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ABSTRACT
In today’s computing technology scene, mobile devices are con-
sidered to be computationally weak, while large cloud servers are
capable of handling expensive workloads, therefore, intensive com-
puting tasks are typically offloaded to the cloud. Recent advances in
learning techniques have enabled Deep Neural Networks (DNNs)
to be deployed in a wide range of applications. Commercial speech
based intelligent personal assistants (IPA) like Apple’s Siri, which
employs DNN as its recognition model, operate solely over the
cloud. The cloud-only approach may require a large amount of data
transfer between the cloud and the mobile device. The mobile-only
approach may lack performance efficiency. In addition, the cloud
server may be slow at times due to the congestion and limited sub-
scription and mobile devices may have battery usage constraints.
In this paper, we investigate the efficiency of offloading only some
parts of the computations in DNNs to the cloud. We have formu-
lated an optimal computation offloading framework for forward
propagation in DNNs, which adapts to battery usage constraints
on the mobile side and limited available resources on the cloud.
Our simulation results show that our framework can achieve 1.42×
on average and up to 3.07× speedup in the execution time on the
mobile device. In addition, it results in 2.11× on average and up to
4.26× reduction in mobile energy consumption.
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1 INTRODUCTION
With the exponential growth of deep learning techniques and
digital raw data, a wide range of applications, that were previ-
ously intractable, are enjoying scalable and easy-to-train models.
Deep learning has shown extremely promising results in Computer
Vision[1][2], Speech Recognition[3], and Natural Language Pro-
cessing [4]. Even though, DNNs outperform many other machine
learningmodels, they often require a great amount of computational
resources. Mobile devices like smart-phones and robots are often
considered limited in terms of processing resources and energy
budget compared to the cloud server, therefore, DNN workloads
are often entirely offloaded to the cloud. However, as the computa-
tional resources in the mobile devices are becoming more powerful
and energy efficient, we could possibly push some parts of the
computations toward the mobile edge. Basically, there are follow-
ing methods during neural networks inferences in mobile cloud
computing context:

Cloud-only approach: In this method, when the user makes a
query, all the input data will be uploaded to the cloud server, after-
wards the cloud server does the inference and sends the output back
to the mobile. The main drawback of this method is the commu-
nication overheads of uploading large inputs (e.g., images, audios,
videos), which includes latency and energy costs or downloading
large outputs in case of generative models, where the output of
the network could be a multimedia file (e.g., image in [7]). The
latency and energy costs of several benchmarks over three different
wireless networks (Wi-Fi, 3G, LTE) are studied comprehensively in
section (3). This approach also compromises user’s privacy.

Mobile-only approach: In this method, all the computations
are performed locally in either CPU or GPU depending on the
available hardware and software architectures. There is an active
research in empowering mobile devices for DNNs by designing
accelerators[34][33]. Recently, Apple has unveiled a new machine
learning framework API for developers named Core ML, enabling
on-device processing[8]. They have also included a customized
GPU specialized for machine learning tasks in their new smart-
phone[26]. In addition, by using this approach, no data will leave
the device, which provides more privacy for the user.

Mobile-cloud collaborative approach: In this method, we
seek to develop an optimal scheduling algorithm for collaboratively
computation of feed forward neural networks. We break down the
computations at layer granularity and decide upon which layers
should be computed on mobile and which on the cloud server to
achieve maximum performance and energy efficiency. Prior arts in
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this area often require to transfer the whole process state, which
could have potentially large amount of variables to be offloaded,
that is not taken into account[29]. Some rule-based offloading frame-
works offload a function, when it is exceeding a pre-defined time
ignoring the amount of data to be offloaded[31][30]. In addition,
statistical prediction of the execution time and energy of functions
used in [28] are prone to large errors especially in case of DNNs
(Section 2). Our main contribution in this work is formulating opti-
mal computation offloading in DNNs at layer granularity, where
the optimality comes from solving an integer linear programming
(ILP) setup.

