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The definition for deep and shallow regions is implementation dependent.
However experimental results show that in a network that is decomposed into 2-
input gates, taking into account Reconvergant regions that span over 5 levels
capture a significant part of the spatial correlation at the input of nodes in the net-
work. In POSE an option is available for using semi-local BDDs for computing
node signal probabilities.

As the network is being optimized, the network structure is modified and
therefore the definition of semi-local BDDs for each node will change. There-
fore, if an optimization step changes the network structure drastically, the node
switching activity values should be recomputed so that the new activity values
reflect the new structure of the network.

It should also be noted that for small networks, using global BDDs provides
a more efficient and exact technique for computing the signal probabilities. This
is mainly due to the overhead of computing the semi-local BDDs for each node.
For larger size networks, however, the use of semi-local BDDs will result in sig-
nificant speed up during power estimation.
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This correlation may be present even if primary inputs are spatially uncorrelated.
Under these conditions, the spatial correlation at the immediate fanins of a node
n is due to the Reconvergant fanout regions in the transitive fanin cone of n. This
means that an exact calculation of the signal probability for an internal node n
requires that this signal probability be computed using the global function of n.
BDDs have provided a more feasible approach for representing the global func-
tion of nodes in a Boolean network. Also [13] presents an efficient procedure for
computing the signal probability of a function from its BDD representation.
Therefore BDD based techniques are a good candidate for computing the signal
probability of nodes in a network.

Representing the global function of nodes in some circuits may however
become too expensive even when BDDs are used to represent the global func-
tions. Therefore it is necessary to provide a mechanism for making speed-accu-
racy trade-offs when computing signal probabilities. In the following we
describe and justify our technique for speeding up the procedure for computing
these signal probability values.

6.3.1 Computing Signal Probabilities using Semi-local BDDs
Local BDD for a node n is defined as a BDD where immediate fanins of node n
are used in building the BDD. The semi-local BDD for a node n is defined as the
BDD where the nodes used as the BDD variables create a cut in the transitive
fanin cone of n. Note that the global and local BDD for a node are special cases
of the semi-local BDDs for that node.

The main reason for using global BDDs when computing the signal proba-
bility for a node n is to take into account the spatial correlation at the immediate
fanins of the node. This correlation is due to reconvergant fanout regions in the
transitive fanin cone of node n. Figure  21 shows a shallow and a deep Reconver-
gant fanout region in the fanin cone of node n. A shallow Reconvergant region
spans over less number of levels than a deep reconvergant region. It can be stated
that a shallow reconvergant region, in general, results in more spatially corre-
lated fanins to a node. At the same time, a deep reconvergant region will in gen-
eral result in a lower spatial correlation at the immediate fanins of node n. This
means that it is possible to capture most of the spatial correlation at immediate
inputs of a node n by using the semi-local BDD for that node. The semi-local
BDD will take into account the spatial correlation due to shallow reconvergant
region while ignoring the spatial correlation due to deep reconvergant fanout
regions. This means that using semi-local BDDs allows us to account for most of
the spatial correlation at the immediate fanins of a node without building the glo-
bal BDD for that node. The use of semi-local BDDs for signal probability calcu-
lation is discussed in detail in [21].
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This means that a power optimization procedure requires knowledge of the inter-
nal capacitances (diffusion capacitances) of all gates in the library to be able to
compute the self-loading capacitance and internal power of the gate.

A complete description of substrate capacitances is obtained by analyzing
the transistor circuit of each library cell. Figure 20 shows a 3-input NOR gate
with 3 NMOS transistor in parallel with one end connected to ground and the
other end connected to gate output. The PMOS section is made of 3 PMOS tran-
sistors in serial connection with one end connected to Vcc and the other end con-
nected to the gate output. There are three diffusion capacitances C0, C1 and C2 in
this gate. Each of these substrate capacitances have different charging and dis-
charging functions. To charge C1 for example, it is required that tr1 be conduct-
ing so that a circuit path between Vdd and the capacitance is established. To
discharge the capacitance, both tr2 and tr3 have to be on and at least one of the
transistors in the NMOS network has to be on so that a circuit path from the
capacitance to ground is established. In summary, to completely specify the dif-
fusion capacitances, we not only need the capacitance value, but also the charg-
ing and discharging function associated with each capacitance. The charging and
discharging function can be found by analyzing the switch network of the library
cell. The self-loading capacitance for a gate is also computed using the diffusion
capacitance information.

6.3   POWER ESTIMATION

The immediate fanins of an internal node are in general spatially correlated1.

1.Spatial correlation between nodes x and y in a network means that the values
of x and y in the same clock cycle are dependent.

Figure 20. Diffusion capacitances for a 3 input NOR gate.
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6.2   DESIGN SPECIFICATION

In the past, logic synthesis has concentrated on minimizing the area of a circuit
while meeting the timing constraints. The design specification for logic synthesis
therefore consisted mainly of providing the functional description of the circuit,
the timing constraints and the area/delay characteristics of the target library. As
logic synthesis environments are extended to take into account power consump-
tion, the conventional design specification techniques prove to be inadequate. In
this section we discuss information that is necessary for effective power estima-
tion and optimization at the logic synthesis stage.

The power consumption of a CMOS circuit is a function of the expected
number of times the logic values in the circuit change values. This means that
unlike conventional logic synthesis where the circuit performance (delay) is only
affected by the physical characteristics of the surrounding logic (input drives and
output loads), the transient behavior of the circuit has a significant impact on the
power consumption of the circuit. In order to exactly capture the transient behav-
ior of a circuit, it is necessary to provide a sequence of bit vectors applied at the
primary inputs of the network. This sequence of bit-vectors may in turn be used
by statistical power estimation techniques to compute an estimate of the
expected switching rate of gates in a network thus providing the necessary infor-
mation for power estimation. Recently, probabilistic techniques have provided
an efficient approach for capturing this transient behavior of circuits. By provid-
ing the expected behavior of the circuit at the primary inputs in terms of proba-
bility values, probabilistic power estimation techniques [66] [21] [46] provide an
estimate of expected switching rates of the internal gates in a circuit.

Libraries used during logic synthesis only provide information on area and
delay of each gate in the library. More information is however required to accu-
rately measure the power consumption of a gate in a technology mapped net-
work. The power consumption of a gate consists of the power consumed at the
output of the gate and the power internal to the gate.

The power at the output of a gate g is a function of the load seen at the output
of this gate. This load is a combination of the input loads for output gates and
also the self-loading capacitance for the gate itself. The self loading capacitance
for a gate is defined as the load driven by the gate when the gate output is left
open and is due to the source/drain diffusion capacitances of the gate. Experi-
mental results show that self-loading capacitances contribute up to 20% of the
total power consumption in CMOS circuits. Ignoring these capacitances will no
doubt affect the accuracy of power estimation and the optimality of power opti-
mization. The internal power consumption of a gate is computed by measuring
the power required to charge and discharge the internal capacitances of this gate.
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for power optimization. Therefore the “power recovery” stage is included to use
this flexibility.

Note that at some points during the optimization, the quality of the results
are checked using the power estimation utilities. This is to check how much
reduction in power has been obtained after each iteration. The synthesis process
is terminated if no further improvement can be obtained or the resulting power
estimate is within the design specifications. The next section presents a detailed
discussion on the design specification requirement and power estimation.

Input Activity

Figure 19. Pose synthesis methodology.
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ation, a design has to meet the target power consumption. This means that power
estimation procedures are necessary to check design compliance with the given
specifications. At the same time, power estimation is necessary to check the
quality of the synthesis steps. Power estimation is also a crucial part of interac-
tive optimization techniques.

Synthesis procedures are the basic steps used to incrementally change the
circuit structure while optimizing the target cost function. The combination of
these steps guided by the power estimation procedures are used to develop a
power optimization methodology.

Figure 19 presents the power optimization methodology used in POSE. The
highlighted boxes specify the information that has to be provided by the
designer. The input to POSE is a Boolean network specification describing the
circuit to be designed. The set of power information required by design specifi-
cations is also provided at this time. A Boolean network is a directed graph
where each node represents either a Boolean function or a latch element. The
Boolean network is then optimized using a set of logic synthesis operations.

Low power optimization algorithms provided in POSE consist of four cate-
gories of optimization techniques: 1)Low power algebraic restructuring tech-
niques 2)Low power node simplification using power compatible don’t cares,
3)Low power technology mapping and 4)Post mapping structural optimization
techniques. Techniques in categories 1 and 2 are used during the logic synthesis
process while the technology mapping is used to map the optimized networks to
gates in the target technology. Post mapping structural optimization is applied to
the network after it is mapped to the target technology.

