
1

TITLE
Micro-Processor Power Estimation Using Profile-Driven Program Synthesis

AUTHOR LIST
Name: Cheng-Ta Hsieh
Address: University of Southern California

Electrical Engineering Building, Room 330
3740 McClintock Avenue
Los Angeles, CA 90089-2562

Email: chengtah@zugros.usc.edu

Name: Massoud Pedram
Address: University of Southern California

Electrical Engineering Building, Room 346
3740 McClintock Avenue
Los Angeles, CA 90089-2562

Email: massoud@zugros.usc.edu

2

Micro-Processor Power Estimation Using Profile-
Driven Program Synthesis

Abstract

This paper presents a new approach for estimating power dissipation in a high

performance microprocessor chip. First, a characteristic profile (including parameters

such as the cache miss rate, branch prediction miss rate, pipeline stalls, instruction mix,

memory references, etc.) is extracted from application programs. Then, mixed integer

linear programming and heuristic rules are used to gradually transform a generic program

template to into a fully functional program. The synthesized program exhibits the same

performance and power dissipation behavior (as indicated by the extracted profile), yet it

has an instruction trace which is orders of magnitude smaller than the initial trace. The

synthesized program is subsequently simulated on a register-transfer level description of

the target microprocessor to provide the power dissipation value. Results obtained for the

Intel's Pentium processor executing standard benchmark programs show a simulation

time reduction by 3-5 orders of magnitude.

3

Micro-Processor Power Estimation Using Profile-
Driven Program Synthesis

Cheng-Ta Hsieh
chengtah@zugrtos.usc.edu

Massoud Pedram
massoud@zugros.usc.edu

Department of Electrical Engineering - System
University of Southern California

Los Angeles, California

Abstract – This paper presents a new approach for estimating power dissipation in a high performance

microprocessor chip. First, a characteristic profile (including parameters such as the cache miss rate,

branch prediction miss rate, pipeline stalls, instruction mix, memory references, etc.) is extracted from

application programs. Then, mixed integer linear programming and heuristic rules are used to

gradually transform a generic program template to into a fully functional program. The synthesized

program exhibits the same performance and power dissipation behavior (as indicated by the extracted

profile), yet it has an instruction trace which is orders of magnitude smaller than the initial trace. The

synthesized program is subsequently simulated on a register-transfer level description of the target

microprocessor to provide the power dissipation value. Results obtained for the Intel's Pentium

processor executing standard benchmark programs show a simulation time reduction by 3-5 orders of

magnitude.

1. Introduction

The market demand for high-performance mobile computer systems is increasing rapidly. During the

planning and design of such systems, power dissipation is an important design concern. An efficient and

accurate power estimation tool can be very useful during this early design stage.

The first task in the estimation of power consumption of computer systems is to identify the typical

application programs that will be executed on these computer systems. A non-trivial application

program consumes millions of machine cycles, making it nearly impossible to perform power estimation

using the complete program at, say, the RT-level.

4

The previous works are mainly based on power macro-modeling approaches. In [1], the power cost of a

CPU module is characterized by estimating the average capacitance that would switch when the given

CPU module is activated. In [2], the switching activities on (address, instruction, and data) buses are

used to estimate the power consumption of the microprocessor. In [3], an instruction level model is

proposed as shown below:

∑ ∑∑ +×+×=
ji k

kjiji
i

iip ENONBE
,

,,)()(

where Ep is the total energy dissipation of the program which is divided into three parts. The first part is

the summation of base energy cost of each instruction, (Bi is the base energy cost and Ni is the number of

times instruction i is executed). The second part takes the circuit state into account (Oi,j is the energy

cost when instruction i is followed by j during the program execution), while the third part accounts for

energy contribution of other instruction effects such as stalls and cache misses during the program

execution.

In this paper, we present a new approach, i.e. profile-driven program synthesis (c.f. Figure 1), to

perform RT-level power estimation for high performance CPUs. Instead of using a macro-modeling

equation to model the energy dissipation of a microprocessor, we use a synthesized program to exercise

the microprocessor in such a way that the resulting instruction trace behaves similarly (in terms of

performance and power dissipation) to the original trace. The new instruction trace is much shorter than

the original one. The advantages of the proposed approach are twofold:

1) It is more accurate than the macro modeling approaches since it does not rely on simple macro-

model equations for power prediction. In addition, it does not require macro-model calibration, which is

a difficult and error-prone process.