There are three approaches in estimating the performance and
energy consumption of inference with neural networks:

1. Statistical modeling by varying the configurable parameters
of each layer and measuring the latency and energy consumption
for each set of input parameters. A regression model can be used to
fit over these profiles so as to estimate the latency and energy of the
layer based on its configuration[27]. In section 2, we show that the
complexities in latency and energy estimation of the conventional
layers in deep neural networks are quite high so that it is not feasible
to use statistical modeling, because we need exponential number
of profiling measurements.

2. Analytical modeling by considering hardware and software
specifications. State-of-the-art work in latency modeling of deep
neural networks [5] fails to estimate fine-grained layer-level la-
tency within an acceptable error bound. For instance, the latency
of 6th layer in VGG-16, which is a fully connected layer with 4096
neurons, is underestimated by around 900 percent. Because of the
fact that manufacturers do not reveal the detailed hardware archi-
tecture specifications in addition to the proprietary parallel com-
puting architectures like CUDA, analytical approach could be quite
challenging[6].

3. Application-specific profiling approach only requires to pro-
file the latency and energy of the target neural networks. Because of
the limited number of applications, which requires neural networks
in user’s mobile, this method seems more practical and leads to
more accurate results.

In summary, the main contribution of this work is providing a
framework to query DNNs efficiently on mobile devices collaborat-
ing with cloud server in the presence of battery usage constraints
and cloud server limited resources.

2 EXECUTION TIME AND ENERGY
PROFILING

In this section we elaborate upon the challenges in execution
time and energy profiling. We performed four sets of experiments
with the convolution operator, which is generally the most expen-
sive operator in neural networks, on our mobile platform using
Tensorflow™1.0.1[9]. The convolution takes a batch of images of
width imд_w , height imд_h, and with imд_c input channels. The
image is convolved with a filter of width f _w , height f _h, and f _c
output channels with a pre-defined stride in x and y directions. The
input sizes in our experiments are listed in table 1. As depicted in
Figure 1, at some points, increasing the input size decreases the ex-
ecution time, which is caused by the heuristic selection of different
convolution algorithms available in cuDNN[10]. For instance, for

Table 1: Convolution inputs size

batches img_w img_h img_c f_w f_h f_c
Case1 16 64 64 Var 3 3 256
Case2 16 64 64 Var 9 9 256
Case3 16 64 64 3 Var Var 256
Case4 16 64 64 128 Var Var 256

small filter sizes, the convolution is calculated using General Matrix
Multiplication (GEMM), while for large filter sizes an algorithm
which uses Fast Fourier Transform (FFT) is chosen. Another source
of non-linearity is when the GPU is under-utilized and increasing
the input size would not affect the execution time. Moreover, as
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Figure 1: Non-linear execution time of convolutions w.r.t. in-
puts size. The execution time decreases even when the input
size increases because of the heuristic selection of convolu-
tion algorithms.

depicted in Figure 2, layer-wise profiling is prone to large amount
of errors in estimation. The reason is the accelerations done by
hardware and software frameworks for the consecutive operations.
For instance, the latency of two consecutive convolutionA∗A∗x is
generally less than the sum of each convolution. The main reason
is that the order of grouping of the operators affects the latency. In
other words, the latency of (A ∗A) ∗ x and A ∗ (A ∗ x) are not the
same. In a nutshell, the execution time of two consecutive layers
may not even be close to the sum of the execution times of the
individual layers. This fact is depicted in Figure 2 for AlexNet[1].
Therefore, for a statistical model we need to profile not only each
layer type with different input sizes but also the combination of
various layers, which makes the act of profiling and regression
very time-consuming and impractical. As a result, we decide to
perform application-specific profiling. The level of granularity we
are considering in our profiling step, is the following list of the
layer types: convolution, deconvolution, pooling, fully connected,
and activation functions.
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Figure 2: Non-linearity in the execution time of consecutive
layers in AlexNet[1]. Each bar represents the execution time
up to that layer.