It should be noted that power optimization techniques are developed to make
area-power trade-offs. This is mainly done by reducing the power density1 of the
network so that even with the larger area, the total power consumption is smaller
than the area optimized network. In fact if a power optimization technique
reduces power by reducing area, then it should be considered as an area optimi-
zation technique. In the methodology given in figure 19, the initial logic restruc-
turing have been performed for minimum power. This means that network area
may not have maximally decreased during this operation. Therefore the method-
ology includes a number of operations for recovering some area. This is called
“area recovery”. A “power recovery” stage is also included before the technol-
ogy mapping process. The reason for this is that decomposition for minimum
power does not maximally decompose all node functions. In other words it
leaves some area redundancy in the network that may still be taken advantage of

1.Power density is defined as the total power divided by the area of the network.
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bilities of these design steps. The more significant problem faced by the lack of a
unified framework for low power design is that designers are forced to use low
power techniques as isolated procedures. This has been a major obstacle in
developing a methodology for effective and efficient power specification, estima-
tion and optimization. This lack of a methodology in turn results in a limited
understanding of the applicability of existing techniques which contributes to
holding back the state of the art technology. At the same time, many optimiza-
tion techniques are only applicable and relevant when applied in conjunction
with other optimization approaches. This means that without a unified frame-
work, many new techniques will not be discovered.

In order to address this problem, a complete system for designing low power
digital circuit needs to be developed. The overall design flow consists of a pro-
cess where the initial design specification is optimized using the techniques pro-
vided at the behavioral, RT, logic and physical levels. The inputs to each level is
the set of power relevant information which includes the necessary library infor-
mation. The results of each stage is also checked using power prediction tools
provided in the optimization environment.

This section presents a methodology for designing low power digital circuits
at the logic levels and discusses issues behind design specification for power and
power estimation during the optimization process.

6.1   THE FLOW

A low power design methodology can only be developed when a number of key
components are made available to the designer. These components fall into the
following categories. Design Specification, Design Verification and Synthesis
Procedures. Complete design specification is necessary in order to provide the
synthesis environment with maximum information necessary for the optimiza-
tion process. For example, when designing a circuit for minimum area, the
design specification for this synthesis process should include a measure of the
area for the gates in the target library. Similarly, a synthesis environment for low
power should include all the power related information that is necessary during
the synthesis and validation procedure. An important issue to also consider is
that design specification for power may not be the same at different levels of
abstraction and therefore a set of consistent specification standards need to be
available at different levels.

Design validation is also an important part of any design methodology. The
final design has to comply with the design specifications. For conventional logic
synthesis, this validation is in the form of checking functional correctness and
checking that design meets the area and speed requirements. For power consider-
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Experimental results show that considering all functions of pairs of wires will in
general provide reasonable amount of flexibility for finding substitute wires. In
order to obtain a good balance between flexibility and efficiency it is decided to
only look at all functions of pairs of wires in the circuit. This means that for
every pair of wires x and y, all possible functions of these two variables (which
include x, y and their complement and excluding constants 0 and 1) are also
checked as candidate substitutions.

The problem with the approach presented so far is that it is very expensive to
perform functional equivalency as proposed in section 5.2. This is because oper-
ations on global BDDs are very expensive for large circuits and therefore it is not
possible to check a large number of candidate wire as a possible substitute wire.
Functional simulation can be used to greatly speed-up the functional equivalence
check as described in [33]. Experimental results show that the number of global
BDD compare operations is significantly reduced for a small number of vectors
simulated at the input. For example for 256 vectors simulated at the circuit
inputs, the number of required checks using global BDDs is reduced by two
orders of magnitude.

6   Power Optimization Methodology

In the past, the main objective for circuit designers has been to design fast and
compact digital systems. In response to this demand, design automation tools
have been developed to help the designers in automatic synthesis of digital cir-
cuits. In addition to synthesis tools, other automated programs have also been
developed for simulation and verification of these synthesized circuits. By taking
advantage of these tools and combining their features, designers have been able
to develop and apply novel design methodologies enabling them to design faster
and more complex systems while speeding up the design process. These design
automation tools have been used extensively in the industry and are an integral
part of any design cycle.

Even though considerable effort has been made in creating new techniques
for power estimation and optimization, a unified framework for designing low
power digital systems has not yet been developed. The void created by the
absence of such a tool has presented designers with serious problems. Optimiza-
tion algorithms that target low power circuits use the frameworks designed for
synthesizing minimum area and delay circuits. This means that critical informa-
tion needed for power estimation and optimization is not available when low
power techniques are applied. In most cases, minimal information is made avail-
able to the power related procedures which in turn results in reducing the capa-
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Once the ODC is calculated, this condition is easily checked for by using
global BDDs. Once a possible candidate substitution is identified, the value for
this substitution is computed using equation 22 and compared to other possible
substitutions.

A number of issues need to be considered while searching for candidate sub-
stitutions. These issues include the techniques for computing ODCs, increasing
the search space for finding candidate substitutions and computational complex-
ity of the optimization process.

Using ODC computed for low power, it is guaranteed that changes in the
function of a node will not result in increasing the power consumption in the
transitive fanout of the node. This means that it is not necessary to analyze the
effect of changes in the switching activity of transitive fanout nodes. Using
ODCs computed for low power, it is also guaranteed that any wire substitution
will not increase the power consumption in the transitive fanout nodes. Therefore
it is possible to only consider the effect of power changes due to regions A and B
in figure 18. It should however be noted that even though all possible substitu-
tions will never result in an increase in the power consumption of nodes in the
transitive fanout nodes, some substitutions may reduce the power in the transi-
tive fanout nodes more than other substitutions. Therefore it is worthwhile to
also consider this component of power reduction in selecting one substitution
over another one. At the same time it should be noted that using ODCs computed
for low power will in general reduce the number of possible substitutions which
may potentially lead to a large decrease in power by removing some gates from
the network which fall into region A in figure 18. Therefore if a decision is made
to also take into account the change in power in the transitive fanout of a node,
then ODCs can be computed without regard for power consumption. However if
it is too expensive to keep track of this change in the transitive fanout power,
then ODCs should be calculated for low power.

ODC computation procedures should also be extended to be used with input
substitution. ODC computation techniques discussed previously can directly be
used for output substitution since the ODC computed for the gate that is driving
the target wire gives the ODC conditions for the target wire.

As pointed out earlier, only considering the existing wires in the circuit as
candidate substitute wires will not provide enough flexibility in performing
structural optimizations. In general a substitute wire can be generated by com-
bining any number of existing wires in the circuit using any function of these
wires. This will however generate a large number of candidate wires to be
checked as substitute wires. Given a target wire w and m other wires that may be
considered as substitute wires, there are  possible functions to check for sub-
stitute wires. This number is very large and cannot in practice be considered.

2
2m
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(22)

where regions A, B and C are shown in figure 18 and correspond to the three
sources of change in power. Ew corresponds to the switching activity of wire w
and Cw gives the load seen by wire w. Change in switching activity in the last part
of this equation corresponds to the change in the switching activity of wires in
the transitive fanout of gate g1 as it is replaced with the output of gate g2. Note
that input substitution is a special case of output substitution and the value for an
input substitution can be computed using the same equation except that region A
will be an empty region. The reason is that for an input substitution, only one of
the fanout edges of a gate is replaced with another wire and therefore the gate is
required to drive the other fanout edges therefore no gate can be removed from
the circuit after an input substitution (unless the gate has only one fanout in
which case input substitution and output substitution will be equivalent opera-
tions). At the same time, for a single wire substitution (without needing an
inverter) region B will be an empty region since no new gates will be added to
the circuit after the substitution.

5.2   FUNCTION SUBSTITUTIONS

In a Boolean network, in order to replace a wire a with another wire b, it is nec-
essary that after replacing wire a with wire b, the behavior of the circuit at the
outputs is not changed. As pointed out before, the problem of structural optimi-
zation is simplified by only looking at wire substitutions that replace the target
wire at the sink. This means that the function of the sink gate for the target wire
need not be modified. In this context, the problem of identifying a replacement
wire for a target wire is formulated as follows: Given a target wire w1 and a wire
w2, determine if w2 can replace w1.