2) It is more efficient than direct RT-level simulation since the synthesized program has a much shorter

instruction trace.

A similar idea has been applied to circuit level power estimation. Input sequence compression

approaches are proposed in [4][5]. The input vector sequence is first analyzed and its bit-level statistics

are extracted. Then, a compression program synthesizes a new vector sequence that is shorter than the

original sequence by orders of magnitude and exhibits the same statistics as the original sequence.

5

Reported results indicate that the compressed input sequence predicts power dissipation of the original

sequence within 5% error.

In this paper, we consider microprocessors with super-scalar pipelined architecture. For more advanced

architectures (such as VLIW), more constraints need to be incorporated into the synthesis process.1

The remainder of this paper is organized as follows. Section 2 gives an overview of the proposed

methodology and some terminology and definitions. Section 3 enumerates the list of characteristics of

interest for power estimation in microprocessor chips. Section 4 describes the synthesis procedure in

details. Experimental results and conclusion are given in Section 5 and 6.

1 A preliminary version of this paper was published in [6].

Characteristic
Collection

Original Program

Characteristic
Profile

Program
Synthesis

New Program

RTL
Simulation

CPU's RTL
Description

Power
Estimation

Figure 1. Power Estimation Procedure

6

2. Overview and Background

Instruction trace is defined as the sequence of instructions in a program as that they are executed by an

equivalent scalar processor. The instruction trace has become the major tool for performance simulation.

For instance, the instruction trace can be fed to a trace-driven simulator to collect the instruction cache

miss rate, data cache miss rate, etc. The length of the instruction trace (trace length) is the number of

instructions executed in the program. The input trace refers to the instruction trace of input program that

must be profiled. The output trace refers to the instruction trace of the synthesized program. The

compression ratio equals the ratio of output trace length (L1) to the input trace length (L0). The synthesis

quality is a measure how well the power and performance properties are preserved in the output trace

with respect to the input trace. The profile-driven program synthesis is thereby defined as follows:

synthesize a new program by a given compression ratio and with highest synthesis quality. The

synthesized program should be a valid program that runs correctly on the target microprocessor.

The above problem is solved in two steps:

1) Profile collection: Extract characteristics of the initial trace that determine its performance and power

dissipation behavior. The set of relevant characteristics includes instruction mix, branch prediction miss

rate, pipeline usage, data dependencies, and memory reference, etc. This set is referred to as the

characteristic set.

2) Program Synthesis: Synthesize a new program that matches the extracted characteristics profile

while satisfying the compression ratio constraint.

Step (1) is accomplished by simulating the whole instruction trace at the micro-architectural level using

an architectural simulator. Step (2) is solved by partitioning the characteristic set into four sub-profiles.

These sub-profiles are disjoint, yet collectively constitute the whole set. Characteristics within each

subset are then captured by gradual refinement of a generic program template during four phases: block

allocation, instruction allocation, memory allocation, operand assignment and instruction scheduling.

A program consists of a code session and a data session. The code session can be decomposed into a set

of basic blocks. A basic block is a sequence of consecutive instructions in which control flow of the

program enters at the beginning and leaves at the end without halt or possibility of branching except at

7

the end. The entry point of a basic block is the position immediately before the first instruction in the

block; the exit point of a basic block is then defined as the position immediately after the last instruction

in the block. The block length refers to the number of instructions in the basic block. We build our

synthesis procedure upon the basic block structure.

Definition: A program control flow graph (CFG) (c.f. Figure 2(a)) is defined as a directed graph G(B,E)

where B is set of basic blocks:{b1, b2, b3,.....,bn}; b1 is the entry block and bn is the exit block; and E is

set of directed control flow edges. The program execution starts from the entry point of the b1 and ends

at the exit point of bn.

Not every CFG can be mapped to a code session. This is because the code session must reside in the

memory before it can be executed. The process of mapping CFG into the linear memory space is

referred to as embedding. After embedding, each basic block in the CFG is labeled with its beginning

address; the new CFG is called an embedded CFG. Let taken(b) be the next block which is executed if

the branch in b is taken; not-taken(b) is defined as the next block which is executed if the branch in b is

not taken. Given a CFG G(B,E), for any block b in B, the not-taken(b) must be placed immediately after

b in the memory space unless not-taken(b) does not exist. Any CFG that satisfies the above (embedding)

constraint is said to be feasible.