3 COMPUTATION-OFFLOADING MODEL FOR
DNN

3.1 Performance Efficient Computation
Offloading Setup

As a parallel work [32] shows, mobile cloud computing scheduling
of different tasks with constraints is a NP-hard problem. Therefore,
we formulated this problem as an ILP with tractable number of
variables. In our method, first we profile the latency and energy con-
sumption of consecutive layers of sizem ∈ {1, 2, . . . ,num_layers}.
We define the number of layers to be n consistently throughout this
paper. Thus, we will have

n + (n − 1) + ... + 1 = n(n + 1)/2 (1)

number of different profiling values for latency and energy. Con-
sidering ith layer to jth layer are computed either on the mobile
edge or cloud server, we assign two binary variablesmi, j and ci, j
respectively. Download and upload communication latencies needs
to be added to the execution time, while switching to/from cloud
from/to mobile respectively.

Tcomputation =

n∑
i=1

n∑
j=i

(mi, j .TmobileLi, j
+ ci j .TcloudLi, j ) (2)

Tcommunication =

n∑
i=1

n∑
j=i

n∑
k=j+1

mi, j .c j+1,k .TuploadLj

+

n∑
i=1

n∑
j=i

n∑
k=j+1

ci, j .mj+1,k .TdownloadLj

+

n∑
i=1

c1,i .TuploadLi

+

n∑
i=1

ci,n .TdownloadLn

(3)

Ttotal = Tcomputation +Tcommunication (4)
TmobileLi, j

and TcloudLi, j represent the execution time of ith layer
to jth layer on the mobile and cloud respectively. TdownloadLi

and
TuploadLi represent the latency of downloading and uploading the
output of ith layer respectively. Considering each set of consec-
utive layers, whenever mi, j and one of {c j+1,k }k=j+1:n are one,
output of jth is uploaded to the cloud. The same argument works
for download. We also note that the last two terms in (3) represent
the condition, when last layer is computed on the cloud and we

need to download the output to the mobile edge and first layer is
computed on the cloud and we need to upload the input to the cloud
respectively. Because each set of consecutive layers should be com-
puted either on mobile or cloud or none, we define the following
set of constraints:

∀i ∈ 1 : n,∀j ∈ i : n :mi, j + ci, j ≤ 1 (5)

Besides, we have to make sure that all layers are being computed
exactly once. Therefore, we need to add the following constraints:

∀m ∈ 1 : n :
m∑
i=1

n∑
j=m

(mi, j + ci, j ) = 1 (6)

Because of the non-linearity of multiplication, an additional step is
needed to transform (3) to the standard form of ILP. We define two
sets of new variables:

ui, j =mi, j .

n∑
k=j+1

c j+1,k

di, j = ci, j .
n∑

k=j+1
mj+1,k

(7)

with the following constraints:

ui, j ≤ mi, j

ui, j ≤
n∑

k=j+1
c j+1,k

mi, j +

n∑
k=j+1

c j+1,k − ui, j ≤ 1

di, j ≤ ci, j

di, j ≤
n∑

k=j+1
mj+1,k

ci, j +
n∑

k=j+1
mj+1,k − di, j ≤ 1

(8)

The first two constraints ensure that ui, j will be zero if eithermi, j
or

∑n
l=j+1 c j+1,l are zero. The third inequality guarantees that ui, j

will take value one if both binary variables,mi, j and
∑n
l=j+1 c j+1,l ,

are set to one. The same reasoning works for di, j . In summary, the
total number of variables in our ILP formulation will be 4n(n+ 1)/2,
where n is total number of layers in the network.

3.2 Energy Efficient Computation Offloading
Setup

Because of the nature of the application, we only care about the en-
ergy consumption on the mobile side. We formulate ILP as follows:

Ecomputation =

n∑
i=1

n∑
j=i

mi, j .EmobileLi, j (9)
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Ecommunication =

n∑
i=2

n∑
j=i

mi, j .EdownloadLi

+

n∑
i=1

n−1∑
j=i

mi, j .EuploadLj

+ (
n∑
i=1

(1 −m1,i ) − (n − 1)).EuploadL1

+ (
n∑
i=1

(1 −mi,n ) − (n − 1)).EdownloadLn

(10)

Etotal = Ecomputation + Ecommunication (11)

