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Abstract—Dynamic energy pricing is a promising technique in 
the Smart Grid to alleviate the mismatch between electricity 
generation and consumption. Energy consumers are incentivized to 
shape their power demands, or more specifically, schedule their 
electricity-consuming applications (tasks) more prudently to 
minimize their electric bills. This has become a particularly 
interesting problem with the availability of residential photovoltaic 
(PV) power generation facilities and controllable energy storage 
systems. This paper addresses the problem of joint task scheduling 
and energy storage control for energy consumers with PV and 
energy storage facilities, in order to minimize the electricity bill. A 
general type of dynamic pricing scenario is assumed where the 
energy price is both time-of-use and power-dependent, and various 
energy loss components are considered including power dissipation 
in the power conversion circuitries as well as the rate capacity effect 
in the storage system. A negotiation-based iterative approach has 
been proposed for joint residential task scheduling and energy 
storage control that is inspired by the state-of-the-art Field-
Programmable Gate Array (FPGA) routing algorithms. In each 
iteration, it rips-up and re-schedules all tasks under a fixed storage 
control scheme, and then derives a new charging/discharging scheme 
for the energy storage based on the latest task scheduling. The 
concept of congestion is introduced to dynamically adjust the 
schedule of each task based on the historical results as well as the 
current scheduling status, and a near-optimal storage control 
algorithm is effectively implemented by solving convex optimization 
problem(s) with polynomial time complexity. Experimental results 
demonstrate the proposed algorithm achieves up to 64.22% in the 
total energy cost reduction compared with the baseline methods.  

I. INTRODUCTION 
The advancement of the power system necessitates to address 

numerous issues, including carbon emissions, environmental 
sustainability, the increasing and imbalanced power demands, and the 
consumers’ demands for better supply quality and higher reliability 
[1][2]. In order to nurture a low-carbon power system, renewable 
energy markets, industries, and policy frameworks have evolved 
rapidly in recent years [3]. The photovoltaic (PV) system, that 
converts solar radiation into electricity, is considered to be one of the 
most promising alternative power sources and is believed to play an 
important role in the process of transferring to the future low-carbon 
power system [3]. During the five-year period 2008–2012, the PV 
installation capacity has been growing at an average annual rate of 
60%, and more importantly, interests in community-owned and self-
generation PV systems (i.e. off-grid PV systems) have arisen rapidly 
as well [3]. The falling prices of off-grid PV systems have resulted in 
the emergence of decentralized PV power generation that is 
increasingly becoming a key power source especially among 
residential energy users [4]. This necessitates the consideration of the 
optimal control of off-grid PV power generation.  

Unlike traditional power sources such as fossil fuels, PV power 
generation has intermittency issues, i.e., a PV system cannot generate 
electrical energy during night without sunshine or daytime in cloudy 
or rainy weather. Besides the intermittency issues, the peak PV power 
generation also varies according to various factors such as solar angle 
and weather conditions. The intermittency and variability of PV power 
generation together with the uncertainty of load power consumption 

lead to a mismatch between the peak PV generation time (usually 
around noon) and the peak load consumption time (usually during 
night) in a day [5]. Consequently, this timing mismatch prevents 
consumers from efficiently utilizing peak PV generation to 
compensate for peak power consumption, and as a result, the 
capability of power shaving using off-grid PV systems is significantly 
limited. In order to overcome the above challenge, energy storage is 
incorporated with off-grid PV systems so that consumers can store 
energy from the PV system when it has surplus energy generation and 
utilize the energy later during peak demand hours.  

Apart from renewable energy sources and energy storages, further 
enhancement in grid efficiency can be achieved by embedding 
intelligence into the power grid [2]. The next-generation intelligent 
grid is known as the smart grid which has emerged as a well-planned 
plug-and-play integration of small power grids that will be 
interconnected through dedicated highways for command, data, and 
power exchange [2]. In a smart grid, the Advanced Metering 
Infrastructure (AMI) provides utilities with a two-way 
communication system to the meters that are deployed on the 
consumer side [2]. The various data gathered from these smart meters 
allow the utilities to apply embedded-control and decision-making 
protocols to improve the overall efficiency of the grid [6].  

A major challenge in the smart grid is to match the power 
generation and the real-time electricity demand that varies 
dramatically due to exogenous factors such as time and season 
[1][6][7]. The utility companies are supposed to match the worst-case 
load profile, i.e., the peak power demand, in order to avoid potential 
power failures such as brown-outs and black-outs. Since 1982, the 
growth in peak load demand has exceeded transmission growth by 
almost 25% every year [1], indicating that the imbalance between 
electricity generation and consumption is becoming extremely severe. 
Without a smart grid technique, the U.S. government will have to 
invest hundreds of billions of dollars in new power plants over the 
next twenty years to meet the worst-case electricity load profile, 
leading to huge financial pressure, energy waste and potential 
environmental problems [6]. Dynamic energy pricing is a promising 
technique in the smart grid to alleviate the mismatch between 
electricity generation and consumption [1][6][7]. The key idea behind 
dynamic pricing is to assign different energy prices for consumers 
based on various factors such as time, season and consumers’ real-
time electricity consumption, which (i) incentivizes consumers to 
shape their power demands in order to lower the electric bills, and (ii) 
at the same time the reliability and efficiency of the overall grid are 
improved since most consumers have reshaped their demands driven 
by the dynamic energy pricing policy. An example in [8] shows that 
after the universal deployment of dynamic pricing policy in New York 
State, the societal welfare is improved by $141-$403 million per year.  

Several techniques have been proposed in the context of 
minimizing user’s electric bills under dynamic energy prices. The 
authors in [1] map this problem to the multiple knapsack problem 
which enables cheap and efficient solutions to the scheduling problem. 
To make the scheduling more realistic, the authors in [6] allow the 
scheduling of user's electricity-consuming applications (tasks) outside 
preferable time windows, but with an incurred inconvenience cost, 
and a power limit is imposed on each time unit so as to avoid outage. 



