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ABSTRACT

Deep neural networks are among the most influential architectures
of deep learning algorithms, being deployed in many mobile intelli-
gent applications. End-side services, such as intelligent personal
assistants (IPAs), autonomous cars, and smart home services often
employ either simple local models or complex remote models on the
cloud. Mobile-only and cloud-only computations are currently the
status-quo approaches. In this paper, we propose an efficient, adap-
tive, and practical engine, JointDNN, for collaborative computation
between a mobile device and cloud for DNNs in both inference
and training phase. JointDNN not only provides an energy and
performance efficient method of querying DNNs for the mobile
side, but also benefits the cloud server by reducing the amount of
its workload and communications compared to the cloud-only ap-
proach. Given the DNN architecture, we investigate the efficiency
of processing some layers on the mobile device and some layers
on the cloud server. We provide optimization formulations at layer
granularity for forward and backward propagation in DNNs, which
can adapt to mobile battery limitations and cloud server load con-
straints and quality of service. JointDNN achieves up to 18X and
32x reductions on the latency and mobile energy consumption of
querying DNNs compared to the status-quo approaches, respec-
tively.
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1 INTRODUCTION

Deep Neural Network (DNN) architectures are promising solutions
in achieving remarkable results in a wide range of machine learning
applications, including, but not limited to computer vision, speech
recognition, language modeling and autonomous cars.

Currently, there is a major growing trend in introducing more
advanced DNN architectures and employing them in end-user ap-
plications. The considerable improvements in DNNs are usually
achieved by increasing complexity which requires more compu-
tational resources for training and inference. Recent research di-
rections to make this progress sustainable are: development of
Graphical Processing Units (GPUs) as the vital hardware compo-
nent of both servers and mobile devices [27], design of efficient
algorithms for large-scale distributed training [7] and efficient in-
ference [33], compression and approximation of models [38], and
most recently introducing collaborative computation of cloud and
fog as known as dew computing [36].
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Using cloud servers for computation and storage is becoming
extensively favorable due to technical advancements and improved
accessibility. Scalability, low cost, and satisfactory Quality of Service
(QoS), made offloading to cloud the typical choice for computing
intensive tasks. On the other side, mobile-device are being equipped
with more powerful general purpose CPUs and GPUs. Very recently
there is a new trend in hardware companies to design dedicated
chips to better tackle machine-learning tasks. For example, Apple’s
A11 Bionic chip [26] used in iPhone X uses a neural engine in
its GPU to speed up DNN queries of applications such as face
identification and facial motion capture [23].

There are currently two methods for DNN inference: mobile only
and cloud only. In simple models, a mobile device is responsible
for performing all of the computation. In case of complex models,
the raw input data (image, video stream, voice, etc.) is uploaded
and then computed on the cloud. The results of the task are later
downloaded to the device.

Besides the improvements of the mobiles devices mentioned ear-
lier, the computational power of mobile devices are still considered
significantly weaker than the cloud ones. Therefore, mobile-only
approach can cause large inference latency and failure in meeting
QoS. Moreover, embedded devices undergo major energy consump-
tion constraints due to battery capacity limits. On the other hand,
cloud-only suffers communication overhead for uploading the raw
data and downloading the outputs. Moreover, slowdowns caused by
service congestions, subscription costs, and network dependency
should be considered as downsides of this approach.

The superiority and persistent improvement of DNNs is heavily
dependent on providing huge amount of training data. Typically,
this data is collected from different resources and later fed into
network for training. The final model can then be delivered to dif-
ferent devices for inference functions. However, there is a trend
of appearance of applications requiring adaptive learning in on-
line environments, such as self driving cars and security drones
[30][25]. Model parameters in these smart devices are constantly
being changed based on their continuous interaction with surround-
ings. Complexity of these architectures with extended number of
parameters and current cloud-only methods for DNN training, im-
plies a constant communication cost and burden of increased power
consumption for mobile device.

Automatic partitioning of computationally extensive tasks over
the cloud for optimization of performance and energy consumption
has been already well studied [2]. Most recently, scalable distributed
hierarchy structures between end-user device, edge, and cloud have
been suggested [39] which are specialized for DNN applications.



However, exploiting the layer granularity of DNN architectures for
run time partitioning has not been studied throughly yet.
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Figure 1: Different computation partitioning methods. (a)
Mobile only: computation is completely done on mobile de-
vice. (b) Cloud only: raw input data is sent to cloud, compu-
tations is done on cloud and results are sent back to mobile
device. (c) JointDNN: DNN architecture is partitioned at the
granularity of layers, each layer can be computed either on
cloud or mobile.
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In this work, we are investigating inference and training of DNNs
in a joint platform of mobile and cloud as an alternatives to the
current single-platform methods as illustrated in Figure 1. Con-
sidering DNN architectures as an ordered sequence of layers, and
possibility of computation of every layer either on mobile or cloud,
we can model the DNN structure as a directed acyclic graph (DAG).
The parameters of our real-time adaptive model are dependent
on the following factors: mobile/cloud hardware and software re-
sources, battery capacity, network specifications, and QoS. Based
on this modeling, we show that the problem of finding the optimal
computation schedule for different scenarios, i.e. best performance
or energy consumption, can be reduced to the polynomial time
shortest path problem.