Definition: G’(B,E’) is a CFG derived from CFG G(B,E) (c.f. Figure 2), where E’ is derived from E by

removing all the (b, taken(b)) edges from E.

basic block

(a) G(B,E) (b) G’(B,E’)

control flow edges

Figure 2. Control Flow Graph (a) and Its Derived Graph (b) (dash line denotes the taken edge)

8

Theorem 2.1: G is feasible if and only if G' is acyclic.

Proof:

Only If part: If G is feasible, then there exists an embedding such that every not-taken(b) is placed

immediately after b in the memory space. In this case, every loop in G must contain at least one not-

taken(b) edge. Since all such edges are removed in G', G' must be acyclic.

If part: If G' is acyclic, clearly G is feasible since we only need to satisfy the embedding constraint

which describes an adjacency requirement between b and not-taken(b). Note that there is at most one

not-taken(b) block (though there may be multiple taken(b) blocks) for each block b. Hence G' is a forest

of chain-like trees, which also means that it is always possible to come up with an ordering for the nodes

of G' to satisfy the embedding constraint. �

Control sequence of a basic block is defined as the trace of the branch evaluation result at the exit point

of the basic block when the CFG is simulated.

Definition: Concatenation of two CFG’s, G1(B1, E1) and G2(B2,E2), is a new CFG G(B,E) where

21 BBB ∪= , and),(2121 BofblockentryBofblockexitEEE ∪∪= .

Definition: Concatenation of multiple CFG's is obtained by repeated concatenation of two CFG’s until

only one CFG is left.

3. Characteristic Set

This paper focuses on the super-scalar pipelined architecture, which represents a wide range of today’s

high performance microprocessors. A typical example is Pentium Processor. We will assume that the

microprocessor has the following features: separate data and instruction set-associated caches, a branch

target buffer (branch prediction), and multiple instruction issues in one cycle.

The following characteristic set is used as the characteristic profile: branch prediction miss, instruction

cache miss rate, data cache read miss rate, data cache write miss rate, pipeline stall rate, clock per

instruction (CPI), instruction mix, and average instruction size (if applicable).

Most of the above characteristics impact both performance and power dissipation. Performance metrics

are important because each time the microprocessor encounters a situation that leads to a performance

penalty, the CPU has to work harder to recover the lost performance, which means it will have to

consume more energy.

9

4. Synthesis Procedure

The following is the a summary description of the four synthesis phases (c.f. Figure 3):

1. Block allocation: An embedded CFG is generated to match the characteristic sub-profile: branch

prediction miss rate, and instruction cache miss rate.

2. Instruction allocation: Set of instructions is allocated for each basic block in the CFG. Only the

opcode of these instructions are fixed in this phase; the operands and the order of instructions will be

determined in later phases. The characteristic sub-profile of this phase is: instruction mix.

3. Memory allocation: Memory operands of instructions are determined to match the characteristic

sub-profile: data cache read miss rate, and data cache write miss rate.

4. Operand assignment and instruction scheduling: Registers, immediate operands, and the order of

instructions within each basic block are assigned to match the characteristic sub-profile: pipeline stalls,

CPI, and average instruction length(if applicable).

We will use the following notation in the remainder of this paper.

1. Block Allocation

2. Instruction Allocation

add op1, op2
xor op1, op2
mul op1, op2
mov op1, mem1
branch

3. Memory Allocation

mov op1, mem1

4. Operand Allocation/
 Instruction Scheduling

add op1, op2

reg1 reg4
reorder the sequence

memory space

Figure 3. Synthesis Procedure Overview

10

BL Average block length of the input trace

LS Line size of the instruction cache

iCachemiss_rate Cache miss rate of the input trace

BPmiss_rate Branch prediction miss rate of the input

dCache_readmiss_rate Data cache read miss rate of the input

dCache_writemiss_rate Data cache write miss rate of the input

Variable names with primes refer to the corresponding statistics for the output trace. For example,

iCache’miss_rate denotes the cache miss rate of the output trace. The average block length, BL, is defined

as 1/(fraction of branch instructions in input trace).