In the absence of observability don’t care conditions, this substitution is only
possible if the global function of w2 is the same as the global function of w1. In
this case, wire w1 can be replaced with wire w2. Even though this condition is
easy to check for using BDDs, in general the number of such wires is very small.
The conditions for replacing wires can be relaxed by taking into account the
observability don’t care conditions for wire w1. Given F1, the global function
and ODC, the observability don’t care conditions for wire w1 and F2, the global
function of wire w2, then wire w1 can be replaced with wire w2 if and only if:

(23)
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ing existing wires does not provide enough flexibility in optimizing the cost of
the network. In order to provide more wires that may be considered as replace-
ment wires, complement of existing wires are also considered. In addition, a new
set of wires are generated by combining pairs of existing wires in the network.
This operation is generalized as follows: For every pair of wires x and y, all pos-
sible functions of these two variables (which include x, y and their complement
and excluding constant 0 and 1) are also considered as candidate substitutions.

5.1.1 Cost Functions
The goal of structural optimization is to reduce the switched capacitance of a
Boolean network after it is mapped to the target technology. Since the network is
already mapped to the target technology, it is possible to find an accurate cost for
each possible wire replacement operation. In this section, a cost model is pre-
sented for taking into account all factors affecting power consumption when a
wire is replaced with another wire in the network.

Replacing a wire in a netlist of gates will result in changing the total
switched capacitance of the circuit. Figure 18 shows an example where output of
gate g1 is substituted with wire d which is the output of a new gate formed by
forming the AND of wires b and c. Three sources of change in power can be
identified in this example: 1)power reduction due to removing gate g1 and all
nodes in its exclusive transitive fanin cone, 2)power increase due to inserting
gate g2 in the network which results in increased load on its inputs and 3)the
power change due to the change in the switching activity values in the transitive
fanout cone of gate g2. Note that this example shows the change in power for an
output substitution. The value of a wire substitution gives the reduction in the
power consumption of the network when the substitution is performed and is
computed using equation 22.

Figure 18. Change in power consumption after a substitution.
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able stuck-at fault. Therefore, each new wire is checked to be a redundant wire
before the target wire is removed.

The approach used in [54] is based on logic clause analysis [53]. A clause is
defined as sum of variables and a valid clause describes dependencies among its
variables. A clause is said to be valid if and only if it evaluates to 1 for all assign-
ments to the primary inputs of the circuits. Global implications introduced in
[58] correspond to valid global clauses which cannot be derived from a single
gate’s formula. A valid global clause describes global signal dependencies and
therefore can be used to optimize the cost that is being minimized. In [54], bit
parallel fault simulation (BPFS) [72] and ATPG techniques have been used to
compute a set of valid clauses which correspond to single wire or a combination
of wires that can be used to replace a target wire. This information is then used to
minimize the delay in the network.

Previous techniques for structural optimization have been based on test pat-
tern generation and fault simulation techniques.In the next section, a technique is
presented for performing post-mapping structural optimization by using the
observability don’t care conditions which are derived from the network structure.

5.1   CANDIDATE WIRES

Redundancy addition followed by redundancy removal is the underlying tech-
nique in structural network optimization. In general it is possible to add redun-
dancy in one part of the network followed by removing redundancies from a
different part of the network. The approach presented in [16] makes use of sets
of mandatory assignments to find the redundancy that needs to be added to a net-
work in order to remove a target wire. The time complexity of this operation
however, proves to be very high. A different approach for removing a wire w is
to only consider the set of wires that can be used for source-replacing wire w.
This technique is equivalent to redundancy addition/removal where the added
redundancy is limited to the same gate that the target wire is used in. Using this
restriction, the problem is formulated as follows:

Problem: Given a Boolean network mapped to the target technology, a target
wire w (or a target gate g), find all possible wires that can be used to input sub-
stitute wire w (or output substitute gate g).

The goal in structural optimization is to take advantage of the redundancy
present in the current implementation of the network being optimized. Therefore
the first step in performing structural optimization is to consider substitutions
that involve only a single wire that is already present in the network. An exten-
sion of this technique is to also consider wires that are combinations of other
existing wires in the network. Experimental results however, show that consider-
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Given a Boolean network, it is often possible to replace a wire with an exist-
ing wire or a combination of other wires in the network. Consider the example in
figure 17. As can be seen in this example, function f can be expressed both in
terms of inputs a and d and also inputs e and d. This flexibility in expressing the
function of f can be exploited to optimize different costs in the network. For
example, if path a-e-f in configuration A is on the critical path, then delay can be
reduced by replacing wire e with wire a and therefore reducing the circuit delay.
If the switching activity of wire a is less than the switching activity of wire e,
then power can also be reduced by replacing wire e with wire a.

The main task in performing post-mapping structural optimization is to find
the set of possible wire replacements for a given wire in the network. Once the
set of candidate replacement wires has been identified, the best replacement can
be selected by assigning a value to each candidate wire which gives the contribu-
tion of this replacement to the cost of the network being minimized.

A number of approaches have been presented in the past for performing
structural optimization. The approach presented in [16] uses redundancy addi-
tion/removal techniques to find alternative wires for a given wire in the network.
Based on this approach, the alternative wire, when added to the network, makes
the target wire redundant. A wire is redundant if and only if the corresponding
stuck-at fault is un-testable. The concept of mandatory assignments introduced
in [22] is used in [16] to find alternative wires for a target wire. When testing a
wire for a stuck-at fault, the set of mandatory assignments are the value assign-
ments required for a test vector to exist for this stuck-at fault. The set of manda-
tory assignments are computed in [16] by using implication [36] [37] and
recursive learning [58] techniques. If the set of mandatory assignments for a wire
cannot be satisfied, then the corresponding stuck-at fault is redundant. Therefore
a target wire is made redundant by adding wires to the network that will make
the set of mandatory assignments for this wire inconsistent. It should be guaran-
teed that adding the new wire will not change the behavior of the circuit. This
can be guaranteed by checking that adding the new connection forms an un-test-

Figure 17. Replacing a wire with another wire in the network..

a

b
c d

f

e
a

b
c d

f

e

Configuration A Configuration B



38

nals in the networks. In doing so, it is possible to optimize different costs in the
network. For example delay optimization is performed by replacing a signal in a
network with an equivalent signal while this replacement will result in reducing
the critical path in the network. In [17] a method is presented where a Boolean
network is optimized by first inserting redundancies in the network and then
removing other sets of redundancies which lead to a lower total cost of the net-
work. In [16] a method is presented that attempts to identify alternative wires
and alternative functions for a target wire that cannot be routed due to the limited
routing resources in an FPGA. Alternative wires that can be routed through less
congested areas substitute the un-routable wires without changing the circuit’s
functionality. Again, redundancy addition and removal techniques have been
used to find alternative wires in the circuit. In both these methods, automatic test
pattern generation (ATPG) techniques have been used to check for functional
correctness of the circuit when checking for candidate alternative wires.

The techniques presented in [16], [17] and [53] have been extended in [54] to
minimize the power consumption of Boolean network. The techniques for struc-
tural optimization have been applied after the Boolean network is mapped to the
target technology. The reason for this is that cost functions can more accurately
be calculated for a netlist of gates since all technology dependent information
such as area, delay and load values are readily available from the netlist of gates.
In this section, a technique for minimizing the power consumption of netlist of
gates based on structural optimization techniques is presented. The technique
presented in this section is based on an incremental approach where observabil-
ity don’t cares in the network are first calculated and then possible substitutions
are explored and taken advantage of when power consumption can be reduced by
making the substitution.

The following notation will be used in this section to describe the post-map-
ping optimization techniques. A wire in a netlist of gates corresponds to an edge
in the graph that represents the Boolean network corresponding to the netlist of
gates. Source of a wire corresponds to the gate that drives the wire and sink of a
wire corresponds to the gate that the wire is driving. Replacing a wire w1 with a
wire w2, in the most general case, refers to adding a new wire w2 to the network
where this addition allows us to remove wire w1. Source-replacing a wire w1
with a wire w2 refers to replacing the sink of wire w1 with the source for wire w2.
Note that source-replacing wire w1 with a wire w2 is a special case of wire
replacement where the sink for wire w2 is constrained to be the sink for wire w1.
Source-replacing is also defined as input-substitution. Output substitution of gate
g with wire w refers to source-replacing all fanout wires of g with wire w. A tar-
get wire is defined as wire that is considered for removal. An alternative wire is
wire that will be used to replace the target wire.
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The approach presented in [65] consists of two steps. In the first step, power-
delay curves (that capture power consumption versus arrival time trade-off) at all
nodes in the network are computed. In the second step, the mapping solution is
generated based on the computed power-delay curves and the required times at
the primary outputs. For a NAND-decomposed tree, subject to load calculation
errors, this two step approach finds the minimum area mapping satisfying any
delay constraint if such a solution exists. Compared to a technology mapper that
minimizes the circuit delay, this procedure leads to an average of 18% reduction
in power consumption at the expense of 16% increase in area without any degra-
dation in performance.