EmobileLi, j
and EcloudLi, j represent the amount of energy required

to compute ith layer to jth layer on the mobile and cloud respec-
tively. EdownloadLi

and EuploadLi represent the amount of energy
required to download and upload the output of ith layer respec-
tively. Likewise for performance efficient ILP constraints, we need
to make sure that each layer get executed exactly once:

∀m ∈ 1 : n :
m∑
i=1

n∑
j=m

mi, j ≤ 1 (12)

The ILP problem can be solved for different set of parameters (e.g.
different uplink and download speeds), and then the scheduling re-
sults can be stored as a look-up table in the mobile device. Moreover
because the number of variables in this setup is tractable solving
ILP is quick. For instance, solving ILP for AlexNet takes around
0.045 seconds on Intel(R) Core(TM) i7-3770 CPU with MATLAB®’s
intlinprog() function using primal simplex algorithm.

3.3 Scenarios
• Performance Efficient Computation: In this case, all we
need to do is to solve the ILP formulation for performance
efficient computation offloading.

• Energy Efficient Computation: In this case, all we need
to do is to solve the ILP formulation for energy efficient
computation offloading.

• Battery Budget Limitation: In this case, according to the
available battery, the operating system can decide to dedi-
cate a specific amount of energy usage to each application.
By adding the following constraint to the performance effi-
cient ILP formulation, our framework would adapt to battery
limitations:

Ecomputation + Ecommunication ≤ Eubound (13)

• Cloud Limited Resources: There are situations in which
the cloud server is busy or the subscription of the user is
limited so that a limit of execution time could be applied to
each application to alleviate the server load:

n∑
i=1

n∑
j=i

ci, j .TcloudLi, j ≤ Tubound (14)

This constraint could be applied to both energy and performance
efficient ILP formulations.

4 CASE STUDIES
4.1 Experimental Setup
We use Jetson TX2 board developed by NVIDIA[16], which fairly
represents the computing power of mobile devices. Our server
platform is equipped with NVIDIA®Tesla ™K40C[15], which has
11.25x more computing resources than our mobile platform. We
measure the GPU power on our mobile platform using INA226
power monitoring sensor with sampling rate of 500kHz[19]. In
our experiment, we use Tensorflow™[9], which is an open source
software library equipped with cuDNN[10], a GPU-accelerated
library of primitives for deep neural networks. Average download
and upload speed of mobile networks in the U.S. are considered
in this experiment[11][12]. We also use the power models of [14]
for mobile networks with error less than 6%. The power level for
uplink is Pu = αutu + β and for downlink is Pd = αd td + β , where
tu and td are uplink and downlink throughputs respectively. The
values for our power model paramters are as the following table:

Table 2: Power model parameters

Network αu (mW/Mpbs) αd (mW/Mpbs) β (mW)
3G 868.98 122.12 817.88
4G 438.39 51.97 1288.04

Wi-Fi 283.17 137.01 132.86

Table 3: Average download and upload speed of mobile net-
works in U.S.

Network Download speed (Mpbs) Upload speed (Mbps)
3G 2.0275 1.1
4G 13.76 5.85

Wi-Fi 54.97 18.88

4.2 Benchmarks
Since the architecture of neural networks depends on the type of the
application, we have chosen three common applications of DNNs:

(1) Discriminative neural networks are a class of models in ma-
chine learning for modeling the conditional probability dis-
tribution P(y |x). This essentially is used in classification and
regression tasks. AlexNet[1], OverFeat[21], VGG16[22] and
NiN[20] are the discriminative models we use as benchmarks
in this experiment.

(2) Generative neural networks model the joint probability dis-
tribtion P(x ,y), which allows for generating new samples.
They have applications in computer vision[17] and robotics
[13], which can be deployed on a mobile device. Chair[23] is
a generative model we use as benchmark.