4.1 Assumptions and Constraints

In this section, we state our assumptions and constraints, which have enabled us to solve the synthesis

problem.

We limit the number of target addresses of a branch instruction to one. This excludes indirect branch

with possible multiple targets, however, it does not restrict our ability to match the given characteristic

profile. The control sequences that are used during the program synthesis are listed in table 1. They are

regular and periodic, and easy to analyze and synthesize. In addition, experimental results show that the

synthesis quality is not compromised.

A basic block is said to be type i if it has a control sequence of type i. To make equations more readable,

we assume that loop count in type 4 is always an even number.

Control Types Control Sequences
type 1: alternating
taken/not-taken

taken, not-taken, taken, not-taken, ….

type 2: always
taken

taken, taken, taken,..., taken

type 3: never taken not-taken, not-taken, not-taken,...., not-taken
type 4: loop back
with loop count k

taken repeated k times, followed by not-taken

Table 1 Regular control sequences

11

A CFG G(B,E) is a loop-back CFG if all the blocks in the CFG are type 1 to type 3 and the exit block is

type 4 with branch targeting the entry point of the entry block. The period of the loop-back CFG is

defined as the minimum number of loop iterations such that the block sequence will repeat itself. For

example, the block sequence of the CFG in Figure 6(a) is A,C (iteration 1), A,B,C (iteration 2), A,C,

(iteration 3), A,B,C, ..… Its period is two. Only look-back CFG's with a period of at most two are used

in our synthesis procedure.

4.2 Block Allocation

The block allocation is done in two steps: 1) design the set of CFG templates (macro block templates) as

building blocks, 2) formulate the block allocation problem as a mixed integer linear programming

(MILP) problem.

4.2.1 Macro Block Templates

The number of instruction cache misses of the synthesized program is given by:

conflict
LS

bubblece size + output tra + (1)

A
type 3

B
type 3

C
type 4

A

B

C

A

B

C

AA B C

m apped to the sam e set in the cache

(a)

A
type 2

B
type 2

C
type 4

(b) (c)sequential em bedding

(d)sk ip em bedding (e)conflic t em bedding

bubble

bubble

Figure 4. CFG Examples

12

where bubble is the number of bytes fetched by instruction cache, but never executed; conflict is the

number of cache lines replaced and revisited (thrashing).

If a basic block b has only one immediate predecessor b’ and taken(b’) equals b, then b is defined as

free.

The (memory) embedding methods are classified as follows:

• Sequential embedding: The basic block b is put in memory immediately before the basic block not-

taken(b).

• Skip embedding: Free basic blocks are assigned to memory locations, which are not immediately

adjacent to other basic blocks. The purpose is to increase bubble in Equation (1).

• Conflict embedding: Several free basic blocks are mapped to the same cache block. The purpose is to

increase conflict in Equation (1).

For instance, the loop-back CFG in Figure 4(a) can only be embedded sequentially as shown in Figure

(a) macro blocks

(b) concatenation

B
type 1

C
type 3

D
type 4

A
type 4

E
type 2

F
type 4

B
type 1

C
type 3

D
type 4

A
type 4

E
type 2

F
type 4

Figure 5. Concatenation of Macro Blocks (dash line denotes taken edge,
embedding methods are not shown)

13

4(c) because of the feasibility constraint. In contrast, the loop-back CFG in Figure 4(b), can be

embedded by using skip embedding as in Figure 4(d), or conflict embedding as in Figure 4(e). Dash

lines denote the cache line boundaries.

A macro block is a feasible look-back CFG with annotated embedding method and with period at most

two.

Definition: Given n macro blocks, a concatenation of these macro blocks is obtained by repeated

application of pair-wise concatenation of their corresponding CFGs (c.f. Figure 5).

Theorem 4.1: Any concatenation of any number of macro blocks creates a feasible CFG.