Generally speaking, the power-delay mapper reduces the number of high
switching activity nets at the expense of increasing the number of low switching
activity nets. In addition, it reduces the average load on the nets. By taking these
two steps, this mapper minimizes the total weighted switching activity and hence
the total power consumption in the circuit.

Under a real delay model, the dynamic programming based tree mapping
algorithm does not guarantee to find an optimum solution even for a tree. The
dynamic programming approach was adopted based on the assumption that the
current best solution is derived from the best solutions stored at the fanin nodes
of the matching gate. This is true for power estimation under a zero delay model,
but not for that under a real delay model.

The extension to a real delay model is also considered in [66]. Every point on
the power-delay curve of a given node uniquely defines a mapped subnetwork
from the circuit inputs up to the node. Again, the idea is to annotate each such
point with the probability waveform for the node in the corresponding mapped
subnetwork. Using this information, the total power cost (due to steady-state
transitions and hazards) of a candidate match can be calculated from the anno-
tated power-delay curves at the inputs of the gate and the power-delay character-
istics of the gate itself.

5   Post-Mapping Power Optimization

Traditionally, logic synthesis has been divided into two stages: technology inde-
pendent optimization and technology mapping. Power optimization techniques
during technology independent phase have been presented in previous sections.
Recently, structural optimization techniques have been introduced as a new opti-
mization step. In a multi-level network, it is in general possible to replace a sig-
nal (a node input or output) with an existing signal in the network. At the same
time it is also possible to replace a signal with a combination of two or more sig-
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similar to Huffman’s algorithm for constructing a binary tree with minimum
average weighted path length) is optimal for dynamic CMOS circuits and pro-
duces very good results for static CMOS circuits. An example is shown in Figure
15 where the input signal with the highest switching activity (that is, signal d) is
injected last in the decomposition tree in configuration A, thus yielding lower
power dissipation for this configuration.

In general, the low power technology decomposition procedure reduces the
total switching activity in the networks by 5% over the conventional balanced
tree decomposition method.

4.2   CELL BINDING

The problem of minimizing the average power consumption during technology
mapping is addressed in [66], [64] and [40]. The general principle is to hide
nodes with high switching activity inside the gates where they drive smaller load
capacitances (see Figure 16).

Figure 15.  Technology decomposition for low power.
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mized.

While finding an irredundant cover, the cover C(F) that minimizes the fol-
lowing cost function is generated:

(21)

For the reduction step, the prime implicant is reduced such that after reduc-
tion, the cover C(F) has minimum power cost given by equation  21.

4   Low Power Technology Mapping

Technology mapping is the problem of binding a set of logic equations (or a
boolean network) to the gates in some target cell library. A successful and effi-
cient solution to the minimum area mapping problem was suggested in [34] and
implemented in programs such as DAGON and MIS. The idea is to reduce tech-
nology mapping to DAG covering and to approximate DAG covering by a
sequence of tree coverings which can be performed optimally using dynamic
programming. In this approach, the technology mapping process is divided into
two phases where in the first phase, the Boolean network and library components
are decomposed into basic gates and in the second phase, the Boolean network
(subject graph) is covered using the library gates (pattern graphs) using a tree
covering technique. In the following sections the application of these techniques
for low power synthesis are discussed.

4.1   TECHNOLOGY DECOMPOSITION

Technology decomposition is the problem of converting a set of Boolean equa-
tions (or a Boolean network) to another set (or another network) consisting of
only two-input NAND and inverter gates. It is difficult to come up with a NAND
decomposed network which will lead to a minimum power implementation after
technology mapping since gate loading and mapping information are unknown
at this stage. Nevertheless, it has been observed that a decomposition scheme
which minimizes the sum of the switching activities at the internal nodes of the
network, is a good starting point for power-efficient technology mapping.

Given the switching activity value at each input of a complex node, a proce-
dure for AND decomposition of the node is described in [66] which minimizes
the total switching activity in the resulting two-input AND tree under a zero-
delay model. The principle is to inject high switching activity inputs into the
decomposition tree as late as possible. The decomposition procedure (which is
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by one of the prime implicants already in the partial cover, then the correspond-
ing don’t care point is in DCPartialCover .

For incompletely specified multiple output functions that target pseudo
NMOS PLAs, it is possible to obtain a lower power implementation by removing
don’t cares from product terms. A pseudo prime implicant is defined as follows:

Definition 8 Given a Boolean function f and its don’t care set, a pseudo-prime
implicant is defined as an implicant p such that if it is possible to expand p in
any direction, then the new points in the on-set of p will only include don’t care
points.

Note that for a function with no don’t care, the set of pseudo-prime impli-
cants are identically the same as the set of prime implicants of the function. Also
note that each pseudo-prime implicant Pp corresponds to a prime implicant P of
the function where Pp and P contain the same on-set points of the function. The
incompletely specified multiple output pseudo-NMOS problem is solved by
using the minimum covering problem to select the set of pseudo-prime impli-
cants which result in minimum total power cost. Once a minimum power solu-
tion is obtained, each pseudo-prime implicant is expanded in the cover after
checking to make sure this expansion does not increase the total power. Note that
this approach does not guarantee exact optimal solution. Another approach for
solving the problem for incompletely specified multiple-output pseudo-NMOS
PLA is to solve the exact covering problem using the prime implicants of the
function and then reduce each prime implicant in the final cover if this reduction
results in a decrease in total power. Special cases may also be considered during
this step. For example theorem  2 states that if a don’t care set is only included in
one output function, then that don’t care set may freely be included in the on-set.

For a heuristic solution, Espresso can be used with the following modifica-
tion. Let C(F) be a cover of the function F. If every implicant in C(F) is used in
the final implementation, the power cost is given by:

(19)

If an implicant is expanded to a prime implicant PI which covers implicants
in C

1
⊂ C(F), then including PI in the cover will reduce the power cost by:

(20)

where DC is the set of additional don’t cares introduced in the output when PI is
included in the cover. During the expansion step, each implicant is expanded to
prime such that the reduction in power cost specified in equation  20 is maxi-
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if the prime implicants are derived without enumerating minterms, there exist
functions with an exponential number of prime implicants as a function of the
number of implicants in a minimum cover. Also the minimum-cover problem
itself is NP-complete.

Rudell [56] proposed an exact algorithm to solve the two-level minimization
problem based on the motivation that the problems faced in reality do not have
the worst case behavior. Also an exact solution can be used to indicate the qual-
ity of the heuristic methods. Heuristic methods such as ESPRESSO[6] were pro-
posed to solve problems with large number of inputs and product terms.
ESPRESSO uses an iterative improvement to achieve confidence in the optimal-
ity of the final result. Instead of generating all prime implicants and finding a
minimum cost cover, implicants are expanded to prime implicants and then an
irredundant cover is generated from the expanded prime implicants. This
approach eliminates the basic problem of explicit generation of prime impli-
cants. To avoid local minima, after the expansion and removal of covered impli-
cants, the remaining implicants are maximally reduced while still maintaining a
cover. Then the expansion process is repeated and the entire procedure is iterated
until no improvement is obtained.

3.3.2 Power Optimization
Only prime implicants need to be considered for completely specified single out-
put functions and incompletely specified multiple-output functions which target
dynamic CMOS and pseudo-NMOS implementations. In these cases, standard
Quine-McCluskey procedure is used to find the minimum power solution. In
building the prime implicant table, each column representing a prime implicant
is tagged with the power cost given by equation  11 or  14.

For an exact solution, the algorithm described in Espresso-Exact [56] is
modified by using appropriate weight functions during the branch-and-bound
process that is used to find a minimum cost cover. Instead of the number of prime
implicants in the partial solution, the sum of the power costs of the prime impli-
cants in the partial solution is used as the current cost. In case of incompletely
specified single output function, power cost incurred at the output functions
which is caused by including don’t cares in the cover has to be added. Therefore
the power cost of a partial cover is given by:

(18)

where DCpartialCover is the set of don’t cares which are included in the partial
cover. DCPartialCover can be found by augmenting the prime implicant table by
adding a row for each element in the DC_set of the function. If a row is covered
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(17)

Let P1 be a product term that is contained in P, then PwrCost(P) ≤ PwrCost(P1).

