

Deep Learning-Based Circuit Recognition Using

Sparse Mapping and Level-Dependent Decaying Sum

Circuit Representations
Arash Fayyazi, Soheil Shababi, Pierluigi Nuzzo, Shahin Nazarian, and Massoud Pedram

Department of Electrical Engineering, University of Southern California

{fayyazi, shababi, nuzzo, shahin, pedram}@usc.edu

Abstract— Efficiently recognizing the functionality of a circuit

is key to many applications, such as formal verification, reverse

engineering, and security. We present a scalable framework for

gate-level circuit recognition that leverages deep learning and a

convolutional neural network (CNN)-based circuit representation.

Given a standard cell library, we present a sparse mapping

algorithm to improve the time and memory efficiency of the CNN-

based circuit representation. Sparse mapping allows encoding only

the logic cell functionality, independently of implementation

parameters such as timing or area. We further propose a data

structure, termed level-dependent decaying sum (LDDS) existence

vector, which can compactly represent information about the

circuit topology. Given a reference gate in the circuit, an LDDS

vector can capture the function of the gates in the input and output

cones as well as their distance (number of stages) from the

reference. Compared to the baseline approach, our framework

obtains more than an-order-of-magnitude reduction in the average

training time and 2× improvement in the average runtime for

generating CNN-based representations from gate-level circuits,

while achieving 10% higher accuracy on a set of benchmarks

including EPFL and ISCAS’85 circuits.

I. INTRODUCTION

Reliance on third-party resources, including third-party
intellectual property (IP) cores and fabrication foundries as well
as commercial off-the-shelf components, has raised concerns
about the insertion of hardware Trojans into fabricated chips. To
confront this threat, an approach relies on reverse engineering as
a means to rebuild the full functionality of the netlist for further
analysis [1].

Gate-level reverse engineering consists of identifying the
main functional blocks composing a circuit and their
interconnection. The space of possible functional blocks can be
defined via a library of components that can include, for
example, commonly-used hardware design patterns or custom
finite-state machine blocks. The identification problem is
usually addressed in two steps [2]–[4]. First, a set of candidate
matches are identified by mapping candidate blocks of the
unknown circuit to components in the library. These candidates
are then justified via formal verification based on a formal notion
of matching between an unknown circuit block and a library
component. Exhaustively justifying all the candidate matches
via formal verification may turn into a time-consuming and
computationally-demanding task for large circuits; a major
challenge in reverse engineering is then to devise fast and
efficient methods that can effectively point to a small set of

candidate solutions and alleviate the burden of formal
verification. This challenge offers the motivation for this work.

 A set of structural and functional approaches have been
proposed in the literature to match an unknown sub-netlist
against an abstract component library, including mining
behavioral patterns from simulation or execution traces [5],
word-level structure reconstruction [3], or structural and
functional analysis of individual gates and sub-modules [6]. In
this paper, we address the problem of deriving a functional
description of a circuit from an unstructured netlist by
leveraging deep learning and circuit representations based on
convolutional neural networks (CNNs). In doing so, we are
motivated by the state-of-the-art performance of machine
learning (ML) techniques, based on both convolutional and deep
neural networks, for solving challenging problems including
classification, language processing, and decision making in a
variety of applications – from business, to social work, medicine,
and engineering [7] [8].

 Recent work shows that ML also promises to reduce the
execution time for solving certain problems in electronic design
automation (EDA) and VLSI design, such as circuit recognition
[9], [10]. Specifically, we are motivated by the work of Dai and
Brayton [9], who have recently proposed the use of CNNs for
circuit recognition. In spite of the remarkable memory and time
efficiency of ML algorithms, a major challenge of CNN-based
circuit recognition, in both the training and deployment phases,
is to construct compact and efficient circuit representations that
scale well for large circuits and prevent overfitting, i.e., do not
impair the model’s ability to accurately classify data that are
outside of the training set. In this work, we address this challenge
by investigating the effectiveness of deep learning for the
identification of the functionality of datapath elements of a
design from a gate-level netlist.