A force-directed task scheduling approach is proposed in [6]. In [7], 
the authors formulate a real-time task scheduling problem with the 
objective function to minimize the overall electric bill in a smart 
building under dynamic energy prices. A heuristic algorithm using 
evolutionary computation method is proposed in [7]. All of the above-
mentioned works [1][6][7] provide effective algorithms to deal with 
the task scheduling problem under dynamic prices, however, they 
have not taken the advantage of PV power generation and energy 
storage into consideration, which are increasingly important parts for 
residential smart grid users. On the other hand, reference work [5] 
develops an optimal control algorithm for energy storage systems in 
households equipped with PV modules and energy storage systems, 
but the detailed scheduling for each residential-level task is not 
considered in [5].  

In this paper, we focus on the case of a residential smart grid user 
equipped with energy storage systems and PV modules. A realistic 
electricity price function is adopted for the smart grid user, which is 
comprised of a time-of-usage (TOU) price indicating the time-
dependent unit electricity price and a power-dependent price that 
depends on the user’s real-time power consumption. We propose a 
negotiation-based iterative cost minimization algorithm to minimize 
the user’s energy cost by jointly scheduling the electricity-consuming 
applications (tasks) and controlling the charging/discharging of the 
energy storage system. The negotiation-based cost minimization 
algorithm is inspired by the negotiation-based FPGA routing methods 
[9][10]. In each iteration of the algorithm, it rips-up and re-schedules 
all tasks under a fixed storage control scheme, and then derives a new 
charging/discharging scheme for the energy storage based on the latest 
task scheduling results. The concept of congestion is introduced to 
dynamically adjust the schedule of each task based on the historical 
results as well as the current scheduling status, and a near-optimal 
storage control algorithm is effectively implemented by solving 
convex optimization problem(s) with polynomial time complexity. 
Experimental results demonstrate that the proposed algorithm can 
achieve significant energy cost reduction compared to baselines.  

The remainder of the paper is organized as follows. Section II 
formally presents the system model, including energy storage model 
and dynamic price model. Section III shows the proposed negotiation-
based cost minimization algorithm. Section IV reports the 
experimental results, and the paper is concluded in Section V.  

II. SYSTEM MODEL AND PRICE FUNCTIONS 
In this paper, we consider a cooperative residential Smart Grid 

user who pays a unified electric bill for a group of tenants in a shared 
living space equipped with PV power generation systems and energy 
storage systems. Our objective is to minimize the electric bill of the 
user by controlling the scheduling of the user’s electricity-consuming 
applications (tasks) and the charging and discharging decisions in 
energy storage systems.  
A. Time Model and Task Model 

A slotted time model is adopted in this paper, i.e., all system 
parameters, constraints and scheduling decisions are provided for 
discrete time intervals of constant and equal length. In this time 
model, the entire scheduling period is divided into 𝑇𝑇 equal-sized time 
slots and each time slot has a duration denoted by 𝐷𝐷. Without loss of 
generality, we consider the task scheduling problem in one day that is 
further divided into 24 time slots, i.e., 𝑇𝑇 = 24 and 𝐷𝐷 = 60 minutes. 
The proposed algorithm can be easily extended to a different time 
scale such as a month, a season, etc.  

For the user of interest, a number of electricity-consuming tasks 
are performed on a daily base, which reflect the electric loads of the 
residential user. Each task has an index 𝑖𝑖 as its identification and the 
set of all task indices is denoted as 𝒯𝒯 = {1, … ,𝑁𝑁}, where 𝑁𝑁 is the total 
number of tasks. Besides, each task 𝑖𝑖 ∈ 𝒯𝒯 has an earliest start time 𝑆𝑆𝑖𝑖, 
a deadline 𝐸𝐸𝑖𝑖 and a duration 𝐷𝐷𝑖𝑖 to complete the task, where 𝑆𝑆𝑖𝑖, 𝐸𝐸𝑖𝑖 and 
𝐷𝐷𝑖𝑖 are specified by the user based on the electricity requirements at the 

beginning of the day. We assume the tasks are non-interruptible, i.e., 
each task executes from the scheduled start time that is denoted by 𝜆𝜆𝑖𝑖 
until completion at 𝜆𝜆𝑖𝑖 + 𝐷𝐷𝑖𝑖  without discontinuity. In the previous 
work [7], tasks can only be scheduled inside the time window [𝑆𝑆𝑖𝑖 ,𝐸𝐸𝑖𝑖]. 
To make the scheduling problem more realistic, we allow each task 𝑖𝑖 
to be scheduled outside its preferable time window but with an 
incurred inconvenience cost 𝐼𝐼𝑖𝑖 , which indicates the degree of 
inconvenience to the user. Of note, the tasks that must be executed 
within the time window [𝑆𝑆𝑖𝑖 ,𝐸𝐸𝑖𝑖]  are modeled by setting the 
inconvenience costs to infinite.  

We denote the power consumption function of task 𝑖𝑖 in time slot 𝑡𝑡 
by 𝑝𝑝𝑖𝑖(𝑡𝑡) . Once task 𝑖𝑖  starts to execute ( 𝑡𝑡 = 𝜆𝜆𝑖𝑖 ), the power 
consumption of task 𝑖𝑖 will follow a given profile (from time slot 𝜆𝜆𝑖𝑖 to 
𝜆𝜆𝑖𝑖 + 𝐷𝐷𝑖𝑖 ) independent of the scheduled start time 𝜆𝜆𝑖𝑖 . Moreover, the 
power consumption of a task outside the scheduled execution time 
slots is zero. The earliest start time, deadline, duration, inconvenience 
cost and power profile for each task are assumed to be provided by the 
user at the beginning of the day. Figure 1 illustrates an example of 
task scheduling solution. The scheduling result of each task is 
represented by a bar, e.g., TV is scheduled to operate from 3 pm to 11 
pm.  

 
Fig. 1. A simple example of a household task scheduling solution.  