This means that only prime implicants need to be considered in search for
the minimum power solution in PLA optimization.

3.3   TWO LEVEL FUNCTION MINIMIZATION

Traditionally two level logic minimization for PLA targets for minimum area.
PLA is a regular structure and its area is proportional to (number of inputs +
number of outputs) × (number of product terms). Therefore the problem of mini-
mizing the PLA area is equivalent to the problem of finding the minimum num-
ber of product terms to implement the Boolean function. For power
minimization, the objective is to minimize the power consumption at both the
AND plane and the OR plane. In the following sections, the relationship between
optimizing area and optimizing power for PLA minimization is shown and it is
described how algorithms for area minimization are modified to minimize power
consumption.

3.3.1 Area Optimization
Since the area of a PLA is proportional to the sum of inputs and outputs multi-
plied by the number of AND terms (or product terms), minimizing area is equiv-
alent to minimizing the number of product terms. The PLA area is relatively
independent of the implementation technology. Therefore the minimization algo-
rithms that target minimum area work for different types of technologies. It is
easy to see that if the cost of a product term is not larger than any product term
which it contains, then a minimum cost solution exists for the two level minimi-
zation problem which consists only of prime implicants. For PLA area minimi-
zation, the cost of a product term is equal to the area for adding a row to the PLA
and is constant for every product term, therefore the above condition is satisfied
and only prime implicants need to be considered during the minimization pro-
cess. The classic solution of finding a minimum cover for a function is the
Quine-McCluskey algorithm which consists of the following steps:

1-Generate all of the prime implicants.

2-Form the prime implicant table.

3-Derive a minimum cover of this table.

For generating all prime implicants, some algorithms resort to explicit enu-
meration of the minterms which in worst case is exponential in complexity. Even
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sidering the power at the input, including don’t cares at worst will not increase
the power. Considering the reduction in power on the inputs, including don’t
cares will always result in reduction in power for a single output function.

The statement of theorem  2 does not in general hold for incompletely speci-
fied multiple output functions. This is because the power cost of a product term
in the AND plane of a pseudo-NMOS PLA is independent of the load at its out-
put. Consider a product term p and OR-terms (o1,..., on) that p fans out to.
Removing don’t care points from p will result in an increase in the power cost of
p. Note however that this increase is independent of the number of fanouts. Now
removing don’t care from p will in turn result in a decrease in the power cost of
OR-plane terms (o1,..., on) if the don’t cares are true don’t cares for more than
one OR-terms and at the same time are not covered by other product terms. In
general it is possible for the reduction in power at the OR plane to be larger than
the increase in power of p and therefore reducing the overall power cost. The
approach for dealing with multiple output functions is discussed in section
3.3.2.

The following theorem shows that power cost of a product term in a single
output Boolean function is no more than any product term which it contains.

Theorem 3 Let power cost (PwrCost) of a product term P for a single output
Boolean function be given as:

(16)

Let P1 be a product term that is contained in P, then PwrCost(P) ≤ PwrCost(P1).

3.2.2 Dynamic PLA
It is assumed that NOR gates in the AND and OR planes drive the same capaci-
tive loading. In this case, the effect of using don’t care in the logic cover will be
the same as the case for pseudo-NMOS PLAs. Also note that for dynamic PLA
implementations, this result also holds for multiple output functions. This is eas-
ily proved by noting that AND plane power for dynamic CMOS PLAs is a func-
tion of its load. This load is proportional to the number of OR-terms that this
product terms fans out to. Removing don’t cares from a product term p will
result in even more increase in power as the number of fanouts of a p increases.
This is in contrast with pseudo-NMOS circuits where the power in the AND
plane is independent of its load. Equation 14 is used for computing the power
cost of a product term for dynamic PLA. The final term in this equation
(2*cclock) is a constant term and is dropped in the optimization.

Theorem 4 Let Power cost (PwrCost) of a product term P be given as:

Vdd Idc spp
0⋅ ⋅



30

minimization. The cases for pseudo-NMOS and dynamic PLAs are discussed
separately.

3.2.1 Pseudo-NMOS PLA
Effect of using don’t cares on the power cost of a pseudo-NMOS PLA is exam-
ined first. The first level NOR gate in a pseudo-NMOS PLA will draw direct cur-
rent when the AND term evaluates to 0. Similarly the second level NOR gate
will draw direct current when the gate output is 0 (i.e., the function output evalu-
ates to 1). Including don’t cares in the cover will reduce the probability of the
AND term evaluating to 0 and hence reduces power consumption at the output of
the AND term. At the same time, it will increase the probability of the output
evaluating to 1 which increases the power consumption.

The example in Figure  13 shows how don’t cares may be used to make
power trade-offs at the output of the AND plane and OR plane. Assuming each
variable has 0.5 signal probability and VddIdc(AND)=1, the OutPwr cost of impli-
cant P1 (given by equation  11) is 0.75 while that of implicant P11 is 0.875.
Therefore OutPwr cost is reduced when P1 is used instead of P11. A similar
statement holds for P2 and P21. However, if P1 and P2 are used instead of P11
and P12, the OutPwr cost at the output of the OR plane will be increased from
0.25 to 0.375.

PLA is a regular structure and the transistor sizes for the OR plane and the
AND plane are identical. Therefore Idc(AND) and Idc(OR) are the same. Based on
this observation, the following theorem shows that including don’t cares in the
cover of a single output function, in the worst case, will keep the power of the
PLA unchanged, while in most cases, it will reduce the power consumption.

Theorem 2 Including don’t cares in the logic cover of a single output Boolean
function will not increase the power cost of the final implementation of a
pseudo-NMOS PLA.

Note also that when don’t cares are included in a product term, in general the
number of inputs to the product term is also reduced. This will in turn reduce the
power due to the input literals. The preceding analysis shows that without con-

Figure 14. Including Don’t Cares in the cover.
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where cp is the load seen at the output of the product term and is estimated as the
number of gates in the OR-plane that p fans out to.

The total power cost due to a product term p is obtained by taking into
account the power consumption on the inputs and clocks and is given by:

(14)

where cclock is the load capacitance of the pre-charge and evaluate transistors that
the clock drives.

The power due to the OR plane of the PLA is measured using equations  11
and  13 presented for the product terms since both the input and output planes of
the PLA are implemented using NOR gates.

3.2   PRIME IMPLICANTS

The two level logic minimization problem for low power is equivalent to finding
a cover C(F) such that the following objective function is minimized:

(15)

where O(F) is the set of gates in the OR plane.

For area minimization, it has been shown that it is sufficient to consider the
set of prime implicants of a function based on the assumption that the area cost
of a prime implicant is always lower than or equal to that of any implicant it con-
tains. In the following, it is examined whether this assumption holds for power
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The primary source of power consumption for a pseudo-NMOS NOR gate is
the static power dissipation (Figure  12). When a pseudo-NMOS NOR gate eval-
uates to zero, both the PMOS and NMOS parts of the gate are conducting and
there exists a direct current path. The charging and discharging energy is small
compared with that dissipated by the direct current when the frequency of opera-
tion is not extremely large. Furthermore, the direct current Idc is relatively con-
stant irrespective of the number of NMOS transistors that are on. It is assumed
here that static power dominates in pseudo-NMOS PLAs. The power cost at the
output of a product term p is given by:

(11)

where sp0
p is the probability that the product term p evaluates to 0. The total

power cost of a product term which accounts for power consumption at its inputs
and output is then given by:

(12)

where ci gives the load due to product term p on input i .

In a dynamic PLA circuits (Figure  13), dynamic power consumption is the
major source of power dissipation. The output of the product term is pre-charged
to 1 and switches when it evaluates to 0. Therefore the power consumption at the
output of a product term p is given by:

(13)
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inputs to generate the product terms required by the defining logic functions. The
other is the OR plane which combines the product terms to generate the output
functions. A convenient measure of a PLAs size is the triplet (i, p, o) where i is
the number of inputs, p is the number of product terms and o is the number of
outputs. The number of potential transistors in the AND and OR planes is given
by the expression (2i + o) p. Increasing i or o adds to the width of the AND plane
or the OR plan, respectively. Increasing p adds to the height of both the AND and
OR planes. A relative measure of the PLA size is then given by the calculation
(2i+o)p. Since for a given set of Boolean functions, the number of inputs and
outputs is constant, therefore the problem of optimizing a PLA for area is equiv-
alent to minimizing the number of product terms necessary to implement the
Boolean functions.