 We focus on datapath elements as they include the majority
of logic gates in microprocessor-like designs. We propose a
novel sparse mapping algorithm, which allows to only encode
information about the logic cell functionality, independently of
implementation parameters such as timing or area, thus
increasing the space and area efficiency of the CNN-based
circuit representation used in our algorithms. We further propose
a data structure, termed level-dependent decaying sum (LDDS)
existence vector, which can compactly represent information
about the circuit topology. Given a reference gate, an LDDS
vector can capture the function of the gates in the input and
output cones as well as their distance (number of stages) from

Directed Asyclic
Graph
 (DAG)

5

EV Grouping

CNN

Prediction
Results

2

Technology
Mapping

Feature Construction

EV Selection

EV Sorting

Feature Selection

1

6

3

7

4

234

3 1

1

1011

1011 0111

1010 1110

1110

Input Circuits (Gate-
Level Netlist)

Feature
Construction

Fig. 1. Flowchart illustrating the proposed framework.

the reference. We implement a deep learning framework that
relies on the above data structure and algorithm to recognize the
functionality of digital datapath circuits, and can perform better
than the state of the art [9] in terms of average training time,
execution time, and accuracy.

II. PRELIMINARIES

A flowchart illustrating the proposed framework is shown in
Fig. 1. The CNN requires as input a compact vector-based
representation of the data to be classified. We call this vector-
based representation existence vector (EV) and generate it as a
part of the feature construction step. In the feature selection step,
the fixed-size data, a matrix consisting of multiple EVs, is pre-
processed to be fed to the CNN. The CNN leverages this
information to classify the operation of each circuit which, in
this paper, can be a multiplier, adder, subtractor, modulo,
divider, or an unknown operator. The details of each block will
be provided in the following subsections.

A. Feature Construction

A critical step in using CNNs for circuit recognition (i.e., to
differentiate between different types of circuits) is to convert the
circuit structure into a format that is suitable for CNNs, namely
a fixed-size real-valued matrix. Naive approaches, based on the
adjacency matrix associated with the circuit graph or the AIGER
format, may present scalability issues, since their size increases
with the size of the circuits.

One approach is to construct these features from smaller
circuit elements such as the nodes in a directed acyclic graph
(DAG) associated with the circuit, a data structure that is also
used in technology mapping [11]. Technology mapping converts
a circuit into a DAG with indexed nodes. The idea is then to
restrict the set of Boolean functions available for the
implementation of the circuit nodes to the ones of a specific
standard cell library and map any input circuit to cells in the
selected library.

Deriving the functionality of each node in the circuit DAG
by technology mapping is not sufficient, since we also need
information about how the different nodes are connected, i.e.,
the edges of the graph. We then use EVs as a data structure, and

Corresponding node

Affecting elements

EV: [1 1 1 0]

Fig. 2. (a) One-hot encoding of standard cells. (b) Assigning an EV to a circuit

node.

generate a vector for each circuit node, following the approach
proposed in the literature [9]. To generate an EV for a node, we

use one-hot binary coding, as shown in Fig. 2 (a). The 𝑖𝑡ℎ entry
of the EV is set to one if and only if the corresponding node is

implemented using the 𝑖𝑡ℎ cell element from the library. Then,
we perform a bitwise OR operation between the one-hot code
associated with the node and the ones of all the neighbours, to
incorporate information about the nearest neighbours of each
gate. An example circuit with the EV of one of its nodes is shown
in Fig. 2 (b).

B. Feature Selection

An EV encodes functional and structural features of a circuit
node. The number of EVs in a circuit is then equal to the number
of gates (nodes) 𝑚 in the circuit graph. Because the input data to
the CNN must have a fixed size regardless of the original circuit
size, we need a mechanism to select a fixed-size subset of EVs
in each circuit.
 The idea is to partition the circuit into a fixed number p of
groups, by using topological sort as a suitable approach for
group ordering and for sorting the circuit vertices [9]. We then
select k representative EVs from each group to be given as
features for the CNN, where k can be an arbitrary number. To do
so, we use the ranking heuristics suggested in the literature [9],
based on selecting the EVs that occur most frequently in each
group, or have the highest number of elements set to 1. We
finally include these representative EVs, a total of kp vectors,
into a matrix with fixed row and column sizes of kp and |𝐸𝑉|,
respectively.