B. System Diagram and Operation Modes 
The block diagram of the residential smart grid user of interest is 

shown in the Figure 2. The PV module and the energy storage system 
are connected to the residential DC bus through unidirectional and 
bidirectional DC-DC converters, respectively. The DC bus is further 
connected to the residential AC bus via bidirectional AC/DC 
interfaces (e.g., inverters, rectifiers, and transformer circuitries). The 
residential AC loads on the AC bus correspond to residential tasks (as 
discussed in Section II.A) such as laundry machine, lighting and 
heating equipment. The AC bus is further connected to the state-level 
or national smart grid. We consider realistic power conversion circuits 
(i.e., the power conversion efficiency is less than 100%) in this work, 
and use 𝜂𝜂1, 𝜂𝜂2 and 𝜂𝜂3 to denote the power efficiency of the converters 
between the PV module and the DC bus, the converters between the 
storage and the DC bus, and the AC/DC interface connecting the DC 
bus and the AC bus, respectively. Typical conversion efficiency 
values in the range of 85% to 95% are used in this paper.  

 
Fig. 2. Block diagram of residential user including PV module, storage system, 

residential load and the smart grid. The directions of arrows represent the 
directions of the power flow.  

In the above-mentioned system, a part of energy is generated by 
the residential PV module, and we denote the PV power generation 
available to the user in time slot 𝑡𝑡 by 𝑃𝑃𝑝𝑝𝑝𝑝(𝑡𝑡) (i.e., the output power 
level of the PV module at time slot 𝑡𝑡). The residential load power 

 

 



consumption is denoted by 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡), satisfying Σ𝑖𝑖=1𝑁𝑁 𝑝𝑝𝑖𝑖(𝑡𝑡). The output 
power level of the storage system in time slot 𝑡𝑡 is denoted by 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡), 
where a positive value of 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡) means discharging from the storage, a 
negative value indicates that the storage is being charged and zero 
represents no charging or discharging operation. The instantaneous 
power consumption drawn from the grid in time slot 𝑡𝑡 is denoted by 
𝜔𝜔(𝑡𝑡), i.e., the grid power.  

There are three operation modes in the system. In the first mode, 
the storage system is discharging, and thus, the residential loads are 
supplied simultaneously by the grid, the PV module and the storage. 
The condition to operate in the first mode is 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡) ≥ 0, and the grid 
power in time slot 𝑡𝑡 is calculated by  

𝜔𝜔(𝑡𝑡) = �𝑝𝑝𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖=1

− 𝜂𝜂3 �𝜂𝜂1 ∙ 𝑃𝑃𝑝𝑝𝑝𝑝(𝑡𝑡) + 𝜂𝜂2 ∙ 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡)� (1) 

In the second mode, PV power generation is sufficient to supply the 
residential loads, and the surplus PV power is used to charge the 
storage. In this mode, there is power generated by the PV module 
flowing from the DC bus to the AC bus, and the condition to be in the 
second mode is given by 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡) < 0 and 𝜂𝜂1 ∙ 𝑃𝑃𝑝𝑝𝑝𝑝(𝑡𝑡) + 1

𝜂𝜂2
∙ 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡) ≥ 0. 

The grid power in time slot 𝑡𝑡 is calculated by  

𝜔𝜔(𝑡𝑡) = �𝑝𝑝𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖=1

− 𝜂𝜂3 �𝜂𝜂1 ∙ 𝑃𝑃𝑝𝑝𝑝𝑝(𝑡𝑡) +
1
𝜂𝜂2
∙ 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡)� (2) 

In the third mode, the storage is being charged, and the PV module is 
insufficient for charging the storage. Thus, the storage is 
simultaneously charged by the PV module as well as the grid. In 
general, the residential system operates in this mode when PV power 
generation is insufficient and the energy price is relatively low, and 
hence it is reasonable to store some electrical energy for peak power 
consumption hours. The condition to operate in this mode is given by 
𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡) < 0 and 𝜂𝜂1 ∙ 𝑃𝑃𝑝𝑝𝑝𝑝(𝑡𝑡) + 1

𝜂𝜂2
∙ 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡) < 0. The corresponding grid 

power in time slot 𝑡𝑡 is calculated by  

𝜔𝜔(𝑡𝑡) = �𝑝𝑝𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖=1

−
1
𝜂𝜂3
�𝜂𝜂1 ∙ 𝑃𝑃𝑝𝑝𝑝𝑝(𝑡𝑡) +

1
𝜂𝜂2
∙ 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡)� (3) 

For realistic concerns, we assume that the residential user cannot 
get paid by selling electric power back to the grid. To reflect this 
assumption, we set 𝜔𝜔(𝑡𝑡) = 0  when 𝜔𝜔(𝑡𝑡) < 0  in the problem 
formulation. This approach is equivalent to setting the price function 
to zero when 𝜔𝜔(𝑡𝑡) < 0, and will not affect the optimization method 
of the cost minimization problem.  
C. Energy Storage Model 

In this paper, we consider a typical residential storage system 
made of lead-acid batteries or Li-ion batteries. In order to precisely 
analyze the system performance, an accurate model for the storage 
system is required. The most significant portion of power loss in lead-
acid or Li-ion batteries is due to the rate capacity effect [11], i.e., 
capacity of a battery decreases with increase in discharging current 
[12].  

When the rate capacity effect is accounted for, the storage model 
exhibits a non-linear relationship between the charging/discharging 
current (normalized to the reference current) and the 
degradation/increase rate of storage energy (normalized to the nominal 
capacity). We denote the increase/degradation rate of storage energy 
in time slot 𝑡𝑡  by 𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡) , and the terminal voltage of the storage 
system, which is denoted by 𝑉𝑉𝑠𝑠𝑠𝑠, is supposed to be (near-) constant. 
We apply the storage model developed in [5] to calculate the output 
power level of the storage by 

𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑉𝑉𝑠𝑠𝑠𝑠 ∙ 𝐼𝐼𝑠𝑠𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟 �

𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑉𝑉𝑠𝑠𝑠𝑠 ∙ 𝐼𝐼𝑠𝑠𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟

�
𝛽𝛽1

, 𝑖𝑖𝑖𝑖 
𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑉𝑉𝑠𝑠𝑠𝑠 ∙ 𝐼𝐼𝑠𝑠𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟

> 1

𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑖𝑖𝑖𝑖 − 1 ≤
𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑉𝑉𝑠𝑠𝑠𝑠 ∙ 𝐼𝐼𝑠𝑠𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟

≤ 1 

−𝑉𝑉𝑠𝑠𝑠𝑠 ∙ 𝐼𝐼𝑠𝑠𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟 �
�𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡)�
𝑉𝑉𝑠𝑠𝑠𝑠 ∙ 𝐼𝐼𝑠𝑠𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟

�
𝛽𝛽2

, 𝑖𝑖𝑖𝑖 
𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑉𝑉𝑠𝑠𝑠𝑠 ∙ 𝐼𝐼𝑠𝑠𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟

< −1

 (4) 

where 𝐼𝐼𝑠𝑠𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟 is the reference current of the storage system, and it is 
proportional to the storage’s nominal capacity; 𝛽𝛽1  and 𝛽𝛽2  are 
coefficients ranging from 0.8-0.9 and 1.1-1.3, respectively.  

The relationship between 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡)  and 𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡)  given in (4) is 
further denoted by the function 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡) = 𝑓𝑓𝑠𝑠𝑠𝑠�𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡)� , which is a 
concave and monotonically increasing function over the input domain 
−∞ < 𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡) < +∞ . Because of the monotonicity property, the 
inverse function 𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑓𝑓𝑠𝑠𝑠𝑠−1�𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡)�  is also a concave and 
monotonically increasing function over the input domain −∞ <
𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡) < +∞.  
D. Price Model and Problem Definition 

We adopt a realistic dynamic price model 𝜉𝜉�𝑡𝑡, 𝜔𝜔(𝑡𝑡)� comprised 
of a time-of-use (TOU) price that is determined by the time slot 𝑡𝑡, as 
well as a power-dependent price that depends on the grid power. The 
TOU price component is higher in the peak hour time slots than the 
off-peak periods, incentivizing the user to shift loads to off-peak 
hours. However, overreaching the goal is just as bad as not reaching it. 
If most users shift their tasks towards the off-peak hours, the power 
plants may fail to match the loads in those off-peak time slots. Thus, 
the power-dependent price component is set to be monotonically 
increasing with respect to 𝜔𝜔(𝑡𝑡), which prevents users from overly 
shaving loads towards the off-peak hours. By applying the above 
dynamic price model, the chance to see a power outage is much lower.  

Using the above-mentioned definitions and system models, 
namely, task model, slotted time model, system diagram, energy 
storage model and dynamic price model, the overall cost minimization 
problem of the energy user can be modeled as follows:  
Cost Minimization Problem for a Residential Energy User. 
Find the optimal start time 𝜆𝜆𝑖𝑖 for 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 and the optimal 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡) 
for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇.  
Minimize: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  �𝜉𝜉�𝑡𝑡,𝜔𝜔(𝑡𝑡)�
𝑇𝑇

𝑡𝑡=1

∙ 𝜔𝜔(𝑡𝑡) + �𝐼𝐼𝑖𝑖(𝜆𝜆𝑖𝑖) 
𝑁𝑁

𝑖𝑖=1

 (5) 

where the inconvenience cost for task 𝑖𝑖 is given as 

𝐼𝐼𝑖𝑖(𝜆𝜆𝑖𝑖) = �0, 𝑆𝑆𝑖𝑖 ≤ 𝜆𝜆𝑖𝑖 ≤ 𝐸𝐸𝑖𝑖 − 𝐷𝐷𝑖𝑖
𝐼𝐼𝑖𝑖 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (6) 

Subject to: 

−𝑃𝑃𝑠𝑠𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀,𝑐𝑐 ≤ 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡)  ≤ 𝑃𝑃𝑠𝑠𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀,𝑑𝑑  (7) 

0 ≤ 𝐸𝐸𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖𝑖𝑖 − Σ𝑡𝑡′=1
𝑡𝑡 𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡′) ∙ 𝐷𝐷 ≤ 𝐸𝐸𝑠𝑠𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀 ,∀𝑡𝑡 ∈ [1,𝑇𝑇] (8) 

where 𝑃𝑃𝑠𝑠𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀,𝑐𝑐 and 𝑃𝑃𝑠𝑠𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀,𝑑𝑑 are the maximum allowable amount of 
power flowing into and out of the storage system during charging and 
discharging, respectively; 𝐸𝐸𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖𝑖𝑖  is the initial energy storage at the 
beginning of the day and 𝐸𝐸𝑠𝑠𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀  is the maximum energy storage 
capacity. Therefore, constraint (7) ensures that the charging and 
discharging current in the storage is in the allowable range, and 
constraint (8) ensures the stored energy is within the capacity of the 
storage throughout the entire scheduling period. 

III. NEGOTIATION-BASED ENERGY COST MINIMIZATION 
A unified framework of task scheduling and energy storage 

control is developed for effectively solving the overall cost 



minimization problem. This section is organized as follows: part A 
explains the motivation to introduce the negotiation-based routing 
method; part B presents the proposed unified framework to find a 
suitable solution for the cost minimization problem.  
A. Motivation to Introduce Negotiation-Based Routing Method to the 

Cost Minimization Problem 
The objective of an FPGA routing algorithm is to find a feasible 

routing solution which connects all signal nets in the netlist using 
limited routing resources such as physical wires and switches so that 
the delay of critical paths is minimized. A routing result that requires 
even one more wire than the number of wires supported by a resource 
node is infeasible.  

Reference works [9][10] propose the Negotiation-Based Routing 
Algorithm (NBRA) which provides the best solution known so far for 
the FPGA routing problem. In NBRA, a congestion cost function 
comprising a delay component as well as a congestion value that 
indicates the degree of resource sharing is introduced to each node, 
with the intention to balance the competing goals between minimizing 
the delay of critical paths and minimizing congestion in resource 
usage. Besides, NBRA is implemented in an iterative manner, and in 
each iteration, the congestion cost function gradually increases as the 
penalty for sharing resources. With the dynamically adapted 
congestion cost function, routing of each signal will avoid congested 
resources and meanwhile seek the shortest path. A feasible routing is 
achieved when there is no congestion in the circuit.  