This section, addresses the problem of minimizing power consumption in
two-level logic circuits implemented as PLAs. The loading information in PLAs
are known for a specific technology/implementation and hence the switched
capacitance can be minimized directly. In particular, it is shown how logic mini-
mization for area is modified to obtain a minimum power solution.

3.1   POWER COST FUNCTION

High speed PLAs are built by transforming the SOP representation of a two level
logic to the NOR-NOR structure with inverting inputs and outputs and imple-
menting it with two NOR arrays (Figure 11). Two common types of implement-
ing NOR arrays are pseudo-NMOS NOR gates and dynamic CMOS NOR gate.

It is assumed here that the functions are implemented using a PLA that is driven
using static CMOS drivers. This means that the cost function for an implicant in
the final cover of the function assumes that the AND gate is implemented using
either pseudo-NMOS or dynamic technology while the input power consump-
tion follows the power cost model for static CMOS structures.

NOR NOR

Figure 11.  NOR-NOR PLA.
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rectness, any power optimization and area optimization algorithm will produce
the same results. In general it is possible to obtain a lower power solution for a
trivial or non-cyclic function if this function is a power cyclic function.

An important observation is that power trivial and power non-cyclic func-
tions all have the same minimum solutions for area and power. This means that
for such functions a minimum area solution will also provide the minimum
power solution. Therefore only power cyclic functions need to be optimized for
power. If the power cyclic function is also a cyclic function, then the freedom to
choose different subsets of the partially redundant primes of the function can
potentially lead to power reductions. This means that it is possible to obtain
power savings in a cyclic function even if no non-prime PPIs are included in the
covering problem.

3   Power Optimization in PLAs

Minimizing the number of product terms and literals of a logic function is inde-
pendent of the technology used to implement the function. This means that the
same optimized implementation may be used for static and dynamic logic cir-
cuits. The cost functions used for measuring power however, are different in
static and dynamic circuits [20]. This means that different strategies must be
developed for different circuit types. The goal of this section is to provide func-
tion minimization techniques for reducing the power consumption in PLAs.

One important method of implementing logic functions in a regular, struc-
tured way is to use a Programmable Logic Array (PLA). Normally a PLA can
realize several output functions concurrently. The PLA structure can be realized
in either CMOS or NMOS technology. In either case, a PLA consists of two
major subsections or planes. One is the AND plane, which requires double-rail

Figure 10. Function characterization for low power and low area optimizations.
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Solving the exact two-level function minimization problem for area consists
of first generating a set of prime implicants that will be considered as candidate
cubes of the function and then selecting a subset of these primes which result in
minimum cost of the cover. The set of primes of a function can be partitioned
into three classes. Essential primes, partially redundant primes and totally
redundant primes [6]. Essential primes are defined as primes that cover at least
one minterm that is covered by only one prime implicant. Totally redundant
primes are then defined as the set of primes which are covered by the essential
primes of the function. The remaining primes of the function are then defined as
partially redundant primes. In order to study the complexity of the two-level
minimization procedure, a function can be classified as trivial, non-cyclic or
cyclic [56]. For a trivial function all primes of the function are essential therefore
the two-level representation of the function includes all prime implicants of the
function. A non-cyclic function does not have any partially redundant primes.
Consequently the two level representation of the function again consists only of
the essential primes of the function since all totally redundant primes can be
dropped by including the set of all essential primes. The two-level representation
of a cyclic function includes all essential primes and a subset of the partially
redundant primes of the function. Note that for trivial and non-cyclic functions
the minimum solution is obtained by first generating the set of all primes and
then partitioning the primes into essential, partially redundant and totally redun-
dant. It is not necessary to solve a minimum covering problem for trivial and
non-cyclic functions. Cyclic functions do however require that a minimum cov-
ering problem be solved to minimize the cost function under consideration.

The classification of prime implicants and functions based on the make-up of
their prime implicants can also be applied to functions when power is being min-
imized. Essential PPIs, Totally Redundant PPIs and Partially Redundant PPIs
are defined similar to the area optimization case. Essential PPIs are PPIs that
cover a minterm that is covered by only one PPI. Totally redundant PPIs are
PPIs that are covered by essential PPIs. The remaining PPIs are defined as par-
tially redundant PPIs. Power trivial functions are defined as functions where all
PPIs are essential. Power non-cyclic functions are defined as functions that have
no partially redundant PPI and power cyclic functions are functions which have
partially redundant PPIs.

Figure 10 shows the relationship between function classifications for area
and power. As shown in the figure, a trivial function can be power trivial, power
non-cyclic or power cyclic. However a cyclic function can only be a power
cyclic function. This relationship between function classification is due to non-
prime implicants which are included in the set of PPIs of the function. Note that
if a trivial function is also power trivial then in order to guarantee functional cor-
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will then generate set PP of sets PPn where each PPn will contain PPIs with n
literals.

Procedure initializePP is used to initialize PP by placing prime implicants
with n literals in PPn. The main loop in the procedure updates PPi+1 by adding
all implicants that have a predecessor cube in PPi and also satisfy the conditions
for a PPI. In this loop findMinPowPredecessor returns the predecessor cube of q
which has the smallest power cost. Procedure literalLoweredInQ will return the
literal which was lowered in qj to obtain q. Set PP returned by the procedure
contains the set of all PPIs of the function.

Once the set of all PPIs of the function are generated, a minimal covering
problem [56] will be used to select a set of PPIs which cover the function and
have minimum power cost. The complexity of the minimum covering problem,
grows exponentially as a function of the number of implicants which are being
considered. This means that even though it might be possible to find an exact
minimum area solution for a function, finding an exact minimum power solution
might not be possible due to the increase in the number of implicants being con-
sidered. Assuming a uniform distribution for the signal probability of inputs to
the function, it is shown in [33] that the upper bound on the E(PPI), expected
number of PPIs introduced due to each prime implicant q (with any number of
literals) of a function f with N inputs, is given by:

. (10)

Figure 9. Computing the set of all PPIs.

1: function Generate_PPI(F)
2: F is a Boolean function with input set V = (v1,...vN)
3: begin
4: P = generateAllPrimes (F)
5: PP = initializePP(P)
6: for ( i = 1 ; i < N ; i++) do
7: foreach ( implicant q with at least one predecessor in PPi ) do
8: qj = findMinPowPredecessor(PPi)
9: l = literalLoweredInQ(q, qj)
10: if ( p(l) < (p(qj) - p

2(qj) )/(1+ p2(qj) ) ) then
11: PPi+1 = PPi+1 ∪ q
12: endif
13: endfor
14: endfor
15: return PP
16: end
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Example 2:

Assume p(a) = 0.9, p(b) = p(c) =0.5 and the following two-level
implementations for function f:

F1 = a.b + b.c

F2 = a.b + a.b.c

Also assume COR = CAND = CIN = 1, Then:

Pwr(F1) = 1.525 Vdd
2 f

Pwr(F2) = 1.45 Vdd
2 f

■
This example shows that implementation F2 provides a better power solution

in spite of including a non-prime implicant. Even though the implementation for
a non-prime implicant requires more literals and more transistors, overall, less
power is consumed. This is because in static CMOS circuits a significant part of
power is consumed when gate outputs change values. In this example, for imple-
mentation F2, the reduction in power at the output of the second cube more than
offsets the increase in the power due to including literal a therefore reducing the
overall power consumption. It can be concluded from this example that area-
power trade-offs can be made by including non-prime implicants in the set of
candidate implicants when the covering problem is being set up. This observa-
tion motivates the definition for Power Prime Implicants of a function.

Definition 6 An implicant qi is a Power Prime Implicant (PPI) if:

By definition, all prime implicants (PI) of a function are also power prime impli-
cants (PPI). In what follows the set of all PPIs of the function will also include
the set of all prime implicants of the function. Non-prime PPIs are the set of PPIs
which are not prime implicants.

Definition 7 Predecessors cubes of an implicant qi with n literals are defined as
all implicants with n-1 literals obtained by raising a literal in qi. The Succes-
sors cubes of qi are defined as all implicants with n+1 literals obtained by low-
ering a literal in qi.