To present realistic results, we made experiments with real hard-
wares as mobile device and cloud. To model the communication
between platform, we used different network technologies and the
most recent reports on their specifications in the U.S.

DNN architectures can be categorized based on functionality.
These differences enforce specific type and order of layers in archi-
tecture, directly affecting the partitioning result in the collaborative
method. For discriminative models, used in recognition applica-
tions, the layer size gradual decrease proceeding from input toward
output 2. This sequence suggests computation of the first few lay-
ers on the mobile device to avoid excessive communication cost
of uploading large raw input data. On the other hand, growth of
the layer size from input to output in generative models used for
synthesizing new data, implies the possibility of uploading small
input to the cloud and later downloading and computing the last
layers on the mobile device for better efficiency. Interesting mo-
bile applications like image to image translation are implemented
with autoencoder architectures, usually consisting of middle layers
with smaller sizes compared to input and output. Consequently we
expect the first and last layers to be computed on the mobile de-
vice in our collaborative approach. We examined eight well-known
DNN benchmarks selected from these categories to illustrate their
differences in collaborative computation approach.

As we will see in Section ??, the communication between the
mobile and cloud is the main bottleneck for both performance and
energy in the collaborative approach. We investigated the specific
characteristics of CNN layer outputs and introduced a lossless com-
pression method to reduce the communication costs.
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Figure 2: Typical layer size architecture of (a) Discriminative
(b) Autoencoder (c) Generative models.
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State-of-the-art work for collaborative computation of DNNs [21]
only considers one offloading point, assigning computation of its
previous layers and next layers on the mobile and cloud platforms,
respectively. We show that this approach is non-generic and fails to
be optimal, and introduced a new method granting the possibility
of computation on either platforms for each layer independent of
other layers. Our evaluations show that JointDNN significantly
improves the latency and energy up to 3x and 7X respectively com-
pared to the status-quo single platform approaches without any
compression. The main contributions of this paper can be listed as:

e Introducing a novel model for collaborative computation
between the mobile and cloud

e Formulating the problem of optimal computation scheduling
of DNNs at layer granularity in mobile cloud computing
environment as shortest path problem and integer linear
programming (ILP)

e Examining compressibility of DNN layers and developing
a lossless compression method to improve communication
costs

e Demonstrating the significant improvements of performance,
mobile energy consumption, and cloud workload achieved
by using JointDNN

2 PROBLEM DEFINITION AND MODELING

In this section, we explain the general architecture of DNN layers
and our profiling method. Moreover, we elaborate on how the
cost optimization can be reduced to a shortest path problem by
introducing the JointDNN graph model. Finally, we show how the
constrained problem is formulated by setting up ILP.

2.1 DNN Building Blocks

DNNs are networks composed of several layers stacked to each
other. We briefly explain the functionality of each layers used in
the state-of-the-art architectures:

Convolution Layer (conv) consists of a set of filters with di-
mensions relatively smaller than their input. Each filter completely
traverses through the input with a predefined step size and com-
putes the dot product between it’s parameters and the correspond-
ing part of the input. This process creates different feature maps
(referred to as channels) for different filters from the same input
data. This aspect of preserving the locality of input features has
made Convolutional Neural Network (CNN) architectures the horse
power of the state-of-the-art image classification models. Because
of dot product basis of conv, it can be formulated as General Matrix



Multiplication (GEMM), therefore capable of gaining performance
improvement by using parallel computing devices (e.g. GPUs).

Fully Connected Layer (fc) is the main component of most
regular neural networks in which every neuron is connected to
all neurons of the previous layer. This fully pairwise connection
architecture comprises large portion of computation of the whole
network. Like conv, fc layer is also formulated as GEMM.

Pooling Layer (pool) performs a non-linear down sampling
function over non-overlapping spatially local parts of input. Max-
pooling is the most common function used in this type of layer
alongside other functions such as average or L2-norm pooling.

Activation Layer increases the non-linearity property of neu-
ral network architectures. This layer applies non-linear activation
function on single data points of input to generate an output with
the same size. Among various non-linear functions, such as sigmoid
and hyperbolic tangent, Rectified Linear Unit (relu) is currently the
favorable choice in DNN architectures as it is simple and speeds up
the tedious training process [10].

Local Response Normalization (Irn) performs local normal-
ization by imposing a local competition for big activities between
adjacent features in a channel, and also between features at the
same spatial location in different channels. [rn are inspired by in-
hibition schemes observed in the brain helps with intention of
generalization. There are different formulations suggested for Irn,
as shown in [19, 22] they may lead to slight improvements.

