
1

Technology Mapping and Packing Technology Mapping and Packing
for Coarsefor Coarse--grained, Antigrained, Anti--fuse Based fuse Based

FPGAsFPGAs

Chang Woo Kang, Ali Iranli, and Massoud Pedram

University of Southern California

Department of Electrical Engineering

Los Angeles CA, USA

OutlineOutline

! Introduction

! Cell Library Construction

! Technology Mapping and Cell Packing

! Experimental Results

! Conclusion

2

IntroductionIntroduction

! Coarse-grained logic block architecture is
widely used in the FPGA industry
– Xilinx Virtex series has 8 LUTs in a

configurable logic block

– QuickLogic pASIC series has 26 inputs in a
logic cell

Fine Grain:
Actel ACT 2 Logic Module

Coarse Grain:
QuickLogic pASIC Logic Cell

Example of Fine vs. CoarseExample of Fine vs. Coarse--grained grained
AntifuseAntifuse--based FPGAsbased FPGAs

3

pASIC Logic CellpASIC Logic Cell
! Large fanin

– 26 inputs, 4 outputs

! Components
– Two 6-input AND gates
– Four 2-input AND gates
– Six 2:1 MUXs

! High logic capacity
– More than 5000 library cells could be

generated

! A single level of logic delay can
realize many complex user functions

! Up to four logic functions can be
realized with the the same logic cell

Problem FormulationProblem Formulation

! Minimize the number of required pASIC logic
cells needed to implement a given target circuit

FPGA

4

Cell Library ConstructionCell Library Construction

1

1

1

1

1

1

0

0

0

0

1

Base-gate A

Base-gate B

Base-gate C

Split the logic cellSplit the logic cell Cell personalizationCell personalization

14 primitive cells14 primitive cells

30 primitive cells30 primitive cells

Select 196 usefulSelect 196 useful
primitive cellsprimitive cells

Cell Type DeterminationCell Type Determination

! Note that the same primitive cell may
be realized by more than one base
gate

! A total of 205 unique primitive cells
have been generated and inserted
into a cell library

! A total of seven unique cell types
have been defined as shown in the
Venn’s diagram

AA BB

CC

SS11 SS44 SS22

SS77
SS55 SS66

SS33

5

Cost Assignment for Primitive CellsCost Assignment for Primitive Cells

! Space usage, s : the amount of space in a pASIC cell that is
used up by the primitive cell

! Freedom, f : the total number of places in a pASIC cell that
the primitive cell can fit

! Coverage, c: complexity of the logic that the primitive cell
can realize

! Notice that the inverter primitive cell does not have the
minimum cost any more

_
s

cell cost
f c

=
⋅

TwoTwo--step Optimization Flowstep Optimization Flow

! Perform minimum-area technology mapping by
using the generated cell library
– Use standard technology mapping algorithms (e.g., the

SIS mapper)

! Pack primitive cells into pASIC logic cells in
order to have the minimum number of logic cells
– Formulate and solve as a multi-dimensional coin

change problem

6

The CoinThe Coin--Change ProblemChange Problem

! Problem statement
– Let c1, c2, …, cm be the coin types of a currency. Let Ci

denote the value of coin ci in cents and K be some
integer. We assume C1 = 1. The problem is to produce
K cents of change by using a minimum number of coins

where ni denotes the number of coins of type i

! Solution

1 1

. .
m m

i i i
i i

Minimize n s t K n C
= =

=∑ ∑

[] []{ }
:

0 0

min 1 0
i

ii C K

if K
count K

count K C if K
≤

==  − + >

Different Ways of Packing CellsDifferent Ways of Packing Cells

! 37 different cases of
completely utilizing a logic
cell

! Ci,Sj : the number of primitive
cells of type Sj in the ith

combination

! The packer must find optimal
packing combinations in a
bottom-up manner

7

,
1

ii S i
i

C S
=

×∑

Combinations of
primitive cells

1 2S5 + 2S7

2 2S4 + 2S5

3 2S5 + 2S6

… …

i

… …

35 S3 + 2S7

36 S3 + 2S4

37 S3 + S4 + S7

7

,
1

ji S j
j

C S
=
∑

7

Exact Problem StatementExact Problem Statement

! Given the different ways of packing a pASIC3
logic cell as described in the previous table and a
logic netlist generated by the min-cost technology
mapper, find the minimum number of pASIC3
logic cells needed to cover all primitive cells in the
logic netlist, i.e.:

where ni denotes the number of packings of type i
and |Sj| denotes the number of primitive cells of
type j in the initial logic netlist

37 37

,
1 1

. . :
ji i i S j

i i

Minimize n s t j n C S
= =

∀ ≥∑ ∑

Analogy to the CoinAnalogy to the Coin--Change Change
ProblemProblem

! After technology mapping, we count the number
of primitive cells of each type, |S1|,…, |S7|. These
are analogous to seven different target change
counts

! The 37 different entries in the pASIC packing
table are analogous to different currencies

! This is a multi-dimensional coin change problem,
which can be solved optimally and efficiently by
using a dynamic programming technique

8

Dynamic Programming SolutionDynamic Programming Solution

! Note that we must track remaining unpacked
primitive cells for all seven cell types at the same
time

! Computational complexity

() ()()
1 7

,

1 7
1 7, ,: ,

0 , 0
,...,

min ,..., 1
i S jj

j

i S i SSi j C

if j S
count S S

count S C S C otherwise
∀ ≤

 ∀ ≤
= − − +


()7
1i iO S=∏

Experimental ResultsExperimental Results

Number of
logic cells
(%)

Alu2 193 76 65.87 0.08 51 100 50.27 32.9 34.1
Alu4 377 150 65.11 0.34 101 98.43 960.59 32.7 33.9
Apex6 349 154 59.86 0.37 117 80.23 306.24 24 25.4
Dalu 471 194 63.39 0.56 138 90.75 143.81 28.9 30.1
C1355 210 83 64.81 0.11 58 93.75 1.37 30.1 30.9
C1908 213 96 58.84 0.13 74 77.74 20.54 22.9 24.3
C432 108 45 65.85 0.03 31 100 13.36 31.1 34.2
C499 210 83 64.81 0.11 58 93.75 1.37 30.1 30.9
C3540* 657 268 64.22 1.2 191 91.89 56.21 28.7 30.1
C880 214 92 62.76 0.12 64 93.45 45.95 30.4 32.8
C5315* 764 333 59.97 1.94 256 79.09 42.97 23.1 24.2
C6288* 1457 664 55.19 13.11 593 61.84 19.14 10.7 10.8
C7552* 1052 413 64.94 3.7 312 86.51 86.06 24.5 24.9
Average 26.9 28.2

Circuits Primitive
cell count

Greedy packing Dynamic programming based
packing

Packing improvement

Number of
logic cells

Cell
utilization
(%)

CPU time
(sec)

Number of
logic cells

Cell
utilization
(%)

CPU time
(sec)

Cell
utilization
(%)

*The packing algorithm used segmented lists so as not to exceed *The packing algorithm used segmented lists so as not to exceed the amount of available memory in the computerthe amount of available memory in the computer

9

ConclusionsConclusions

! Proposed a minimum-area packing algorithm for
coarse-grained, anti-fuse based FPGAs, comprising
of library generation, technology mapping and cell
packing.

! Solution of a multi-dimensional coin-change
problem resulted in a polynomial time optimal
solution to the cell packing problem

! Our algorithm resulted in an average of 27% fewer
logic cells compared to a greedy algorithm