There are certain similarities between the FPGA routing problem 
and the cost minimization problem:  

• Both problems are NP-hard [6][7][10]. Considering the 
computational complexity, it is reasonable to find a suitable 
solution effectively instead of the optimal one in both 
problems.  

• It is impractical to find a suitable solution in one pass when 
the number of optimization variables is large. Instead, an 
iterative approach should be adopted in both problems, in 
order to gradually approach to a suitable solution.  

• Sharing of routing resources causes congestion in the FPGA 
routing problem. In the residential cost minimization problem, 
tasks sharing a time slot lead to high power consumption and 
high energy price in that time slot. Thus, we want to reduce 
resource sharing in both problems.  

Motivated by the above-mentioned similarities, the concept of 
congestion is introduced to the proposed algorithm to effectively solve 
the overall cost minimization problem. 
B. Negotiation-Based Cost Minimization Algorithm 

In this subsection, a Negotiation-Based Cost Minimization 
(NBCM) algorithm is proposed as the unified framework of task 
scheduling and energy storage control to find a good enough solution 
for the overall cost minimization problem.  

We assume the parameters of the storage system such as 𝐸𝐸𝑠𝑠𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀, 
𝑃𝑃𝑠𝑠𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀,𝑑𝑑 , 𝑃𝑃𝑠𝑠𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀,𝑐𝑐 , 𝐼𝐼𝑠𝑠𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟  and 𝑉𝑉𝑠𝑠𝑠𝑠  are given and remain unchanged 
during the entire day. At the beginning of the day, 𝑆𝑆𝑖𝑖, 𝐸𝐸𝑖𝑖, 𝐷𝐷𝑖𝑖, 𝐼𝐼𝑖𝑖 and the 
power profile of each task 𝑖𝑖 as well as the initial energy storage 𝐸𝐸𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖𝑖𝑖 
are provided by the user, and the price functions are provided by the 
utility company. Besides, the PV power generation at each time slot is 
accurately predicted from the weather forecast and prediction 
algorithms presented in [13] at the beginning of the day. In the context 
of our problem formulation, a solution is a set of scheduled start times 
of all tasks in 𝒯𝒯 that is denoted by 𝛬𝛬𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = {𝜆𝜆1, … , 𝜆𝜆𝑁𝑁} together with a 
set of charging/discharging decisions of the storage system denoted by 
𝛬𝛬𝑠𝑠𝑠𝑠 = {𝑃𝑃𝑠𝑠𝑠𝑠(1), … ,𝑃𝑃𝑠𝑠𝑠𝑠(𝑇𝑇)}.  

As mentioned in Section III.A, the proposed algorithm is 
implemented in an iterative manner, and finds a good enough solution 
when the total energy cost has not decreased for 𝐿𝐿 iterations or the 

iteration number exceeds the maximum iteration number that is set to 
𝐾𝐾. Each 𝑗𝑗-th iteration is comprised of two parts. In the 1st part, all 
previous task scheduling results are ripped up and each task is 
rescheduled based on the latest storage control scheme. Then in the 2nd 
part of each iteration, the storage control scheme is ripped up and new 
storage charging/discharging decisions will be made based on the 
latest task scheduling results generated in the 1st part of this iteration. 
Price functions are updated when a task is scheduled or an energy 
storage control decision is made within an iteration.  

Figure 3 shows the pseudo code for the NBCM algorithm. In each 
iteration of the NBCM algorithm, it comprises of a Negotiation-Based 
Task Scheduling (NBTS) algorithm, which seeks the optimal start time 
for each task under fixed energy storage control decisions, and a 
Negotiation-Based Storage Control (NBSC) algorithm, which finds 
the optimal charging/discharging scheme of the storage system under 
fixed task scheduling results. Next we will introduce the NBTS 
algorithm and NBSC algorithm in details.  
Algorithm NBCM ( ) 

1. Initialize tasks, PV, energy storage parameters, price functions, 
inconvenience cost, and constraints 

2. Set iteration counter 𝑗𝑗 = 0 
3. Do  
4. 

  

𝑗𝑗 = 𝑗𝑗 + 1 
 
 

5. Rip up all tasks 1st part 
6. NBTS (𝑗𝑗)  
7. Rip up all energy storage decisions   
8. NBSC (𝛬𝛬𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)  2

nd part 
9. Calculate overall energy cost by (5)   
10. Until total energy cost is not decreased for 𝐿𝐿 iterations or 𝑗𝑗 ≥ 𝐾𝐾 
11. Return  𝛬𝛬𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝛬𝛬𝑠𝑠𝑠𝑠 

Fig. 3. Pseudo code for NBCM algorithm.  

The NBTS Algorithm for Task Scheduling: 
At the beginning of the 𝑗𝑗 -th iteration of NBCM, all tasks are 

ripped up and the NBCM calls NBTS algorithm to reschedule all tasks 
one by one under the latest storage control scheme. To introduce the 
details in the NBTS algorithm, let 𝜔𝜔𝑖𝑖

𝑗𝑗(𝑡𝑡) denote the total grid power 
consumed in time slot 𝑡𝑡 after the 𝑖𝑖-th task has been scheduled where 
𝑡𝑡 ∈ [1,𝑇𝑇] and 𝑖𝑖 ∈ [1,𝑁𝑁]. When the NBTS algorithm schedules the 𝑖𝑖-
th task, the NBTS scheduler has already known the scheduling 
decisions of tasks 1 to 𝑖𝑖 − 1, the current price functions 𝜉𝜉 �𝑡𝑡,𝜔𝜔𝑖𝑖−1

𝑗𝑗 (𝑡𝑡)� 
and grid power consumptions 𝜔𝜔𝑖𝑖−1

𝑗𝑗 (𝑡𝑡). We define the Cost Increase 
(CI) for the residential user after scheduling the 𝑖𝑖-th task as follows: 