 As the size of the circuit increases, each group covers a larger
region, and some representative features of the operator to be
recognized can be over-shadowed by sub-circuits in the same
group. To increase the accuracy of classification, one solution is
to increase the number of groups, which corresponds to
increasing the size of the data matrices and the CNNs, hence the
resource consumption and runtime. In the following, we
describe two approaches that can further reduce the size of the
CNN circuit representation while including more information
about the circuit structure. Specifically, we present the LDDS
encoding approach as an alternative solution to increasing 𝑝 by
enhancing the structural information content encoded for each
group.

III. CIRCUIT REPRESENTATION IMPROVEMENTS

A. Sparse Mapping

We observe that most of the column entries in the CNN input
matrices reported in the literature [9] are zeros, which suggests
that the cell library based on 4-input lookup tables (4-LUTs),
proposed in the literature as a candidate library for mapping,
gives unnecessarily high degrees of freedom. To validate this
conjecture, we use the forests of trees method to evaluate the

(a) (b)

Algorithm 1 Sparse Mapping (SM)

Sparse Mapping (In: network 𝑁, library 𝐿; Out: Sparsely mapped network:
𝑀𝑠)

1: 𝐿𝑠 = PreSparseProcessing(𝐿)

2: 𝐺 = TransformNetworkIntoAIG(𝑁)

3: ComputeCutsAndMatches (𝐺,𝐿𝑠)

4: M1 = MappingForMinDelay (𝐺, 𝐿𝑠)

5: 𝑀𝑠 = TransformToMappedNetwork (G, M1)

6: Return 𝑀𝑠

Fig. 3. Importance of constructed features in the baseline model. X-axis show

the feature number (the features are sorted based on their importance.)

importance of different features on an artificial classification
task [12]. In this method, feature permutation is used to test the
actual significance of a feature in the presence of noise (obtained
by shuffling the feature of samples). We compute the feature
importance as the difference between the baseline (model that
was fit to the training dataset) performance and the performance
on the permuted dataset. Results show that most of the features
extracted in the baseline model are not important (see Fig. 3) and
may end up with decreasing the accuracy of the CNN models.

We then propose to use a sparse mapping (SM) algorithm,
which is based on the standard cell library mapping version in
the ABC framework. The pseudocode of the sparse mapping
heuristic is shown in Algorithm 1. To increase the sparsity of the
CNN input matrix, we only consider the functionality of the cells
in the library as a feature for constructing EVs. There are many
cells in the standard cell library with the same functionality (e.g.,
Inv1, Inv2, …) but different implementation parameters such as
delay. In our approach, we categorize all these cells as
representing the same cell. This step is termed pre-sparse
processing in Algorithm 1 and is performed on library cells. Our
compact modeling procedure has multiple benefits. It reduces
overfitting and accuracy, since it decreases the impact of noisy,
redundant data on decisions [13], in addition to reducing the
training time. We leverage ABC [11] to transform a network into
an AIG format or to enumerate cuts for the DAG of the input
netlist, as reported in the literature [14], but remove all the
heuristic iterative optimizations used for delay or area
minimization to shorten the generation time of our matrix
representation.