Dropout Layer (drop) As mentioned earlier, fc occupies most of
the parameters of DNN models and thus vulnerable to overfitting.
Typically regularization methods are used to prevent overfitting
by reducing high dependency of network on individual neurons
during training. In dropout [37] technique, at each training iteration
every neurons can be removed (droped out) from network with a
predetermined probability p or kept with probability 1 — p and the
training is done on the remaining network. The dropped out nodes
will have their previous weight for the next training iteration.

Deconvolution Layer (deconv) also known as transposed con-
volution is mostly used on generative and autoencoder models in
applications such as building high-resolutions picture from low-
resolution pictures and high-level descriptions. The goal in decon-
volution is to find f in the convolution equation of form f % g = h.
In case of DNNS, g is the filter and f is the input of the convolu-
tion [42].

Long Short-Term Memory Layer (Istm) is a building unit for
layers of a recurrent neural network (RNN) and is widely used due
to its promising results in speech recognition applications. A typical
LSTM unit is composed of a cell, an input gate, an output gate and
a forget gate, which is responsible for remembering and forgetting
specific values over arbitrary time intervals. The whole LSTM unit
can be thought as a typical artificial neuron, as in a feed-forward
neural network.

Softmax (soft) is the last layer in multi-class architectures, usu-
ally connected in a one-to-one correspondence way to a fc layer.
Softmax establishes a probability distribution by representing each
class probability with a single neuron.
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Figure 3: Latency of grouped and separated execution of con-
volution operator.

2.2 Energy and Latency Profiling

There are three methods in measuring the latency and energy con-
sumption of each layer in neural networks:

Statistical Modeling: In this method, a regression model over
the configurable parameters of operators (e.g. filter size in convo-
lution) can be used to estimate the associated latency and energy.
This method is prone to large error because of the inter-layer opti-
mizations performed by DNN software packages. Therefore, it is
necessary to consider execution of several consecutive operators
grouped with each other during profiling. Many of these software
packages are proprietary, making access to inter-layer optimization
techniques impossible.

In order to illustrate this issue, we designed two experiments
with 25 consecutive convolutions on NVIDIA Pascal™ GPU using
cuDNN® library [1]. In the first experiment, we measure the latency
of each convolution operator separately and set the total latency as
sum of them. In the second experiment, we group the convolutions
together and measure the total latency. All parameters are located
on GPU’s memory in both experiments, avoiding any data transfer
from the main memory to make sure results are exactly representing
the actual computation latency.

As we see in Figure 3, there is a large error gap between separated
and grouped execution experiments which grows as the number of
convolutions is increased. This observation confirms that we need
to profile grouped operators to have more accurate estimations.
Considering various consecutive combination of operators and
different input sizes, this method requires a very large number of
measurements, not to mention the need for a complex regression
model.

Analytical Modeling: To derive an analytical approach for es-
timation of the latency and energy consumption, it is required to
obtain the exact hardware and software specifications. However,
the state-of-the-art work in latency modeling of DNNs [31] fails to
estimate layer-level delay within an acceptable error bound, for in-
stance, underestimating the latency of a fully connected layer with
4096 neurons by around 900%. Industrial developers do not reveal
the detailed hardware architecture specifications and the propri-
etary parallel computing architectures such as CUDA®, therefore,
analytical approach could be quite challenging [15].

Application-specific Profiling: In this method, the DNN ar-
chitecture of the application being used is profiled in run-time. The
number of applications in a mobile device using neural networks
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Figure 4: Computation model in linear topology.
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Figure 5: Graph representation of mobile cloud computing
optimal scheduling problem for linear topology.

are generally limited. In conclusion, this method is more feasi-
ble, promising higher accuracy estimations. We have chosen this
method for estimation of energies and latencies in the experiments
of this paper.

2.3 JointDNN Graph Model

First, we assume that a DNN is presented by a sequence of distinct
layers with a linear topology as depicted in Figure 4. Layers are
executed sequentially, with output data generated by one layer feeds
into the input of the next one. We denote the input and output data
sizes of k'" layer as ;. and f., respectively. Denoting the latency
(energy) of layer k as wg, where k = 1,2, ..., n, the total latency
(energy) of querying the DNN is 31/ | .

The mobile cloud computing optimal scheduling problem can be
reduced to a shortest path problem, from node S to F, in the graph
of Figure 5. Mobile Execution cost of the k’ h layer (C(MEy)) is
the cost of executing the k" layer in the mobile while the cloud
server is idle. Cloud Execution cost of the k" layer (C(CEy)) is
the executing cost of the k!" layer in the cloud server while the
mobile is idle. Uploading the Input Data cost of the k’ k layer
is the cost of uploading output data of the (k-1)? h Jayer to the
cloud server (UIDy). Downloading the Input Data cost of the
kP layer is the cost of downloading output data of the (k-1)!"
layer to the mobile (DIDy). The costs can refer to either latency
or energy. However, as we showed in Section 2.2, the assumption
of linear topology in DNNs is not true and we need to consider all
the consecutive grouping of the layers in the network. This fact
suggests replacement of linear topology by a tournament graph as
depicted in Figure 6. We define the parameters of this new graph,
JointDNN graph model, in Table 1.