Proof: Since, from theorem 2.1, the derived graphs G' of macro blocks are acyclic, the derived graph of

the concatenation of macro blocks will also be acyclic. Again from theorem 2.1, the resulting CFG will

be feasible. �

A macro block template is a predefined structure for building macro blocks by providing the following:

• a template for a feasible CFG with period at most two

• embedding methods for all the basic blocks in CFG

• average number of blocks NB being executed per loop

• a function returning average number of instruction cache lines fetched per loop iteration:

12 _)_(CcntlpCcntlpLines +⋅=

A
type 1

B
type 3

C
type 4

(a) (b)

A
type 1

B
type 3

C
type 3

D
type 1

E
type 3

F
type 3

G
type 1

H
type 3

I
type 4

A

B

C

A

B

C

D

E

F

G

H

I

sequential embedding conflict embedding

Figure 6. Macro Block Templates (dash edge denotes taken branch)

14

• a function returning average number of branch prediction miss per loop iteration:

34 _)_(CcntlpCcntlpBPmiss +⋅=

lp_cnt (loop count) is a parameter of the macro block template. BPmiss(lp_cnt) and Lines(lp_cnt) are

linear functions of lp_cnt because of periodic behavior of the CFG. Constants: C1, C2, C3, and C4 are

derived by the specified embedding methods and by the control types of the basic blocks in the CFG.

The following macro block template examples assume that instruction cache line size is 32 bytes,

instruction size is 4 bytes, every basic block has four instructions, and the branch prediction scheme is as

shown in Figure 7.

For Figure 6(a), sequential embedding is used:

() 2_)_(,5.1_ ,5.2 +=== cntlpcntlpBPcntlpLinesNB miss

For Figure 6 (b), conflict embedding is used:

() 2_3)_(,_6_ ,5.7 +⋅=⋅== cntlpcntlpBPcntlpcntlpLinesNB miss

4.2.2 MILP Formulation

The block allocation problem is solved by concatenating macro blocks from the set of predefined macro

block templates to minimize the following objective function subject to the trace length constraint.

'
__

'
__ ratemissratemissratemissratemiss iCacheiCacheBPBP −+−

We cast the problem as an integer linear programming problem and solve it using a MILP solver.

The objective function can be restated as follows:

2121 YYXX +++

subject to the following constraints:

021
'

__ =−+− XXiCacheiCache ratemissratemiss (2)

021
'

__ =−+− YYBPBP ratemissratemiss (3)

0,,, 2121 ≥YYXX

predict
taken

predict
not
taken

Figure 7. Branch Prediction Scheme

15

Let m denote the number of macro block templates. Subscript i on a varaible or a funciton shows that it

is associated with the ith templates. Let ni be the number of macro blocks formed by the ith template;

lp_cnti,j denotes the loop count of the jth macro block of the ith template.

The total number of blocks (TB) in the output trace is given by:

∑∑
= =

⋅=
m

i

n

j
iji

i

NBcntlpTB
1 1

,_

The output trace length must satisfy the following:

max_lengthBLTBmin_length ≤⋅≤

where min_length and max_length are used to provide a tolerance range around target output trace

length L1. The extra freedom for output trace length often leads to better results than a fixed length

constraint.

The iCahce’miss_rate, and BP’miss_rate are calculated by:

∑∑∑∑∑
== == =

⋅+⋅
⋅

=
⋅

=
m

i
ii

m

i

n

j
jii

m

i

n

j
jiiratemiss nCcntlpC

BLTB
cntlpLines

BLTB
iCache

ii

1
,1

1 1
,,2

1 1
,

'
_ _

1
)_(

1
(4)

∑∑ ∑∑∑
= = == =

⋅+⋅==
m

i

n

j

m

i
iijii

m

i

n

j
jiimissratemiss

ii

nCcntlpC
TB

cntlpBP
TB

BP
1 1 1

,3,,4
1 1

,,
'

_ _
1

)_('
1

(5)

Let ∑
=

=
in

j
jii cntlpcntlp

1
,__ Note that lp_cnti and ni must satisfy ii ncntlp ⋅≥ 2_ to have a feasible solution.

Let 22112211 'and,',',' YTBYYTBYXTBXXTBX ⋅=⋅=⋅=⋅= .

The objective function becomes TBYYXX)''''(2121 +++

Because TB is bounded by tight trace length constraint:
BL

lengthmax
TB

BL

lengthmin __ ≤≤ , it is nearly

constant and can be thus removed from the objective function.

Then, objective function is approximated by:

2121 '''' YYXX +++ .

