Extending the Lifetime of a Network of Battery-Powered Mobile Devices by Remote Processing: A Markovian Decision-based Approach

Peng Rong and Massoud Pedram

University of Southern California Dept. of EE Los Angeles CA 90089

June 5, 2003

Outline

- Introduction
- Background
- System Modeling
- Policy Optimization
- Experimental Results
- Conclusion

Introduction

- Employ Wireless Remote Processing to Save Energy
 - Migrate a task from an energy-constrained mobile host to an AC-powered base station
 - Wireless communication results in power consumption
 - Applications:

 - ♦Voice recognition
 - Large-scale numerical computations
 - ♦Simulation
 - ♦Compilation

Power savings for remote execution of Gaussian solution of a system of linear algebraic equations [Rudenko-98]

Prior Work

- A remote processing framework that supports process migration at the operating system level [Othman-98]
- An adaptive decision-making policy based on CPU measurements for a repetitive task [Rudenko-99]
- A compilation framework for remote processing [Kremer-01]
- An economics-based computation distribution protocol [Shang-02]

Discussion

- The previous works do not
 - consider any task timing constraints
 - discuss how to combine remote processing and power management techniques to achieve further energy saving
- Our work targets a mobile device providing real time services in a client-server wireless network
- Our objective is to minimize power consumption of the mobile host by using remote processing and dynamic power management while meeting some real-time constraints

Assumptions about the Mobile Client

- Continuously executes real-time processes to service the incoming tasks
- Different tasks differ in the task size, which is assumed to be exponentially distributed
- Relationships between the task size, the execution time, and the migration time are known in advance (e.g., profiling)

Model of the Server

- Queuing model
 - An infinite M/M/1 queue with a multi-state task generator

 The mobile client only needs to know the rejection probability for its RPRs

Optimal Offline Policy

- Formulated as a Linear Programming problem based on the CTMDP model
- Objective function is to minimize the power consumption of the mobile client
- Subject to constraints on
 - Ratio of task loss due to full queues
 - Average task delay: locally executed tasks and remotely executed tasks

Online Policy

- Based on a 2-D decision table computed off-line
 - Key: (PER, P_{reject})
 - Value: policy

Parameter prediction

PER: predicted packet error rate

APER: short-term actual packet error rate

 $PER^{(n)} = \alpha \cdot APER^{(n)} + (1 - \alpha) \cdot PER^{(n-1)}$

P_{reject}: predicted rejection probability

 RR_N : rejected ratio of last N remote processing requests

 $P_{reject}^{(n)} = \beta \cdot P_{rej}(\lambda_s^{(n)}, \mu_s^{(n)}) + (1 - \beta) \cdot RR_N^{\text{requests}}$

Experimental Setup

Component Parameters

SP: Str	SP: StrongARM SAIIIU	

	State	Busy	Wait	Sleep
	Power (mW)	600	100	0.2
	Transition Time	Wait to Busy Busy to Wait	10 us	
		Sleep to Busy	160 ms	
		Busy, Wait to Sleep	90 us	

CP: Orinoco WLAN Card

State	Transmit	Receive	Sleep
Power (mW)	1400	900	50
Wake-up time (ms)	34		
Sleep-down time (ms)	62		

Experimental Results

- Offline Optimal Policy
 - Non-varying wireless channel and server behavior
 M1: No RPR; M2: Always try RPR first

Experimental Results

Offline Optimal Policy

- Server: queuing model
- Characteristics of the wireless channel and server changed stochastically

PER1	PER2	v(1,2)	v(2,1)
0%	20%	1/15000	1/10000
$\lambda_{s,1}$	$\lambda_{s,2}$	η(1,2)	η(2,1)
16 per sec.	24 per sec.	1/20000	1/20000

Results

	Policy	M1	M2	MDPBP
Ave	erage Power (W)	0.2742	0.2746	0.2412
In	MDPBP provement	12.0%	12.2%	

Experimental Results

- Online Policy
 - Server: queuing model
 - Wireless channel: slowly and randomly changing

Policy	M1	M2	MDPBP
Average Power (W)	0.2742	0.2510	0.2310
MDPBP Improvement	15.8%	10.1%	

Conclusions

- A new mathematical framework for extending the lifetime of a mobile host in a client-server wireless network by using remote processing was proposed
- The client-server system was modeled based on the theory of continuous-time Markovian decision processes
- The DPM problem was formulated as a policy optimization problem and solved exactly by using a linear programming approach
- Based on the off-line optimal policy computation, an on-line adaptive policy was developed and employed in practice
- Experimental results demonstrated the effectiveness of our proposed methods
- Future work will be focused on ad-hoc mode wireless network