In this graph, node C;.j represents that the layers i to j are com-
puted on the cloud server, while node M;.j represents that the layers
i to j are computed on the mobile device. An edge between two
adjacent nodes in JointDNN graph model is associated with four
possible cases: 1) A transition from the mobile to the mobile, which
only includes the mobile computation cost (ME; ;) 2) A transition
from the cloud to the cloud, which only includes the cloud computa-
tion cost (CE;, j) 3) A transition from the mobile to the cloud, which

includes the mobile computation cost and uploading cost of the
inputs of the next node (EU; j = ME; j + UIDj;1) 4) A transition
from the cloud to the mobile, which includes the cloud compu-
tation cost and downloading cost of the inputs of the next node
(ED;,j = CE; j+DIDjy1). Under this formulation, we can transform
the computation scheduling problem to finding the shortest path
from S to F.

Residual networks are a class of powerful and easy-to-train ar-
chitectures of DNNs [14].

In residual networks, as depicted in Figure 7 (a), the output of
one layer is fed into another layer with distance of at least two.
Thus, we need to keep track of the source layer (node 2 in Figure 7)
so as to know that this layer is computed on the mobile or the cloud.

Our standard graph model has a memory of one which is the very
previous layer. We provide a method to transform the computation
graph of this type of network to our standard model, JointDNN
graph.

In this regard, we add two additional chains of size k — 1, where
k is the number of nodes in the residual block (3 in Figure 7). One
chain represents the case of computing layer 2 on the mobile and the
other one represents the case of computing layer 2 on the cloud. In
Figure 7, we have only shown the weights that need to be modified,
where Dy and Uy are the cost of downloading and uploading the
output of layer 2, respectively.

By solving the shortest path problem in JointDNN graph model,
we can obtain the optimal scheduling of inference in DNNs. Online
training consists of one inference and one back-propagation step.
The total number of layers is noted by N consistently throughout
this paper so there are 2N layers for modeling training, where the
second N layers are the mirrored version of the first N layers, and
their associated operations are the gradients of the error function
with respect to the DNN’s weights. The main difference between the
mobile cloud computing graph of inference and online training is
the need for updating the model by downloading the new weights
from the cloud. We assume that the cloud server performs the
whole back-propagation step separately, even if it is scheduled to
be done on the mobile, therefore, there is no need for mobile device
to upload the weights that are updated by itself in order to save
mobile energy consumption. The modification in JointDNN graph

Table 1: Parameter Definition of Graph Model

Param. Description of Cost
CE;j Executing layers i to j on the cloud
ME;.; Executing layers i to j on the mobile
EDi,j CEi:j + DID]'
EU; ME;.; + UID;

ok All the following edges: Vi =1:k =1 ED; ;4
Qp All the following edges: Vi=1:k -1 ME; j_;
Wi All the following edges: Vi =1:k — 1 EU; x4
Iy All the following edges: Vi=1:k — 1 CE; _;

I All the following edges: Vi =1:n ME; »
I, All the following edges: Vi =1: n ED;
U; Uploading the input of the first layer
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Figure 6: JointDNN graph model.

model is adding the costs of downloading weights of the layers that
are updated in the cloud to ED; ;.

The shortest path problem can be solved in polynomial time
efficiently.

However, the problem of shortest path subjected to constraints
has been shown to be NP-Complete [41]. For instance, assuming
our standard graph is constructed for energy and we need to find
the shortest path subject to the constraint of the total latency of that
path being less than a time deadline (QoS). However, there is an ap-
proximation solution to this problem, "LARAC" algorithm [20], the
nature of our application does not require to solve this optimization
problem frequently, therefore, we aim to obtain the optimal solution.
We can constitute a small look-up table of optimization results for
different set of parameters (e.g. network bandwidth, cloud server
load, etc.). We provide the ILP formulations of DNN partitioning in
the following sections.

2.4 ILP Setup

2.4.1 Performance Efficient Computation Offloading ILP Setup
for Inference. We formulated the scheduling of inference in DNNs
as an ILP with tractable number of variables. In our method, first
we profile the delay and energy consumption of consecutive layers

Figure 7: (a) A residual building block (b) Transformation of
a residual building block into shortest path problem.

of size m € {1, 2,...,N}. Thus, we will have

N+(N-1)+..+1=N(N+1)/2 1)

number of different profiling values for delay and energy. Consider-
ing layer i to layer j to be computed either on the mobile device or
cloud server, we assign two binary variables m; ; and c; j, respec-
tively. Download and upload communication delays needs to be
added to the execution time, when switching from/to cloud to/from
mobile, respectively.