Substituting Equations (4) and (5) into Equations (2) and (3):

0''_)(21
1

,1
,2

1
_ =−+

⋅
+⋅−⋅ ∑∑

==
XX

BL

nC
cntlpBLCNBiCache

m

i

ii
ii

m

i
iratemiss (6)

∑∑
==

=−+⋅+⋅−⋅
m

i
iii

m

i
iiratemiss YYnCcntlpCNBBP

1
21,3

1
,4_ 0''_)((7)

Finally, the block allocation is formulated as integer linear programming problem as following:

16

min 2121 '''' YYXX +++

subject to

Equations (6) and (7)

0,,,
,

12_
12_

'
2

'
1

'
2

'
1 ≥

∈
≤⋅≤

≤≤⋅=
≤≤⋅≥

+

YYXX
Zwn

max_lengthBLTBmin_length
miwcntlp
mincntlp

ii

ii

ii

Once the MILP is solved, the loop count (lp_cnti,j), block length, and embedding for each basic block

can be decided efficiently.

4.3 Instruction Allocation

The instruction allocation phase has two goals: 1) allocate instructions to form the control flow specified

in previous phase, 2) match the instruction mix of the input trace. Hence, the instruction allocation is

divided into two steps: control-related allocation and control-unrelated allocation.

Assume there are p instructions, I1, I2, …, Ip, in the instruction set. Freq(Ii) and Freq’(Ii) are the

execution frequency of the instruction Ii in the input program and the synthesized program, respectively.

The goal is to minimize the objective function: ∑
=

′−
p

i
ii IqFreIFreq

1

)()(.

Instruction grouping is the process of grouping instructions with similar energy cost, same performance

behavior, and same number of memory (register) read (write).

We will show the advantage of instruction grouping by the following example. Assume the following:

• “add r1,r2->r3” has similar energy cost with “sub r1,r2->r3”

• “and r1,r2->r3” has similar cost with “or r1,r2->r3”.

The instruction mix of input trace is as in table 2. Assume there are only four instruction slots, and they

have equal execution frequencies. Then, the straightforward allocation will be:

“mov reg->mem”, “mov mem->reg”, “add r1,r2->r3”, and “sub r1,r2->r3”.

Instruction Freq
add r1,r2- 15%
sub r1,r2- 15%
and r1,r2- 10%
or r1,r2- 10%
mov reg, mem 25%
mov mem, reg 25%

Table 2. Instruction mix

17

However, if we group instructions with similar energy cost together:

• “add r1,r2->r3” and “sub r1,r2->r3”

• “and r1,r2->r3” and “or r1,r2->r3”

The following four instructions will be allocated instead:

 “mov reg,mem”, “mov mem,reg”, “add r1,r2->r3”, and ”and r1,r2->r3”.

The second sequence is obviously more representative of the instruction profile given in table 2. We

conclude that instruction grouping is necessary and helpful.

Let the instruction set grouped into k groups, G1, G2, …, Gk. The Freq(Gi) and Freq’(Gi) denote the

execution frequency of group Gi in the input program and the synthesized program, respectively.

The objective function becomes two levels:

1. min ∑ −)(')(ii GFreqGFreq

2. min ∑ −)(')(ii IFreqIFreq

The first level objective function has higher priority than the second level objective function.

Control-related allocation is based on the instruction templates for each control type. Two template

examples are shown in figure 6. A force-directed scheduling algorithm [7] is used to select a proper

template among the set of pre-defined instruction templates for each basic block. Then, a greedy

algorithm, similar to list scheduling [7], is used to allocate control-unrelated instructions while

minimizing the above objective function.

4.4 Memory Allocation

According to the control flow requirement, the memory accesses for instructions in a basic block are

classified into one of the four types: exclusive read, exclusive read-write, shared read, and shared write.

For example, the instruction “mov mem1->r1” in figure 6(a) is initialized to the loop count. The

contents of mem1 must not be changed before or during the loop of the macro block where it resides. In

this case, mem1 is labeled as exclusive read. On the other hand, the instruction "not mem2->mem2"

0 5 0 1 0 0 1 5 0

V O R T E X

P E R L

I J P E G

L I S P

C O M P

G C C

M 8 8

G O

n a n o J o u l e

E P I

E P I '

18

in figure 6(b) is used to flip the content of mem2 such that the branch sequence is alternately taken. To

avoid the possibility of changing the content of mem2 during its lifetime, it needs to be marked as

exclusive read-write. All other memory accesses are marked shared read or shared write. The shared

read means that the data read by the instruction is undefined and can assume any value; the shared write

is defined similarly.