𝐶𝐶𝐶𝐶 = 𝛴𝛴𝑡𝑡=1𝑇𝑇 �𝜉𝜉 �𝑡𝑡,𝜔𝜔𝑖𝑖
𝑗𝑗(𝑡𝑡)� ∙ 𝜔𝜔𝑖𝑖

𝑗𝑗(𝑡𝑡) − 𝜉𝜉 �𝑡𝑡,𝜔𝜔𝑖𝑖−1
𝑗𝑗 (𝑡𝑡)� ∙ 𝜔𝜔𝑖𝑖−1

𝑗𝑗 (𝑡𝑡)� 

           +𝐼𝐼𝑖𝑖(𝜆𝜆𝑖𝑖) 
(9) 

We have one important observation when scheduling task 𝑖𝑖  in 
each iteration 𝑗𝑗: The time slots occupied by the previous 𝑖𝑖 − 1 tasks 
are more likely to exhibit a higher energy price because the price 
function in each time slot 𝑡𝑡 is monotonically increasing with respect to 
𝜔𝜔(𝑡𝑡). We define a time slot to be congested when it is occupied by at 
least one task within an iteration. Hence, it is reasonable to avoid these 
congested time slots in the following steps in this iteration to minimize 
the overall energy cost. To quantify the degree of congestion in a time 
slot, we define an intra-iteration congestion term 𝑅𝑅(𝑡𝑡) as the number 
of tasks that have been scheduled to occupy time slot 𝑡𝑡 within one 
iteration.  

Besides avoiding congested time slots, it is also reasonable to 
guide the NBTS scheduler to fully utilize all the available PV power 
generations. Thus, an inter-iteration congestion term  𝐻𝐻(𝑡𝑡)  is 
introduced, which is defined as the total times in the previous 𝑗𝑗 − 1 
iterations when PV power generation is not fully utilized in time slot 
𝑡𝑡 . Moreover, to resolve the problem that a number of suitable 
solutions are blocked when a task always occupies the same time slots 



in different iterations, we introduce another inter-iteration congestion 
term ℎ(𝑖𝑖, 𝑡𝑡)  that indicates the total times in the previous iterations 
when task 𝑖𝑖 occupies time slot 𝑡𝑡 (Initially, ℎ(𝑖𝑖, 𝑡𝑡) = 0 for all tasks in 
all time slots).  

Of note, the inter-iteration congestion term is updated at the end of 
each iteration, whereas the intra-iteration term is updated within one 
iteration. After introducing the three congestion terms, we define a 
modified cost increase 𝐶𝐶𝐼𝐼′ in Eqn. (10). Please note that this modified 
cost increase 𝐶𝐶𝐼𝐼′ is the objective function for the NBTS scheduler to 
minimize when scheduling task 𝑖𝑖 in iteration 𝑗𝑗.  
𝐶𝐶𝐼𝐼′ = 

𝛴𝛴𝑡𝑡=1𝑇𝑇 �𝜉𝜉 �𝑡𝑡,𝜔𝜔𝑖𝑖
𝑗𝑗(𝑡𝑡)� ∙ 𝜔𝜔𝑖𝑖

𝑗𝑗(𝑡𝑡) − 𝜉𝜉 �𝑡𝑡,𝜔𝜔𝑖𝑖−1
𝑗𝑗 (𝑡𝑡)� ∙ 𝜔𝜔𝑖𝑖−1

𝑗𝑗 (𝑡𝑡)� 
(𝑎𝑎 ∙ ℎ(𝑖𝑖, 𝑡𝑡) + 1)(𝑏𝑏 ∙ 𝑅𝑅(𝑡𝑡) − 𝑐𝑐 ∙ 𝐻𝐻(𝑡𝑡) + 1) + 𝐼𝐼𝑖𝑖(𝜆𝜆𝑖𝑖) 

(10) 

where 𝑎𝑎 , 𝑏𝑏  and c  are positive weights of ℎ(𝑖𝑖, 𝑡𝑡) , 𝑅𝑅(𝑡𝑡)  and 𝐻𝐻(𝑡𝑡) , 
respectively1. After introducing the above congestion terms, the NBTS 
scheduler will avoid congested time slots within one iteration due to 
the term 𝑏𝑏 ∙ 𝑅𝑅(𝑡𝑡), and try to use all available PV power generation 
because the term 𝑐𝑐 ∙ 𝐻𝐻(𝑡𝑡) slightly lowers the cost in time slots where 
PV power generation is not used efficiently in previous iterations. 
Meanwhile, the term 𝑎𝑎 ∙ ℎ(𝑖𝑖, 𝑡𝑡)  permanently increases when task 𝑖𝑖 
occupies time slot t in one iteration, and after several iterations, the 
scheduler may give up those time slots and try to search for other slots 
to schedule task 𝑖𝑖. After the 𝑁𝑁-th task is scheduled, the NBTS returns 
the schedule 𝛬𝛬𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 to the main NBCM. This is the end of the 1st part 
of NBCM. The computational complexity of the NBTS algorithm is 
𝑂𝑂(𝑁𝑁𝑇𝑇2). Figure 4 provides the pseudo code for the NBTS algorithm.  
Algorithm NBTS (𝑗𝑗) 
1. Loop over all tasks 𝑖𝑖 
2. 

  

Loop over all time slots 𝑡𝑡 ∈ [1, 𝑇𝑇 − 𝐷𝐷𝑖𝑖 + 1 ] 
3.   Set the start time 𝜆𝜆𝑖𝑖 = 𝑡𝑡 
4. Choose the 𝜆𝜆𝑖𝑖 that minimizes objective function (10) 
5. Update the intra-iteration congestion term 𝑅𝑅(𝑡𝑡) 
6. Loop over all time slots 𝑡𝑡 
7. 

  
Update the inter-iteration congestion term 𝐻𝐻(𝑡𝑡)  

8. Loop over all tasks 𝑖𝑖 
9.   Update the inter-iteration congestion term ℎ(𝑖𝑖, 𝑡𝑡) 
10. Return 𝛬𝛬𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Fig. 4. Pseudo code for NBTS algorithm.  