Tcomputation = (mi,j-TmobileLi’j + ci,j-TcloudLi’j) (2)
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Ttotal = Tcomputation + Teommunication (4)
Tmob”qi’j and TcloudLiyj represent the execution time of the

ith layer to the j'" layer on the mobile and cloud, respectively.
Taownioady, @0d Typload, , Tepresent the latency of downloading

and uploading the output of the i’ layer, respectively. Consider-
ing each set of the consecutive layers, whenever m; j and one of
{¢j11,k k=j+1:n are equal to one, the output of the jt" layer is up-
loaded to the cloud. The same argument applies to downloading.
We also note that the last two terms in Eq. 3 represent the condition
by which the last layer is computed on the cloud and we need to
download the output to the mobile device, and the first layer is
computed on the cloud and we need to upload the input to the
cloud, respectively. To support for residual architectures, we need
to add a pair of download and upload terms similar to the first two
terms in Eq. 3 for the starting and ending layers of each residual
block. In order to guarantee that all layers are computed exactly
once, we need to add the following set of constraints:
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Vmel:n:ZZ(mi,j+ci,j)=l (5)

i=1 j=m
Because of the non-linearity of multiplication, an additional step

is needed to transform Eq. 3 to the standard form of ILP. We define
two sets of new variables:

n

Uj,j = mij. Z Ci+1,k
k=j+1

n
dij = cij. Z Mjt1,k
k=j+1

O

with the following constraints:

Uj,j < mjj
n

ui,j < Z Cj+1,k

k=j+1

n
mij + Z Cj+1,k — Ui,j <1
k=j+1
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dij < cij

n
di,j < Z Mjy1 k
k=j+1

n
cij + Z miy1k —dij <1
k=j+1

The first two constraints ensure that u; ; will be zero if either m; ;
or Z;’:j +1 ¢j+1,1 are zero. The third inequality guarantees that u;,
will take value one if both binary variables, m; ; and Z?Zj +1 G+L D
are set to one. The same reasoning works for d; ;. In summary, the
total number of variables in our ILP formulation will be 4N(N +1)/2,
where N is total number of layers in the network.

2.4.2  Energy Efficient Computation Offloading ILP Setup for
Inference. Because of the nature of the application, we only care
about the energy consumption on the mobile side. We formulate
ILP as follows:
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i=1

Etotal = Ecomputation + Ecommunication (10)

EmohileLiJ. and EcloudLi’j represent the amount of energy re-

quired to compute the it" layer to the j'* layer on the mobile
and cloud, respectively. Egoiynioad,, a0d Eyploaq, , represent the

energy required to download and upload the output of i*" layer,
respectively. Similar to performance efficient ILP constraints, each
layer should be executed exactly once:

m n
Vmel:n:ZZmiJsl (11)

i=1 j=m

The ILP problem can be solved for different set of parameters (e.g.
different uplink and download speeds), and then the scheduling re-
sults can be stored as a look-up table in the mobile device. Moreover
because the number of variables in this setup is tractable solving
ILP is quick. For instance, solving ILP for AlexNet takes around
0.045 seconds on Intel(R) Core(TM) i7-3770 CPU with MATLAB®’s
intlinprog() function using primal simplex algorithm.

2.4.3 Performance Efficient Computation Offloading ILP Setup
for Training. The ILP formulation of online training phase is very
similar to that of inference. In online training we have 2N layers
instead of N obtained by mirroring the DNN, where the second N
layers are backward propagation. Moreover, we need to download
the weights that are updated in the cloud to the mobile. We assume
that the cloud server always has the most updated version of the
weights and does not require the mobile device to upload the up-
dated weights. The following terms need to be added for the ILP
setup of training:

2n 2n

Teomputation = Z Z (mi,j-TmobileLl.j + ci,j'TcloudLij) (12)
i=1 j=i

2n 2n 2n

Teommunication = Z Z Z mi,j-cj+1,k-TuploadLj

i=1 j=i k=j+1
2n 2n  2n

+ ZZ Z Ci,j-mj+1,k~TdownloadLj

i=1 j=i k=j+1

n
+ Z Cl,i'TuploadLi
i=1

2n  2n

+ Z Zci,j-TdownloadWl.

i=n+1 j=i

(13)

Ttotal = Tcompumtion + Tcommunication (14)
2.4.4 Energy Efficient Computation Offloading ILP Setup for

Training.

2n 2n

Ecomputation = Z Z mi,j-EmobileLij (15)
i=1 j=i '



2n 2n

Ecommunication = Z Z mi,j-EdownloadLi
i=2 j=i
2n 2n-1

+ Z mi,j'EuploadLj
i=1 j=i

2n
+ (O (1 =myi) - 2n = 1)).Eupload,,
i=1

2n  2n
+( 0 > (@ =mij) = (1= 1) Edownloadw,
i=n+1 j=i
(16)
Etotal = Ecomputation + Ecommunication (17)

2.4.5 Scenarios. There can be different optimization scenarios
defined for ILP as listed below:

e Performance efficient computation: In this case, it is suf-
ficient to solve the ILP formulation for performance efficient
computation offloading.

e Energy efficient computation: In this case, it is sufficient
to solve the ILP formulation for energy efficient computation
offloading.

e Battery budget limitation: In this case, based on the avail-
able battery, the operating system can decide to dedicate a
specific amount of energy consumption to each application.
By adding the following constraint to the performance effi-
cient ILP formulation, our framework would adapt to battery
limitations:

Ecomputation + Ecommunication < Eypound (18)

e Cloud limited resources: In the presence of cloud server
congestion or limitations on user’s subscription, we can ap-
ply execution time constraints to each application to alleviate
the server load:

n n
Z Z Ci,j~TcloudLiJ < Tubound (19)
i=1 j=i
e QoS: In this scenario, we minimize the required energy con-
sumption while meeting a specified deadline:

min{Ecomputation + Ecommunication}
(20)
Tcomputatian + Tcommunication < TQoS
This constraint could be applied to both energy and perfor-

mance efficient ILP formulations.

