield calculation using IPD and DPD
methods for different margin calculation algorithms and var-
ious SFQ cells. OR2 and OR3 represent 2-input and 3-input
OR gates.

IPD Yield (%) DPD Yield (%) # Simulations

Cell LS HMC LS HMC LS HMC
AND2 92.1 100 45.3 96.4 280 334
AND3 93.7 100 68.5 99.9 364 430
OR2 92.5 100 68.7 99.2 280 334
OR3 92.3 100 58.0 91.2 336 398
INV 92.1 99.5 453 89.3 322 382
SPLIT 88.8 98.1 79.5 93.3 154 190

Average | 91.9% | 99.6% | 60.9% | 94.9% | 289 | 345 |
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