The NBSC Algorithm for Storage Control: 
Then the NBCM continues to execute the 2nd part of the 𝑗𝑗 -th 

iteration with the fixed task schedules. All energy storage control 
decisions are ripped up, and then NBCM calls the NBSC algorithm to 
derive a new charging/discharging scheme for the energy storage 
based on the latest scheduling results 𝛬𝛬𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. The optimization problem 
in NBSC, namely, the optimal storage control problem under fixed 
task scheduling is modeled as follows: 
Storage Control Problem for a Residential Energy User. 
Given the latest task scheduling results 𝛬𝛬𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.  
Find the optimal 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡) for 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇.  
Minimize: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  ∑ 𝜉𝜉�𝑡𝑡,𝜔𝜔(𝑡𝑡)�𝑇𝑇
𝑡𝑡=1 ∙ 𝜔𝜔(𝑡𝑡) + ∑ 𝐼𝐼𝑖𝑖(𝜆𝜆𝑖𝑖) 𝑁𝑁

𝑖𝑖=1   (11) 

where the grid power 𝜔𝜔(𝑡𝑡) is given by Eqns. (1), (2) or (3) based on 
the value of 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡), 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) = Σ𝑖𝑖=1𝑁𝑁 𝑝𝑝𝑖𝑖(𝑡𝑡) and 𝑃𝑃𝑝𝑝𝑝𝑝(𝑡𝑡).  
Subject to:  

−𝑃𝑃𝑠𝑠𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀,𝑐𝑐 ≤ 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡)  ≤ 𝑃𝑃𝑠𝑠𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀,𝑑𝑑 (12) 

0 ≤ 𝐸𝐸𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖𝑖𝑖 − Σ𝑡𝑡′=1
𝑡𝑡 𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡′)𝐷𝐷 ≤ 𝐸𝐸𝑠𝑠𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀,∀𝑡𝑡 ∈ [1,𝑇𝑇] (13) 

where constraints (12) and (13) are inherited from constraints (7) and 
(8), respectively. Since the scheduling results have been derived by 
the NBTS algorithm in this iteration and fixed during NBSC algorithm 

execution, the residential load power consumption in each time slot 𝑡𝑡, 
i.e., 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡), can be calculated by 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) = Σ𝑖𝑖=1𝑁𝑁 𝑝𝑝𝑖𝑖(𝑡𝑡), and the total 
inconvenience cost ∑ 𝐼𝐼𝑖𝑖(𝜆𝜆𝑖𝑖) 𝑁𝑁

𝑖𝑖=1 can also be calculated. Therefore, in 
the objective function (11) in the NBSC problem formulation, (i) the 
residential load power consumption 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) is given and fixed, and 
(ii) the total inconvenience cost ∑ 𝐼𝐼𝑖𝑖(𝜆𝜆𝑖𝑖) 𝑁𝑁

𝑖𝑖=1  is also fixed.  
We have the following important observation in order to 

effectively solve the storage control algorithm via convex 
optimization techniques [14]: 

Observation: The storage control problem will become a convex 
optimization problem with convex objective function and inequality 
constraints if (i) 𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡)  for 𝑡𝑡 ∈ [1,𝑇𝑇]  are utilized as optimization 
variables (instead of 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡)), and (ii) assuming that 𝜉𝜉�𝑡𝑡,𝜔𝜔(𝑡𝑡)� is fixed 
for each time slot 𝑡𝑡. 

Proof: Suppose that 𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡)  for 𝑡𝑡 ∈ [1,𝑇𝑇]  are optimization 
variables and 𝜉𝜉�𝑡𝑡,𝜔𝜔(𝑡𝑡)� is fixed and independent of 𝜔𝜔(𝑡𝑡). We know 
that 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡) = 𝑓𝑓𝑠𝑠𝑠𝑠�𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡)�  is a concave and monotonically 
decreasing function over the input domain, and 𝜔𝜔(𝑡𝑡) is a convex and 
monotonically decreasing function of 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡) (this is also valid when 
we set 𝜔𝜔(𝑡𝑡) = 0 when 𝜔𝜔(𝑡𝑡) < 0.) Hence, 𝜔𝜔(𝑡𝑡) is a convex function 
over the optimization variables 𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡) for 𝑡𝑡 ∈ [1,𝑇𝑇] according to the 
rules of convexity in function composition [14]. We further observe 
that the objective function (11) is a convex function over 𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡) for 
𝑡𝑡 ∈ [1,𝑇𝑇] due to the assumption that 𝜉𝜉�𝑡𝑡,𝜔𝜔(𝑡𝑡)� is fixed. Combined 
with the fact that Eqns. (12) and (13) are linear inequality constraints 
of 𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡)'s, we have proved the validity of the observation.            ∎ 

Based on the above observation, we adopt an effective heuristic 
method to derive a near-optimal solution of the storage control 
problem. It is an iterative method. In each iteration, the heuristic 
method will maintain an estimate of the energy price 𝜉𝜉�𝑡𝑡,𝜔𝜔(𝑡𝑡)� in 
each time slot t (the energy price is assumed to remain fixed in this 
iteration), and then perform convex optimization with polynomial 
time complexity to derive the optimal 𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡) for 𝑡𝑡 ∈ [1,𝑇𝑇]. At the 
end of each iteration, the estimate of energy price 𝜉𝜉�𝑡𝑡,𝜔𝜔(𝑡𝑡)� will be 
updated based on the new 𝜔𝜔(𝑡𝑡)  profile derived from the optimal 
𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡)  for 𝑡𝑡 ∈ [1,𝑇𝑇] . The heuristic method will converge to an 
effective near-optimal solution of the original storage control problem. 
Details of the heuristic are provided below. 
Algorithm NBSC (𝛬𝛬𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 
1. Calculate 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) and ∑ 𝐼𝐼𝑖𝑖(𝜆𝜆𝑖𝑖) 𝑁𝑁

𝑖𝑖=1  
2. Loop until convergence  
3. 

  
Update 𝜉𝜉�𝑡𝑡,𝜔𝜔(𝑡𝑡)� for all slot 𝑡𝑡 

4. Run convex optimization solver to find the optimal 𝑃𝑃𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑡𝑡) 
5. Calculate the optimal 𝑃𝑃𝑠𝑠𝑠𝑠(𝑡𝑡) by (4) 
6. Return 𝛬𝛬𝑠𝑠𝑠𝑠 
Fig. 5. Pseudo code for NBSC algorithm.  