3 EVALUATION
3.1 Deep Architecture Benchmarks

Since the architecture of neural networks depends on the type of
the application, we have chosen three common application types
of DNNs:

(1) Discriminative neural networks are a class of models
in machine learning for modeling the conditional probabil-
ity distribution P(y|x). This class generally is used in clas-
sification and regression tasks. AlexNet[22], OverFeat[34],

Algorithm 1: JointDNN engine optimal scheduling of DNNs

1 function JointDNN (N, L;, D;, NB, NP);
Input :1: N: number of layers in the DNN

2: L;|i = 1: N:layers in the DNN

3: D;|i = 1: N: data size at each layer

4: NB: mobile network bandwidth

5: NP: mobile network uplink and downlink power
consumption
Output: Optimal schedule of DNN
fori=0;i<N;i=i+1do

)

3 forj=0; j<N;j=j+1do

4 ‘ Latency; j, Energy;, j = ProfileGroupedLayers(i, j);
5 end

¢ end

7 G,S,F = ConstructShortestPathGraph(N,L;,D;,NB,NP) //S and
F are start and finish nodes and G is the JointDNN graph
model

if no constraints then
‘ schedule = ShortestPath(G,S,F)

10 else

[-I]

1 if Battery Limited Constraint then

12 Ecomm + Ecomp < Eubound

13 schedule = PerformanceEfficientILP(N,L;,D;,NB,NP)
14 end

15 if Cloud Server Contraint then

16 ?zl Z;L,’ Ci,j~TcloudLi,j < Tubound

17 schedule = PerformanceEfficientILP(N,L;,D;,NB,NP)
18 end

19 if QoS then

20 Teomm + Tcomp < TQoS

21 schedule = EnergyEfficientILP(N,L;,D;, NB,NP)

22 end

23 ;

24 end

25 return schedule;

VGG16[35], Deep Speech[13], ResNet[14], and NiN[24] are
well-known discriminative models we use as benchmarks in
this experiment. Except Deep Speech, used for speech recog-
nition, all other benchmarks are used in image classification
tasks.

(2) Generative neural networks model the joint probability
distribution P(x,y), allowing generation of new samples.
These networks have applications in Computer Vision [11]
and Robotics [9], which can be deployed on a mobile device.
Chair [8] is a generative model we use as benchmark in this
work.

(3) Autoencoders are another class of neural networks used
to learn a representation for a data set. Their applications
are image reconstruction, image to image translation, and
denoising to name a few. Mobile robots can be equipped with
autoencoders to be used in their computer vision tasks. We
use Pix2Pix [18], as a benchmark from this class.
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Figure 8: Latency and energy improvements for different batch sizes during inference.

Table 2: Benchmark Specifications

Type Model Layers
AlexNet 21
Discriminative OverFeat 14
Deep Speech 10
ResNet 70
VGG16 37
NiN 29
Generative Chair 10
Autoencoder Pix2Pix 32

Table 3: Mobile networks specifications in the U.S.

Param. 3G 4G Wi-Fi
Download speed (Mpbs) | 2.0275 | 13.76 54.97
Upload speed (Mbps) 1.1 5.85 18.88
ay (mW/Mpbs) 868.98 | 438.39 | 283.17

ag (mW/Mpbs) 122.12 51.97 137.01

S (mW) 817.88 | 1288.04 | 132.86

3.2 Mobile and Server Setup
We used Jetson TX2 module developed by NVIDIA® [3], a fair

representative of mobile computation power as our mobile device.

This module enables efficient implementation of DNN applications

used in products such as robots, drones, and smart cameras. It is
equipped with NVIDIA Pascal® GPU with 256 CUDA cores and a
shared 8 GB 128 bit LPDDR4 memory between GPU and CPU. To
measure the power consumption of the mobile platform, we used
INA226 power sensor [17].

NVIDIA® Tesla® K40C [4] with 12 GB memory serves as our
server GPU. The computation capability of this device is more than
one order of magnitude compared to our mobile device.

3.3 Communication Parameters

To model the communication between platforms, we used the av-
erage download and upload speed of mobile Internet [28, 29] for
different networks (3G, 4G and Wi-Fi) as shown in Table 3.

The communication power for download (P;) and upload (Py,) is
dependent on the network throughput (t; and ;). Comprehensive
examinations in [16] indicates that uplink and downlink power
can be modeled with linear equations (Eq. 21) fairly accurate with
less than 6% error rate. Table 3 shows the parameter values of this
equation for different networks.