The purpose of memory allocation is to allocate the memory space for each memory access and decide

whether it is vector access or scalar access.

The objective is to minimize the cost function:

ratemissratemissratemissratemiss writedCachewritedCachereaddCachereaddCache ____ '__'__ −+−

An instruction with scalar access will always access the same memory location; an instruction with

vector access will change its memory location every time. The exclusive read and exclusive write can

only be scalar because they are responsible for generating the control sequence, whereas shared read and

shared write can be either scalar or vector. The vector access is mainly used to create more cache misses.

It can be implemented by taking loop counter as the offset of referenced mommy address.

Let mem1 and mem2 be memory accesses. If mem1 is accessed before mem2 in the execution trace of its

CFG, then we say that mem1 leads mem2. Otherwise, mem1 trails mem2. The order within the same

macro block is not important, because all the memory accesses in the same macro block are both leading

and trailing each other (due to loop-back).

Let type(memi) be the memory access types of memi. Two memory accesses, mem1 and mem2 are

compatible with each other if they satisfy both of the following rules:

1. If mem1 leads mem2, edge (type(mem1), type(mem2)) exists in the compatibility graph (c.f. Figure 8).

2. If mem1 trails mem2, edge (type(mem2), type(mem1)) exists in the compatibility graph.

shared
read

exclusive
read

shared
write

exclusive
read-write

Figure 8. Compatibility graph

19

Compatibility criterion: The memory spaces of mem1 and mem2 can overlap only if they are compatible.

The compatibility criterion must be satisfied during the memory allocation phase. Our greedy algorithm

first finds an initial allocation with minimum cache miss rates by using the following rules:

• Scalar reference: Assign the memory accesses as scalar accesses.

• Word level packing: Pack all the compatible memory accesses into the same memory location.

• Block level packing: Pack as many memory accesses as possible into the same memory block (cache

line).

Next, it minimizes the objective function by gradually increasing the cache miss rates. The process

continues until no further improvement in the objective function is possible. The following rules are

used to increase the cache miss rates:

• Word level expansion: Unpack the compatible memory accesses into different memory locations.

• Block level expansion: Scatter the memory accesses within one memory block to different memory

blocks.

• Array reference: Change the scalar memory accesses to vector accesses.

• Conflict mapping: Map the memory blocks into the same cache set to cause thrashing.

4.5 Operand Allocation / Instruction Scheduling

In this phase, we try to match the pipeline stall rate and CPI in the input instruction trace. First, we

assign the instruction operands and schedule the instruction sequence in such a way that the pipeline

stall rate and CPI are minimal. Instruction pipeline simulator is used to calculate both pipeline stall rate

and CPI during the whole synthesis phase for accuracy. Then, architecture dependent rules (data

dependency, resource conflict, etc.) are used to increase the pipeline stalls and CPI gradually until both

of them are matched. If the target microprocessor is a CISC CPU with variable instruction length, the

average instruction size is matched by a similar technique.

20

5. Experimental Results

To verify the effectiveness of the proposed approach, we must use benchmark programs to perform two

sets of experiments:

1) Power evaluation by RT-level simulation of the program generated by profile-driven synthesis.

2) Power evaluation by direct RT-level simulation of the input program.

Two sets of power dissipation values are then compared to verify the synthesis quality. In our

experiments, we use Intel PentiumTM* processor as our target microprocessor. There are two advantages:

1. The PentiumTM processor falls in our target microprocessor class (super-scalar pipelined CPU). It

has 8KB 2-way set-associative data and instruction caches, branch prediction, and dual instruction

pipeline [8].

2. Instead of using RT-level simulation, we are able to directly run benchmarks and measure the

current on the chip, which is much faster and more accurate. This enables us to test on larger benchmark

instead of small test program.

Eight integer SPEC95 programs are used as our benchmark. Instruction traces of these programs are first

captured. Next, an architectural simulator analyzes these traces and extracts the characteristic profiles.

The collected profiles are then fed into our profile-driven synthesis engine to synthesize programs by

using seven macro block templates. The traces of these synthesized programs are smaller than the input

traces by 3-5 order of magnitude as shown in chart 1.

Experimental data is collected on the Pentium processors running at 90MHZ with 2.9V power supply.

