Technology Mapping and Packing
for Coarse-grained, Anti-fuse Based
FPGAS

Chang Woo Kang, Ali Iranli, and Massoud Pedram

University of Southern California
Department of Electrical Engineering
Los AngelesCA, USA

Qutline

Introduction

Cell Library Construction

Technology Mapping and Cell Packing
Experimental Results

Conclusion

| ntroduction

Coarse-grained logic block architectureis
widely used in the FPGA industry

— Xilinx Virtex serieshas8 LUTsin a
configurable logic block

— QuickLogic pASIC series has 26 inputsin a
logic cell

Example of Fine vs. Coarse-grained
Antifuse-based FPGAS

.—L
] .7

»r
id

Fine Grain: Coarse Grain:
Actel ACT 2 Logic Module QuickLogic pASIC Logic Cell

PASIC Logic Cell

Large fanin

— 26 inputs, 4 outputs

Components

— Two 6-input AND gates

— Four 2-input AND gates

— Six 221 MUXs

High logic capacity

— More than 5000 library cells could be
generated

A singleleve of logic delay can
realize many complex user functions

Up to four logic functions can be
realized with the the same logic cell

Problem Formulation

Minimize the number of required pASIC logic
cells needed to implement a given target circuit

Cell Library Construction

Split the logic cell Cell personalization

14 primitive cells

30 primitive cells

| Select 196 useful

ﬂ. primitive cells

Basegate ©

Cell Type Determination

Note that the same primitive cell may
be realized by more than one base
gate

A total of 205 unique primitive cells
have been generated and inserted
into acell library

A total of seven unique cell types
have been defined as shown in the
Venn'sdiagram

Cost Assignment for Primitive Cells

cell cost:i
- f [C

Space usage, s : the amount of spacein apASIC cell that is
used up by the primitive cell

Freedom, f : the total number of placesin apASIC cell that
the primitive cell can fit

Coverage, c: complexity of the logic that the primitive cell
can redize

Notice that the inverter primitive cell does not have the
minimum cost any more

Two-step Optimization Flow

Perform minimum-area technology mapping by
using the generated cell library

— Use standard technology mapping algorithms (e.g., the
SIS mapper)

Pack primitive cellsinto pASIC logic cellsin
order to have the minimum number of logic cells

— Formulate and solve as a multi-dimensiona coin
change problem

The Coin-Change Problem

Problem statement

— Letc,, c,, ..., C, bethe coin types of acurrency. Let C,
denote the value of coin ¢; in cents and K be some
integer. We assume C, = 1. The problem isto produce
K cents of change by using a minimum number of coins

m m
Minimize »'n st. K=>'nC
(= i=1

where n; denotes the number of coins of typei
Solution

count[K] = .
Q0

if K=0
{count[K -C] +3 if K >0

i K

Different Ways of Packing Cells

37 different cases of
completely utilizing alogic
cell

Ci g : the number of primitive
cellsof type § intheiy,
combination

The packer must find optimal
packing combinationsin a
bottom-up manner

Exact Problem Statement

Given the different ways of packing apASIC3
logic cell as described in the previous table and a
logic netlist generated by the min-cost technol ogy
mapper, find the minimum number of pASIC3
logic cells needed to cover al primitive céllsin the
logic netlist, 1.e.:

Minimize ini st. Dj:inici,s? ‘Sj‘
i=1 i=1

where n; denotes the number of packings of typei
and |§| denotes the number of primitive cells of
typej intheinitia logic netlist

Analogy to the Coin-Change
Problem

After technology mapping, we count the number
of primitive cells of each type, |S|...., |S;]. These
are analogous to seven different target change
counts

The 37 different entriesin the pASIC packing
table are analogous to different currencies

Thisisamulti-dimensional coin change problem,
which can be solved optimally and efficiently by
using a dynamic programming technique

Dynamic Programming Solution

0 if j,|S€ 0

08 (Sl =Cis I51-Gis) 1) oterie

caurt(|S],...|S|) =

Note that we must track remaining unpacked
primitive cellsfor all seven cell types at the same
time

Computational complexity O([17,|S))

Experimental Results

cell count packing
CPU time[Number of|Cell CPU time Cell
(sec) logic cells |utilization

(%) (%) %) [

93 6 65.87 341
150 Jes11

59.86

289 [0

301 |30

243

3L1 :

!] ! D

56.21 !
328
)] 42,97 231 24.2
06283 57 [e64 519 [1311 |53 [e184 [1994 107 108
C7552¢ 052 86,51 249

Aveage | 0000000000000 %9 [82 |

*The packing algorithm used segmented lists so as not to exceed the amount of available memory in the computer

iﬁip
||
=
g

N
o

SR
> c
(7]
i
:
w

(=]
DN | =
[k=]

o |

C5315%

iy

NN
R|=
(]
@

=

Conclusions

Proposed a minimum-area packing algorithm for
coarse-grained, anti-fuse based FPGASs, comprising
of library generation, technology mapping and cell
packing.

Solution of amulti-dimensional coin-change
problem resulted in a polynomial time optimal
solution to the cell packing problem

Our algorithm resulted in an average of 27% fewer
logic cells compared to a greedy algorithm