A simple approach for generating all PPIs of a function f with N inputs is to
generate all n-cubes of a function for n=1,...,N and compare the power for each
n-cube q with that of all other PPIs containing q. This approach however quickly
becomes intractable as the number of such cubes grows exponentially. An effi-
cient algorithm for generating the set of all PPIs of a function [33] is presented in
figure 9. In this procedure, efficiency is achieved by using the set of PPIs with n
literals for generating and checking candidate PPIs with n+1 literals. The input
to this procedure is the set of all prime implicants of the function. The procedure

q j∀ : qi q j⊂ Pwr qi( ) Pwr q j( )<⇔
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measure the quality of heuristic approaches. Second, an exact procedure can be
used to study the effectiveness of the optimization on the cost function which is
being optimized. For example during logic synthesis, area and power are closely
related. This means that a low area solution tends to provide a low power solu-
tion as well. An exact method in this case provides insight into the maximum
power savings that can be achieved as compared to a minimum area solution.

The problem of exact two level logic minimization for minimum area is
stated as follows:

Problem: Given a Boolean function f with input set V = (v1,...vN), find a two-level
implementation of the function f such that the number of product terms and then
the number of literals in the sum-of-products form is minimum.

This problem is solved by first generating the set of all prime implicants of
the function[6]. The minimum area solution is then obtained by solving an exact
minimum covering formulation of the problem where a subset of the primes are
selected to cover the function.

The problem of exact two-level function minimization for low power is
stated as follows:

Problem: Given a Boolean function f with input set V = (v1,...vN) and signal
probability p(i) for each input, find a two-level implementation of the function f
such that the power as given in equation 9 is minimum.

The main difficulty in generating an exact minimum power solution is that
compared to a minimum area solution which only requires prime implicants,
more implicants need to be considered while solving the covering problem. In
the next section Power Prime Implicants (PPIs) are introduced and discussed.

In what follows, it is assumed that the value for CAND = CIN. This is a valid
assumption since the functions being optimized are internal nodes of a Boolean
network. Also the following notation will be used.

Given qi, an implicant of function f,  represents the implicant gener-
ated by lowering literals l1,....lk in implicant qi. An n-cube is defined as an impli-
cant with n literals.

2.2.3.B. Power Prime Implicants
It can easily be shown that only prime implicants need to be considered while
minimizing a function for minimum area. This can be proved by noting that any
solution that contains a non-prime implicant q, will be improved by making q
prime and therefore reducing the area of the solution. This argument cannot
however be applied when implicants are being considered for a minimum power
solution. The following example illustrates this observation:

qi

l1 … lk, ,
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(9)

where COR is the load seen by the output of the OR gate, CAND is the load seen
by the output of the AND gate and CIN is the load seen by the inputs. E(i) gives
the switching activity of gate i. Note that the power consumption of any imple-
mentation of the circuit (NOR-NOR, NAND-NAND, etc.) can be estimated
using equation 9 since a function f and its complement will exhibit the same
switching activity.

2.2.3.A. Minimization Algorithms
Exact methods cannot be applied to many large functions. Therefore an exact
optimization procedure cannot effectively be used in real circuits. However an
exact procedure is needed for two reasons. First an exact solution can be used to

Figure 7. Node optimization for power.

1: function node_power_optimize(f, dc)
2: f is the function and dc is the don’t care of node;
3: begin
4: fesp = espresso(f , dc).
5: V = find_k_minimal_switching_activity_var_sup(f, dc).
6: foreach v ∈ V do
7: ftmp = node_fanin_optimize(f, dc, v)
8: if( power_cost(ftmp) < power_cost(fesp) ) then
9: fesp = ftmp
10: endif
11: endfor
12: return fnew.
13: end
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sible, the power estimate for the node implementation of the k lowest cost vari-
able supports are compared where k is a user defined parameter. The node power
cost function in the factored form also takes into account the output load and
switching activity. Hence by selecting the lowest power cost implementation, a
solution which minimizes all factors contributing to the network power con-
sumption is selected. Given a node function f and its don’t care dc, the procedure
in figure 7 is used to select the lowest power cost implementation of the function.

2.2.3 Exact Two-level Optimization in CMOS Circuits
Given a Boolean function f with product terms Q=(q1,...qM) and input set V =
(v1,...vN). The following model is used to estimate the power consumption of the
two-level implementation of function f.

The power consumption due to each product term qi is given by:

(8)

The power consumption of the function is then estimated by:

Figure 5. Using the reduced don’t care.
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1: function node_fanin_optimize(f, dc, v)
2: f is the function and dc is the don’t care of node, v is a variable support;
3: begin
4: p= cube representing eliminated variables
5: freduced = function_elim_variables(f, p)
6: dcreduced = Cp(dc)
7: fnew = espresso(freduced, dcreduced)
8: return fnew
9: end
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It is also shown in [45] that the reduced off-set of a cube is a unate function
and therefore has a unique minimal representation in the SOP form. A procedure
is presented in [45] for computing the reduced off-set of each cube in the func-
tion where reduced off-sets are computed without computing the complete off-
set of the function. In [29] a technique is presented for computing the set of all
minimal literal supports using the reduced offsets of the function.

Once the set of minimal variable supports for a function is computed, a deci-
sion has to be made as to which set of variables to use for implementing the
function. A simple cost function for minimizing power consumption is to count
the number of variables in the variable support. The drawback with this cost
function is that it does not consider the switching activity of fanin variables that
constitute the support variables. A better cost function is to choose a variable
support where the sum of the switching activity for all the variables in the sup-
port is minimum. This procedure is referred to as the “minimal switching activity
support” procedure. Once the new variable support for a node is determined, the
new function of the node is computed by dropping variables not in the support.

When a variable support is selected for the function, a part of the don’t care
is assigned to eliminate the variables not in the selected support of the node. This
operation results in a new function fnew. However a subset of the don’t care can
still be used to minimize the cover of fnew. This subset of the don’t care is called
reduced don’t care dcreduced.

Theorem 1 Given a cube v representing the variables removed from the on-set of
a function f and dc, don’t care for function f, dcreduced the reduced don’t care for
f, as given below, is the maximal set of don’t care that can be used to optimize f
without including variables from v in f.

(v is the bit-wise complement of v).

 Figure 5.a shows the on-set and don’t care for a function f. Figure 5.b shows
the don’t care assignment which is used to eliminate variable x from the support
to obtain fnew and figure 5.c shows the reduced don’t care for function f after
variable x is eliminated from the k-map. Using reduced don’t care for this node,
one product term is removed from the on-set of the function f. Given a function f,
its don’t care set dc and a variable support v, the procedure in figure 6 is used to
optimize the power consumption of the function.

The given procedure will provide a low area implementation which has the
lowest sum of switching activities on the immediate fanins of the node. It is how-
ever possible for a variable support with a higher switching activity support cost
to have a smaller factored form and hence have a lower power. In order to select
a variable support which also reduces the node’s power estimate as much as pos-

dcreduced dcv dcv⋅=
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This section first presents a more efficient method for computing the set of mini-
mal literal and variable supports of the nodes in the network. The set of minimal
supports gives the flexibility in implementing the node function using different
sets of variables. Techniques for selecting a node support which will potentially
lead to maximal reduction in the node input power are then discussed.

Given an incompletely specified function ff, it is often possible to implement
ff using different sets of literals. For example let F = a.b and DF = a ⊕ b. This
function can be simplified to F = a or F = b. Then set {{a}, {b}} is the set of all
minimal literal supports for node F. The problem of finding the minimal literal
support of a function is stated as follows.

Problem: Given C1={C1
0, C1

1,...., C1
g}, the cover of the on-set and C0={C0

0,
C0

1,...., C0
h}, the cover of the off-set of a function F(x1, x2,.... xn) ∈Rn, find the

set of all minimal literal supports of the function F.

Once the set of all minimal literal supports of a function has been computed,
a literal support is selected to implement the function. This problem is stated as
follows:

Problem: Given C1={C1
0, C1

1,...., C1
g}, the cover of the on-set for a function

F(x1, x2,.... xn) ∈Rn, and a set of minimal literal support given as a set of liter-
als MLSF={lit1, lit2,..., litk}, find the minimal irredundant form of the function F.