Table 3 shows the synthesis qualities. The entries in table 3 correspond to percentage error between the

parameter (for example, iCache hit rate) in the original program and the synthesized program. The last

row of table gives the average percentage error over all benchmarks. Chart 2 shows the energy per

instruction of the original program (EPI) and the energy per instruction of the synthesized program

(EPI'). The average error of EPI’ is 2.9%, which shows the accuracy of proposed profile-driven program

synthesis.

* Pentium is the trademark of Intel Corporation.

21

1 10 100 1000 10000 100000

VORTEX

PERL

IJPEG

LISP

COMP

GCC

M88

GO

Chart 1. Compression Ratio

0 50 100 150

VORTEX

PERL

IJPEG

LISP

COMP

GCC

M88

GO

nano Joule

EPI

EPI'

Chart 2. EPI vs EPI'

22

6. Conclusion

In this paper, we presented a new approach for evaluating the power dissipation of application programs

running on a high performance microprocessor. The first step of this approach was to identify a

characteristic set, which is sufficient to capture the microprocessor power and performance behavior.

Next, a trace-driven architecture simulation was run through the instruction trace to collect the

characteristic profile. MILP and heuristic rules were used to transform predefined macro block templates

into full functional program after four synthesis phases. Experimental results showed the effectiveness

of the proposed approach on Intel Pentium processor running SPEC int 95 benchmarks.

References

[1] Toshinoriato, Y. Otaguro, M. Nagamatsu, and H. Tago. “Evaluation of architecture-level power estimation for

CMOS RISC processors”. In Proceedings of the Symposium on Low Power Electronics, pp. 44-45, 1995

[2] C-L Su, C-Y Tsui, and A. Despain. “Low power architectures design and compilation techniques for high

performance processors.” In Proceedings of IEEE COMPCON, pp. 489-498, 1994

[3]V. Tiwari, S. Malik, A. Wolfe, and T-C Lee. “Instruction level power analysis and optimization of software”.

In Journal of VLSI Signal Processing, Aug/Sept, 1996.

[4] C-Y Tsui, R. Marculescu, D. Marculescu, M. Pedram, ”Improving the efficiency of power simulators by input

vector compaction”. In Proceedings of Design Automation Conference, pp.165-168, 1996

[5] D. Marculescu, R. Marculescu, M. Pedram, “Stochastic Sequential Machine Synthesis Targeting Constrained

Sequence Generation”, In Proceedings of Design Automation Conference, pp.696-701, 1996

[6] C-T Hsieh, M. Pedram, G. Mehta, F. Rastgar, "Profile-Driven Program Synthesis for Evaluation of System

Power Dissipation". In Proceedings of Design Automation Conference, pp.576-581, 1997

iCache
hit rate
err %

BP
hit rate
err %

dCache
read hit
rate err %

dCache
write hit
rate err %

CPI
err %

GO 0.9 2.4 0.2 0.4 1.0
M88K 0.2 0.8 0.6 1.0 0.9
GCC 1.2 0.5 0.05 0.7 0
COMP 0.1 0.2 2.9 0.4 2.9
LISP 0.2 0.6 0.1 1.2 4.5
IJPEG 0.01 0.2 0.1 0.1 2.9
PERL 1.2 1.1 0.04 0.3 1.7
VORTEX 0.5 0.1 0.1 3.9 3.8
Ave Err % 0.54% 0.74% 0.51% 1.0% 2.2%

Table 3. Experimental Results

23

[7] G. De Micheli, "Synthesis and Optimization of Digital Circuits", Mc-Graw Hill, pp.207-216, 1994

[8] Intel Corporation, “Pentium Processor Family Developer’s Manual”, Volume 1:Pentium Processors, 1996

Figure Index

Figure 1. Power Estimation Procedure ___ 5

Figure 2. Control Flow Graph (a) and Its Derived Graph (b) (dash line denotes the taken edge) ______ 7

Figure 3. Synthesis Procedure Overview ___ 9

Figure 4. CFG Examples___ 11

Figure 5. Concatenation of Macro Blocks (dash line denotes taken edge, embedding methods are not
shown) ___ 12

Figure 6. Macro Block Templates (dash edge denotes taken branch) __________________________ 13

Figure 7. Branch Prediction Scheme__ 14

Figure 8. Compatibility graph ___ 18