B. Level-Dependent Decaying Sum Existence Vectors

We introduce level-dependent decaying sum (LDDS)
existence vectors to incorporate information about the circuit
structure in a compact way. Given a circuit DAG and a reference
node r, the level with respect to r is the distance (number of
stages) from r of each vertex in the output or input logic cone of
the reference node itself. We construct LDDS vectors as
summarized in Algorithm 2. The mapping function returns the
index of each vertex in the library (i.e., the cell ID). The
FindParents and FindChildren functions return the children and
parents of their input vertex. For each vertex, we start by looking

Algorithm 2 Level Dependent Decaying Sum EV

Function LLDS (In: Base vertex, maxLevelDiff, DAG G; Out:
𝐸𝑉𝐿𝐿𝐷𝑆 representation of input vertex)
LevelDiff = 0; 𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑛𝑢𝑚𝑏𝑒𝑟 = 1; 𝑄 = ∅

7: 𝑄 = 𝑄 ∪ 𝑏𝑎𝑠𝑒 ∪ 𝑏𝑎𝑠𝑒
8: While (𝑄 ≠ ∅) do

9: 𝑄𝑡𝑒𝑚𝑝 = ∅

10: 𝑐𝑜𝑢𝑛𝑡 = 0

11: Foreach node ∈ 𝑄

12: If (LevelDiff > 1)

13: 𝐸𝑉𝐿𝐿𝐷𝑆[𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑛𝑜𝑑𝑒)]+= 2−LevelDiff

14: Else

15: 𝐸𝑉𝐿𝐿𝐷𝑆[𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑛𝑜𝑑𝑒)] = 1
16: If (𝐿𝑒𝑣𝑒𝑙𝐷𝑖𝑓𝑓 < 𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙𝐷𝑖𝑓𝑓)

17: If (count < 𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑛𝑢𝑚𝑏𝑒𝑟)

18: If (𝐹𝑖𝑛𝑑𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑛𝑜𝑑𝑒)! = 𝐺. 𝑅𝑜𝑜𝑡𝑠())

19: 𝑄𝑡𝑒𝑚𝑝 = 𝑄𝑡𝑒𝑚𝑝 ∪ 𝐹𝑖𝑛𝑑𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑛𝑜𝑑𝑒)

20: 𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑛𝑢𝑚𝑏𝑒𝑟𝑡𝑒𝑚𝑝
+= 𝑆𝑖𝑧𝑒(𝐹𝑖𝑛𝑑𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑛𝑜𝑑𝑒))

21: 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1

22: Else If (𝐹𝑖𝑛𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑛𝑜𝑑𝑒)! = 𝐺. 𝐿𝑒𝑎𝑣𝑒𝑠())

23: 𝑄𝑡𝑒𝑚𝑝 = 𝑄𝑡𝑒𝑚𝑝 ∪ 𝐹𝑖𝑛𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑛𝑜𝑑𝑒)

24: End Foreach

25: 𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑛𝑢𝑚𝑏𝑒𝑟𝑡𝑒𝑚𝑝

26: 𝑄 = 𝑄𝑡𝑒𝑚𝑝

27: 𝐿𝑒𝑣𝑒𝑙𝐷𝑖𝑓𝑓 = 𝐿𝑒𝑣𝑒𝑙𝐷𝑖𝑓𝑓 + 1

28: End While

29: Return 𝐸𝑉𝐿𝐿𝐷𝑆

Fig. 4. Decrease of accuracy for LDDS with more than two levels. LDDSn
means that n levels are considered in the computation.

at the immediate neighbors (parent and children nodes) and
assigning them a score of 1. As we progress toward further levels
(lines 16-24) with respect to base vertex, the scores
corresponding to the cells at that level are divided by a constant,
which is 2 in our approach (line 13). Therefore, the second-level
parents and children will have a score of 1/2, and so on, until we
reach roots (leaves) which are primary fanins (fanouts) of the
original circuit. The rationale behind this scaling factor (i.e., 2 in
our approach) is to force the numerical entries of 𝐸𝑉𝐿𝐿𝐷𝑆 to be
normalized within a fixed range and prevent corruption of the
encoded information.

 The LDDS approach discounts the effect of the presence of
cells “far away” with respect to the current vertex in favour of
cells that are “closer.” In this study, we stick to 2 levels, since
increasing the number of levels resulted in loss of accuracy, as
shown in Fig. 4, as well as significantly decreased time
efficiency.