Py
Py

auty + p
agtg + p

(1)

4 RESULTS

The latency and energy improvements of inference and online
training with our engine for 8 different benchmarks are shown in
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Figure 9: Latency and energy improvements for different batch sizes during training,.

Figures 8 and 9, respectively. We considered the best case of mobile-
only and cloud-only as our baseline. JointDNN can achieve up to
66% and 86% improvements in latency and energy consumption, re-
spectively during inference. Communication cost increases linearly
with batch size while this is not the case for computation cost and it
grows with much lower rate, as depicted in 10(b). Therefore, a key
observation is that as we increase the batch size, the mobile-only
approach becomes more preferable.

During online training, the huge communication overhead of
transmitting the updated weights will be added to the total cost.
Therefore, in order to avoid downloading this large data, only a few
back-propagation steps are computed in the cloud server. We per-
formed a simulation by varying the percentage of updated weight.
As the percentage of updated weights increases, the latency and
energy consumption becomes constant which is shown in Figure 10.
This is the result of the fact that all the back-propagations will be
performed on the mobile device and weights are not transfered from
the cloud to the mobile. JointDNN can achieve improvements up to
73% in latency and 56% in energy consumption during inference.

Different patterns of scheduling are demonstrated in Figure 11.
They represent the optimal solution in Wi-Fi network while opti-
mizing for latency. They show how the computations in DNN is
divided between the mobile and the cloud. As it can be seen, dis-
criminative models (e.g. AlexNet), inference follows a mobile-cloud
pattern and training follows a mobile-cloud-mobile pattern. The
intuition is that the last layers are computationally intensive (fc)
with small data sizes, which require a low communication cost,

therefore, last layers tend to be computed on the cloud. For gen-
erative models (e.g. Chair), the execution schedule of inference is
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Figure 10: (a) Latency of one epoch of online training using
JointDNN algorithm vs percentage of updated weights (b) La-
tency of mobile-only inference vs. batch size.
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Figure 11: Interesting schedules of execution for three types
of DNN architectures.

the opposite of discriminative networks, in which the last layers
are generally huge and in the optimal solution they are computed
on the mobile. Lastly, for autoencoders, where both the input and
output data sizes are large, the first and last layers are computed
on the mobile.

JointDNN pushes some parts of the computations toward the
mobile device. As a result this will lead to less workload on the
cloud server. As we see in Table 4, we can reduce the cloud server’s
workload up to 84% and 53% on average, which enables the cloud
provider to service more users, while obtaining higher performance
and lower energy consumptions compared to single-platform ap-
proaches.

Table 4: Workload reduction of the cloud server in different
mobile networks

Optimization Target | 3G (%) | 4G (%) | Wi-Fi (%)
Latency 84 49 12
Energy 73 49 51

4.1 Communication Dominance

Execution time and energy breakdown for AlexNet, which is noted
as a representative for the state-of-the-art architectures deployed
in cloud servers, is depicted in Figure 12. The cloud-only approach
is dominated by the communication costs. As demonstrated in
Figure 12, 99%, 93% and 81% of the total execution time is used
for communication in case of 3G, 4G, and Wi-Fi, respectively. This
relative portion also applies to energy consumption. Comparing
the latency and energy of the communication to those of mobile-
only approach, we notice that mobile-only approach for AlexNet is
better than the cloud-only approach in all the mobile networks. We
apply lossless compression methods in order to reduce the effect of
the communication, which will be covered in the next section.

4.2 Layer Compression

The preliminary results of our experiments show that more than
75% of the total energy and delay cost in DNNs are caused by
communication in the collaborative approach. This cost is directly
proportional to the size of the layer being downloaded to or up-
loaded from the mobile device. Because of the complex feature
extraction process of DNNs, the size of some of the intermediate
layers are even larger than network’s input data. For example, this
ratio can go as high as 10X in VGG16. To address this bottleneck,
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Figure 12: (a) Execution time of AlexNet optimized for per-
formance (b) Mobile energy consumption of AlexNet opti-
mized for energy (c) Data size of the layers in AlexNet and
the scheduled computation, where the first nine layers are
computed on the mobile and the rest on the cloud, which is
the optimal solution w.r.t. both performance and energy.

we investigated compression of the data before any communica-
tion. This process can be applied to different DNN architecture
types; however, we only considered CNNs due to their specific
characteristics explained later in details.

CNN architectures are mostly used for image and video recogni-
tion applications. Because of the spatially local preservation char-
acteristics of conv layers, we can assume that the output of the
first convolution layers are following the same structure as the

Figure 13: Layer output after passing the input image
through conv, relu and Irn. Channels are preserving the gen-
eral structure of the input image and large ratio of the out-
put data is black (zero) due to existence of relu. Tiling is used
to put all 96 channels together.



input image, as shown in Figure 13. Moreover, a big ratio of layer
outputs are expected to be zero due to the presence of the relu
layer. Our observations shows that the ratio of neurons equal to
zero (ZR) varies from 50% to 90% after relu in CNNs. These two
characteristics, layers being similar to the input image, and large
proportion of their data being a single value, suggest that we can
employ existing image compression techniques to their output.