(3) Autoencoders are a class of neural networks, which are
used to learn a representation for a data set. Their appli-
cation is in image reconstruction, image to image transla-
tion, and denoising to name a few. Mobile robots can be
equipped with autoencoders for their computer vision tasks.
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Figure 3: Execution time of AlexNet optimized for perfor-
mance (a)Mobile energy consumption of AlexNet optimized
for energy (b) Data size of the layers in AlexNet and the
scheduled computation, where the first seven layers are be-
ing computed on themobile and the rest on the cloud, which
is optimal w.r.t. both performance and energy (c).

We use Pix2Pix[23], which has a similar architecture to au-
toencoders, as our benchmark.

Table 4: Benchmark Specifications

Type Model Layers

Discriminative

AlexNet 21
OverFeat 14
VGG16 37
NiN 29

Generative Chair 10
Autoencoder Pix2Pix 32

4.3 Results
Execution time and energy breakdown for AlexNet, which is noted
as a representative for the state-of-the-art models deployed in cloud
servers[25], is depicted in Figure 3. Not only is the cloud-only ap-
proach dominated by the communication costs but also the collab-
orative one. As demonstrated in Figure 3, 99%, 93% and 81% of the
total execution time is used for communication in case of 3G, 4G,
andWi-Fi. This relative portion also applies to energy consumption.
Comparing the latency and energy of the communication to those
of mobile-only approach, we figure out that mobile-only approach
for AlexNet is better than the cloud-only approach in all the mobile
networks.

Figure 4 shows the execution time and energy improvements for
6 different benchmarks. We have considered the best case of cloud-
only and mobile-only as our baseline. We have also depicted the

schedule of computations in this figure. As we can see, the cloud-
only and mobile-only approaches are optimal for VGG16 and NiN
respectively, while optimizing for mobile energy consumption. Our
proposed framework can achieve 1.42X on average and up to 3.07X
(OverFeat, 3G) speedup when optimizing for performance. Mobile
energy consumption can be reduced 2.11X on average and up to
4.26X (OverFeat, 3G), while optimizing for energy consumption.
The improvements in the execution time of deep neural networks
benefits not only the mobile users but also the cloud providers,
which essentially means that they could save more resources or
have more users. Another key observation is the scheduling pattern
of the computations in different types of neural networks. Generally,
in discriminative networks, the input size is often large and the
output size is small, which implies that it is better to compute the
first layers on the mobile to avoid uploading large inputs to the
cloud. On the other hand, in generative networks, output size is
often large, which implies that it is better to compute the last layers
on the mobile to avoid downloading large outputs from the cloud.
In autoencoders, both the input and output data sizes are often
large, therefore, it is better to compute the first and last layers on
the mobile and offload the computations in the middle layers to the
cloud.

4.4 Cloud Limited Available Resources
Experiment

The cloud resource management may decide to allow a process to
be executed for a limited amount of time. The reason could be the
user’s limited subscription or congestion in the cloud server. In this
scenario, we have set up a experiment in which the cloud allows up
to 50% of the execution time of the whole neural network on the
cloud over Wi-Fi network setup. As we have shown in the Figure 5,
multiple data transfer points may occur, whose maximum is four
in case of OverFeat.

CONCLUSION AND ROADMAP
In this work, we demonstrated that cloud-only or mobile-only ap-
proaches are not necessarily optimal with regard to performance
and energy. We formulated the problem with ILP setup, which is
solved only once by the cloud server. The reason that we are using
ILP is the fact that the number of data transfer points strongly de-
pends on the network architecture and resource constraints applied
by the cloud and mobile. It is possible to limit the number of data
transfer points and solve the problem by a polynomial algorithm,
but it is not guaranteed to be optimal for all kinds of network archi-
tecture and constraints. The output data size of generative models,
are generally large so the last layers are expected to be computed
on the mobile in the optimal case to avoid downloading large data.
On the other hand, classification networks have smaller output data
size, therefore last layers are expected to be computed on the cloud.
Autoencoders have large input and output data sizes, which implies
that the first and last layers are expected to be computed on the
mobile. With these insights, the computation scheduling of deep
neural networks can possibly have different patterns depending
on the model architecture. The proposed framework in this paper
can be extended to any data flow computational graphs with the
granularity of primitive operators like multiplication.
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