IV. RESULTS AND DISCUSSION

A. Benchmarks and Simulation Setup

Our framework utilizes ABC [11] to perform technology
mapping and then executes the algorithms in Sec. III to compute
the CNN input matrices. We build the CNNs and train the
models using the Tensorflow package [15]. We select six sets of
benchmarks. Division and modulo circuits are based on the
reference publication [9]; they are randomly generated in word-
level Verilog and synthesized into gate-level circuits by Yosys
[16]. The same approach is used to generate adder and subtractor

0

0.005

0.01

0.015

0.02

0.025

0.03

1 34 67 100 133 166 199

Uninformative FeaturesInformative
Features

222

85%

90%

95%

100%

105%

LDDS1 LDDS2 LDDS3 LDDS4

Baseline SM

TABLE I Runtime for converting AIGs into CNN input matrices as well as
required time for training the CNN

Runtime (s) LDDS2 SM LDDS2+SM

Converting AIG to Bool Matrix (78 gates) 0.011 0.001011 0.0057

CNN training (100 epochs) 630.66 51.63 54.36

Fig. 5. Speedup for converting AIGs into CNN input matrices and required

time for training the CNN with the proposed approaches as well as the baseline

approach.

TABLE II The average and standard deviation of accuracy rates
Method Baseline LDDS2 SM LDDS2+SM

Accuracy 88.2±3.6 94.3±1 96.4±0.8 99.0±1.0

circuits. We also used multiplier circuits from [17] and [18],
including three multiplier types, “btor”, “sp-ar-rc,” and “abc.”
We finally added a separate class consisting of circuits from the
ISCAS’85 [19] and EPFL [20] benchmarks, which do not belong
to the aforementioned classes and are marked with “unknown.”
The circuits operate on word lengths ranging from 2 to 32 bits.
Numerical experiments are executed on a core i7 3.2-GHz CPU
with NVIDIA Tesla K40c GPU. The technology mapping
library is a generic 180-nm technology [21]. The number of
groups 𝑝 is 40. For each group, we take the three most
representative EVs (𝑘 = 3). Therefore, the dimension of each
input matrix is 120 × 28.

We build CNNs to classify the type of the circuit, namely
multiplier, divider, modulo, adder, subtractor, or unknown
operator. All circuits are partitioned into a training set, a
validation set, and a testing set, where the size of the validation
or testing set is fixed at 50 samples, and the size of the training
set is 900 samples. The training set is randomly selected (out of
4500 samples) in each run. For all the experiments, we build
CNNs with the following layers in series: (1) a convolution layer
with sixty-four 8 × 8 filters, (2) a Rectified Linear Unit (ReLU)
activation layer, (3) a max-pooling layer with filters of size
2 × 2, (4) a dropout layer with dropout fraction 0.25, (5) a fully
connected layer with 32 outputs, (6) a ReLU activation layer, (7)
a dropout layer with dropout fraction 0.5, (8) a fully connected
layer whose number of outputs is equal to the number of
expected classes (6 in our case). The training method follows the
ADAM routine [22] while the loss function is the softmax cross
entropy.

B. Training Accuracy and Convergence Speed

The runtime for converting circuit netlists into CNN input
matrices as well as the required time for training the CNN with
the proposed approach are shown in TABLE I. The comparison
with the baseline approach is in Fig. 5. The pre-processing time
grows linearly with the circuit size. The results indicate that the
training (conversion) time for our method is 11.44× (2.04×)
faster than the baseline method [9]. We believe that this
improvement is due to sparse mapping, which produces smaller
CNN input feature sizes and a faster training process.

TABLE II lists the average and standard deviation of the
accuracy rates for each of the approaches on 100 runs, where all
data sets are re-partitioned and reshuffled. The average accuracy
of the proposed approach is at least 6% larger than the one
previously reported in the literature [9]. We believe this is
motivated by the richer structural information encoded via the
LDDS approach and the smaller number of features enabled by
the SM algorithm. Overall, the numerical results show that the
proposed method can distinguish all the mathematical operators,
even if they may have similar structure (e.g., adders and
subtractors). Moreover, building compact circuit representations
indeed helps improve the performance of our implementation.