There are two general categories of compression techniques,
lossy and lossless [5]. In lossless techniques it is possible to recon-
struct the original information completely. On the contrary, lossless
techniques use approximations and the original data cannot be
reconstructed. In our experiments, we examined the impact of com-
pression using PNG, a lossless technique, based on encoding of
frequent sequences in an image.

Even though the data type of DNN parameters in typical im-
plementations are 32-bits floating-points, most image formats are
based on 3-bytes RGB color triples. Therefore, to compress the layer
in the same way as 2D pictures, the floating-point data should be
quantized into 8-bits fixed-point. Recent studies show representing
the parameters of DNNs with only 4-bits affect the accuracy not
more than 1% [38]. In this work, we implemented our architectures
with 8-bits fixed-point and presented our baseline without any
compression. The layers of CNN contain numerous channels of 2D
matrices, each similar to an image. A simple method is to compress
each channel separately. In addition to extra overhead of file header
for each channel, this method will not take the best of the frequent
sequence decoding of PNG. One alternative is locating different
channels side by side, referred to as tiling, to form a large 2D matrix
representing one layer as shown in Figure 13. It should be noted
that 1D fc layers are very small and we did not apply compression
on them.

The Compression Ratio (CR) is defined as the ratio of the size
of the layer (8-bit) to the size of the compressed 2D matrix in PNG.
Looking at the results of compression for two different CNN archi-
tectures in Figure 14, we can observe a high correlation between
ratio of pixels being zero (ZR) and CR. PNG can compress the layer
data up to 5.8% and 3.5X by average. These results confirm the ef-
fectiveness of the proposed compression method. By replacing the
compressed layers output and adding the cost of compression pro-
cess itself in JointDNN formulations, we achieve an extra 4.9x and
4.6x improvements in energy and latency on average, respectively.

5 RELATED WORK AND COMPARISON

General Task Offloading Frameworks. There are existing prior
arts focusing on offloading computation from the mobile to the
cloud[2, 6, 12, 32, 40, 43]. However, all these frameworks share
a limiting feature that makes them impractical for computation
partitioning of the DNN applications.

These frameworks are programmer annotations dependent as
they make decisions about pre-specified functions, whereas JointDNN
makes scheduling decisions based on the model topology and mo-
bile network specifications in run-time. Offloading in function level,
cannot lead to efficient partition decisions due to layers of a given
type within one architecture can have significantly different compu-
tation and data characteristics. For instance, a specific convolution
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Figure 14: Compression Ratio (CR) and ratio of zero val-
ued neurons (ZR) for different layers of (a) AlexNet and (b)
VGG16.

layer structure can be computed on mobile or cloud in different
models in the optimal solution.

Neurosurgeon is the only prior art exploring a similar computa-
tion offloading idea in DNNs between the mobile device and the
cloud server at layer granularity. Neurosurgeon assumes that there
is only one data transfer point and the execution schedule of the
efficient solution starts with mobile and then switches to the cloud,
which performs the whole rest of the computations. Our results
show this is not true especially for online training, where the opti-
mal schedule of execution often follows the mobile-cloud-mobile
pattern. Moreover, generative and autoencoder models follow a
multi data transfer points pattern. Also, the execution schedule can
start with the cloud especially in case of generative models where
the input data size is large. Furthermore, inter-layer optimizations
performed by DNN libraries are not considered in Neurosurgeon.
Moreover, Neurosurgeon only schedules for optimal latency and en-
ergy, while JointDNN adapts to different scenarios including battery
limitation, cloud server congestion, and QoS. Lastly, Neurosurgeon
only targets simple CNN and ANN models, while JointDNN utilizes
a graph based approach to handle more complex DNN architectures
like ResNet and RNNs.

6 CONCLUSIONS

In this paper, we demonstrated that the status-quo approaches,
cloud-only or mobile-only, are not optimal with regard to latency
and energy. We reduced the problem of partitioning the compu-
tations in a DNN to shortest path problem in a graph. Adding
constraints to the shortest path problem makes it NP-Complete,
therefore, we also provided ILP formulations to cover different pos-
sible scenarios of limitations of mobile battery, cloud congestion,
and QoS. One can solve this problem for different set of parameters
beforehand (e.g. network bandwidth, cloud server load, etc.) and
use a look-up table accordingly to avoid the overhead of solving



the optimization problem. The output data size in discriminative
networks is typically smaller than other layers in the network,
therefore, last layers are expected to be computed on the cloud,
while first layers are expected to be computed on the mobile. A
reverse reasoning works for Generative models. Autoencoders have
large input and output data sizes, which implies that the first and
last layers are expected to be computed on the mobile. With these
insights, the execution schedule of DNNs can possibly have various
patterns depending on the model architecture.
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