IV. EXPREIMENTAL RESULTS 
In order to demonstrate the effectiveness of the proposed NBCM 

algorithm described in Section III.B, various test cases corresponding 
to the aforesaid system model are examined. As mentioned in Section 
II.A, we consider the cost minimization problem in one day and use 
𝑇𝑇 = 24 and 𝐷𝐷 = 60 minutes in our experiments. Since 𝐷𝐷 is set to one 
hour, the power consumptions of tasks and the storage control 
decisions are also determined with the granularity of one hour. For the 
residential user of interest, we use realistic conversion efficiency 
values in the user’s power conversion circuits in the range of 85% to 
95%, and we apply typical parameters of realistic residential energy 
storage systems. Furthermore, a realistic residential PV generation 
system is considered, and we use PV power profiles measured at 
Duffield, VA, in the year 2007, an example of which is in Figure 6 (a).  

We assume that the user provides the duration, inconvenience 
cost, power profile, preferable earliest start time and deadline for each 

1The proposed algorithm can be applied to a user without off-grid PV energy 
supply by setting 𝑐𝑐 = 0.  



task at the beginning of the day, and the utility company also provides 
the TOU-dependent price as well as the instantaneous power 
consumption-dependent price at the beginning of the day. The TOU-
dependent price part, i.e., the base energy price when the grid power 
consumption 𝜔𝜔(𝑡𝑡) = 0 , is shown in Figure 6 (b), and the power 
consumption-dependent price part is monotonically increasing with 
the user’s real-time grid power consumption 𝜔𝜔(𝑡𝑡).  

 
Fig. 6. (a) PV output power meansured in a day at Duffield, VA, (b) Base (TOU) 

electricity price provided by the utility company in a day.  

We compare the total energy cost among the following (proposed 
and baseline) techniques:  
• Greedy task scheduling (Greedy): where every task is greedily 

scheduled to minimize its own energy cost in one pass with the 
optimal storage control. This Greedy baseline is designed to 
demonstrate the effectiveness of the proposed negotiation-based 
task scheduling algorithm.  

• Task scheduling without storage (No-Storage): where the NBTS 
algorithm is applied in an iterative manner for the user without 
energy storage system. The No-Storage baseline is used to show 
the significance of the energy storage.  

• Ideal storage (Ideal-Storage): where most parts are the same with 
the proposed algorithm except that the storage control algorithm 
ignores the energy loss caused by the rate capacity effect. The 
Ideal-Storage baseline is presented to demonstrate the importance 
of a high accuracy storage model in storage control algorithm.  

• The NBCM: where the NBTS and NBSC are implemented in an 
iterative manner as presented in Figure 3. 

In the first experiment, we adopt a fixed storage system capacity 
of 24kWh and randomly generate test cases with the task number 
ranging from 5 to 50. The preferable time window of each task is 
randomly generated, and the power consumption of each task is also 
randomly generated with an expected value which is inversely 
proportional to the number of tasks (this is because we want to keep 
the total load energy consumption nearly a constant value). Table I 
reports the total energy cost among three baselines and the proposed 
NBCM algorithm, and the cost reduction with respect to different 
baselines are also presented. One can observe that the proposed 
NBCM algorithm consistently achieves lower energy cost compared 
with the three baseline algorithms, with the maximum energy cost 
reduction up to 64.22%. Among the three baselines, the Ideal-Storage 
baseline results in the highest performance because it is equipped with 
a storage system and utilizes the NBTS algorithm for task scheduling 
(which is closest to the proposed NBCM algorithm.) 

In order to show the effect of the capacity of energy storage, in the 
second experiment we fix the task number 𝑁𝑁 = 50, and compare the 
results of the three baselines and the proposed NBCM algorithm with 
the storage capacity in the range of 5kWh to 35kWh, as shown in 
Figure 7. The proposed NBCM algorithm achieves the lowest total 
energy cost consistently under different storage scenarios. 

V. CONCLUSION 
A formularization of joint task scheduling and energy storage 

control for residential energy consumers with PV and energy storage 
facilities was presented. An iterative negotiation-based cost 
minimization algorithm was proposed, which rips-up and reschedules 
all tasks under fixed storage control scheme and derives new 

charging/discharging scheme for the energy storage based on the latest 
task scheduling in each iteration. The concept of congestion was 
introduced to the proposed algorithm and a near-optimal storage 
control algorithm is implemented to solve convex optimization 
problem(s) with polynomial time complexity. The results were 
compared to three baseline methods and demonstrated significant cost 
savings under different scenarios.  

TABLE I. PERFORMANCE OF THREE BASELINES AND NEGOCIATION-BASED 
COST MINIMIZATION ALGORITHM WITH DIFFERENT NUMBERS OF TASKS 

Task 
Number 

Total energy cost Cost reduction with respect to  

Greedy No-
Storage 

Ideal-
Storage NBCM Greedy No-

Storage 
Ideal-

Storage 
5 23.42 16.21 10.43 8.38 64.22%  48.30%  19.65%  
10 8.54 8.67 5.76 5.32 37.70% 38.64%  7.64%  
15 4.41 5.29 3.01 2.87 34.92%  45.75%  4.65%  
20 4.51 5.84 3.98 3.62 19.73%  38.01%  9.05%  
25 8.55 9.02 7.84 6.24 27.02%  30.82%  20.41%  
30 22.43 14.01 10.99 10.43 53.50%  25.55%  5.10%  
35 15.28 11.03 9.50 8.09 47.05%  26.65%  14.84%  
40 11.95 12.46 10.00 8.52 28.70%  31.62%  14.80%  
45 5.82 8.55 5.86 5.32 8.59%  37.78%  9.22%  
50 8.73 10.65 8.09 7.12 18.44%  33.15%  11.99%  

 

 
Fig. 7. Results of the three baselines and the NBCM using different storage 

capacities under a fixed task number.  
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