V. CONCLUSIONS

We presented a deep learning-based circuit recognition
framework consisting of a feature extraction stage, a feature
selection stage, and a standard CNN. We proposed compact data
structures and algorithms to generate circuit representations that
can improve the training time and processing time by orders of
magnitude with respect to the state of the art. As a future work,
we would like to investigate the effectiveness of the proposed
approach by training CNN models on a set of circuits with
hidden trojans to help detect and locate malware in hardware
designs.

REFERENCES

[1] K. Bernstein, “Integrity and Reliability of Integrated Circuits (IRIS),” DARPA, 2011.

[2] T. Meade et al., “Gate-Level Netlist Reverse Engineering Tool Set for Functionality

Recovery and Malicious Logic Detection,” Int. Symp. Test. Fail. Anal., 2016.

[3] W. Li et al., “WordRev: Finding word-level structures in a sea of bit-level gates,” in

IEE HOST, 2013, pp. 67–74.

[4] H. Kong et al.,“A Universal Macro Block Mapping Scheme for Arithmetic Circuits,”

in IEEE DATE, 2015, pp. 1629–1634.

[5] W. Li et al., “Reverse engineering circuits using behavioral pattern mining,” in IEEE

HOST, 2012, pp. 83–88.

[6] P. Subramanyan et al., “Reverse engineering digital circuits using structural and

functional analyses,” IEEE TETC., vol. 2, no. 1, pp. 63–80, Mar. 2014.

[7] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int. J.

Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[8] A. Krizhevsky, V. Nair, and G. Hinton, “The CIFAR-10 Dataset,” online http//www.

cs. toronto. edu/kriz/cifar. html, 2014.

[9] Y.-Y. Dai and R. K. Braytont, “Circuit recognition with deep learning,” in IEE HOST,

2017, pp. 162–162.

[10] P. A. Beerel and M. Pedram, “Opportunities for Machine Learning in Electronic

Design Automation,” in IEEE ISCAS, 2018, pp. 1–5.

[11] BVSRC - Berkeley Verification and Synthesis Research Center, “ABC - A System

for Sequential Synthesis and Verification,” Release 70930, pp. 1–19, 2013.

[12] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, “Understanding variable

importances in forests of randomized trees,” in Neural Information Processing

Systems, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.

Weinberger, Eds. Curran Associates, Inc., 2013, pp. 1–9.

[13] I. Guyon and A. Elisseeff, “An Introduction to Variable and Feature Selection,” J.

Mach. Learn. Res., vol. 3, no. 3, pp. 1157–1182, 2003.

[14] S. Chatterjee et al., “Reducing structural bias in technology mapping,” IEEE Trans.

Comput. Des. Integr. Circuits Syst., vol. 25, no. 12, pp. 2894–2902, Dec. 2006.

[15] M. Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning

TensorFlow: A system for large-scale machine learning,” in OSDI , 2016, vol. 16, pp.

265–283.

[16] C. Wolf, “Yosys Open SYnthesis Suite.” 2016.

[17] M. Ciesielski et al., “Verification of gate-level arithmetic circuits by function

extraction,” in ACM/IEEE DAC, 2015, pp. 1–6.

[18] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of multipliers using

computer algebra,” in ACM/IEEE FMCAD, 2017, pp. 23–30.

[19] D. Bryan, “The ISCAS ’ 85 benchmark circuits and netlist format,” North Carolina

State Univ., vol. 25, no. June, pp. 695–698, 1985.

[20] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The EPFL Combinational

Benchmark Suite,” in IWLS, number EPFL-CONF-207551, no. ii, 2015.

[21] C. D. Systems, “Cadence Repository for Electronic Technical Education.” [Online].

Available: http://crete.cadence.com.

[22] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Proc. ICLR,

2014.

1 1

0.
18 0.

94

0.
03 0.

872.
05

11
.4

5

0.
36

10
.8

7

0

2

4

6

8

10

12

Converting AIG to bool Matrix CNN training (100 epochs)

Baseline LDDS2 LDDS3 SM LDDS2+SM