The solution to this problem is obtained by raising all literals in on-set of F
which are not a member of set MLSF [25]. The method described in [25] for
computing the set of all minimal literal supports requires that a cover of the on-
set and off-set of the function be computed. The off-set has to be computed by
complementing the union of on-set and don’t care of the function. This operation
is in general computation expensive and the resulting off-set might have an expo-
nential size. An example of this function is the Achilles Heel function which has
n terms in the cover of on-set and 3n terms in the cover of off-set. Therefore it is
desirable to compute the set of all minimal literal supports without computing
the off-set of the function. In this section a method is presented for computing
the set of all minimal literal supports of a function without computing the off-set
by using the ideas behind reduced off-sets.

Reduced off-sets are introduced by observing that some minterms of the on-
set or don’t care cannot be used to expand a cube of the on-set. Assume p=a.b
and the complete off-set is a ⊕ b. Then the reduced off-set of p is (a + b) which
is all that is needed to expand p.

Definition 5 [45] Given a cube p of a function f, Rp, the reduced off-set of func-
tion f with respect to cube p is obtained by including all minterms of the on-set
that cannot be used to expand p, in the off-set of the function.
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high switching activity. The second drawback is that this operation may prove to
be expensive when the number of nodes in the transitive fanin cones of f and m
are large. An alternative approach for including SDC of nodes that do not share
the same immediate support as f is proposed here by observing that given a Bool-
ean network with n primary inputs and m internal nodes, the range of Bn, space
of primary inputs onto Bn+m, the space of all nodes in the network, gives the set
of all satisfiable conditions in the network.

Assume an internal node f with fanins {i1,..., il} is being optimized while
considering possible substitution of nodes {n1,..., nk} into the function of f. The
complement of the range of the space of primary inputs by function F={i1,..., il,
n1,..., nk} gives all unsatisfiable conditions in the space of function F which is
used as the SDC set while optimizing node f. Using this technique, it is no longer
necessary to include the SDC due to nodes which are not good candidates for
substitution into the function of node f.

The procedures presented in this section compute a set of local don’t cares
for the function that is being optimized. This local don’t care guarantees that glo-
bal power is not degraded while the node is optimized and also allows for
expressing the node function using a new variable set which may potentially
result in a lower power consumption. In the next section techniques using mini-
mal literal and variable supports are presented to optimize the local function of a
node for low power.

2.2.2 Node Optimization Using Minimal Variable Supports
The goal of node optimization is to minimize the power contribution of the node
to the overall power consumption of the network. This requires that the combina-
tion of the node power at the input and output as well the estimate for the internal
power of the node be minimized. This section presents a method for minimizing
the power of the node by reducing load on high activity inputs of the network.

Figure 4. Candidate nodes for SDC computation.
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immediate support is a subset of the immediate support of the node being opti-
mized is considered.

It has been shown [48] that using SDC due to any node in the network for
simplifying the function of a node f does not result in changing the global func-
tion of f or any other node in the network. This means that using SDC does not
change the signal probability or switching activity of any of the nodes in the net-
work. Therefore SDC may freely be used to optimize the function of nodes with-
out concern that switching activities may increase. Successful use of SDC may
however result in using a new variable v in the function of the node being opti-
mized. This results in a load increase at the output of node nv generating variable
v. If the switching activity of the new variable is high, then increasing load on
this variable may result in an unexpected increase in the power consumption of
the network. It is therefore important to take into account the switching activity
of nodes that are being considered for possible substitution in the function of
node that is being optimized.

The approach presented in [57] for using SDC consists of identifying a set of
nodes that with high probability may be substituted in node f being optimized.
These nodes are identified as all nodes whose immediate support is a subset of
the immediate support of node f. The SDC due to each of these candidate nodes
is then included in the don’t care of f. For power optimization, the following
approach is used for finding the set of candidate nodes whose SDC will be
included in the don’t care of a node f. Figure 4 shows the transitive fanin and
fanout nodes of node f in a Boolean network. SDC of nodes in the transitive
fanout of node f cannot be included in the don’t care of f. All other nodes in the
network may be substituted into f if their primary input support is a subset of the
primary input support for node f. Nodes g, m, n and p show such candidate
nodes. In order to select a set of candidate nodes, first all nodes that are not in the
transitive fanout of f and whose primary input support is a subset of the primary
input support of f are identified. Among these nodes, nodes whose switching
activity is below a user defined threshold value is selected.

The SDC due to a node g (see figure 4) whose immediate support is a subset
of the immediate support for node f is easily included as g⊕F(g). In order to
include the SDC due to nodes that do not share the same immediate support as f
(node m in figure 4), it is necessary to include the SDC for all nodes that are in
the transitive fanin cone of f and transitive fanin cone of m. This is necessary
since successful substitution of m into f requires that the unsatisfiable conditions
relating the values at the output of node m and all immediate fanins of f be
known. The first problem with this approach is that including the SDC for all
these nodes will result in also considering them for possible substitution into f
while f is being optimized and this may not be desirable if these nodes have a
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will not affect the global function of node f.

Lemma 2 Using a minterm vi in don’t care regions Rg,f (1,1) and Rg,f (0,0) while
optimizing node g will result in bringing this minterm from the off-set to the on-
set of function f.

Lemma 3 Using a minterm vi in don’t care regions Rg,f (0,1) and Rg,f (1,0) while
optimizing node g will result in bringing this minterm from the on-set to the off-
set of function f.

For each region in ODCg, the change in the function of f as minterm vi in
region i is included in or excluded from the on-set of g is well defined. This
means that while optimizing node g, the effect of changes in global function of
node f is exactly known using the information on the don’t care regions for node
g. Therefore the effect of changing the function of g on the signal probability and
therefore the switching activity of node f can exactly be measured.

Don’t care regions are then used in [29] to define Propagated Power Rele-
vant Observability Don’t Care conditions for a node f. The Propagated Power
Relevant Observability Don’t Care for node f is defined as a subset of the
observability don’t care conditions for f that is used to compute the observability
don’t care conditions for node g while guaranteeing that any changes in the func-
tion of g does not increase the switching activity of node f. Propagated Power
Relevant Observability Don’t Cares are then used to compute Power Relevant
Observability Don’t Cares for node g. Power Relevant Observability Don’t Care
is defined as the observability don’t care conditions for g that guarantees any
changes in the function of g does not increase the switching activity of its fanout
nodes. A complete algorithm for optimizing a Boolean network for power using
power relevant observability don’t cares is presented in [29].

In a Boolean network, some combinations for the values of the internal
nodes are not possible no matter what input vector is applied at the primary
inputs of the circuit. If a network has n primary input nodes and m internal nodes
then satisfiability don’t care conditions (SDC) for a network contain all impossi-
ble combinations in the space of Bn+m. The contribution of each node in the net-
work to SDC of network is given in definition 2. In this sense SDC due to a node
g is defined as g⊕F(g) where g is the variable at the output of node g and F(g) is
the function of node g in terms of its immediate fanins. Satisfiability don’t cares
are usually used to substitute a new variable into a function if this substitution
results in a lower cost implementation.

While optimizing a function f in the network, a subset of SDC for nodes that
with high probability may be substituted into f are usually used. In [57] a method
for selecting a subset of SDC is presented where only SDC of nodes whose
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plete ODC, the ODC at other nodes in the network will potentially change.
Therefore the ODC for each node has to be recalculated after each optimization
step. At the same time, the size of the complete ODC can become extremely
large. Therefore subsets of ODC have to be used instead of the complete ODC of
each node. RESTRICT was the first ODC filter introduced in [28]. This filter
removed any cube in the ODC of a node yi which had a literal corresponding to a
node in its transitive fanout. Although this filter and a number of other filters
made the ODCs smaller, ODCs still had to be recomputed after each node sim-
plification. Compatible set of permissible functions (CSPF), introduced in [49]
allows for simultaneous optimization of all nodes in a network. In [57] the con-
cept of CSPFs which is only defined for NOR gates, is extended to complex
nodes of a general multi-level network and is called Compatible ODCs
(CODCs). CODCs are used to simultaneously minimize the function of each
node in the network. Even though by using CODCs some of the information con-
tained in each of the full ODCs is lost, the time complexity of using the full ODC
makes it impossible to use them for any practical size problem.

The compatible don’t care computed here is freely used while minimizing
the function of nodes in a Boolean network guaranteeing that the global function
of circuit outputs will only change within their specified external don’t care set.
The change in the global function of transitive fanouts of node n as n is opti-
mized, is not of concern when area is being minimized since the change in the
function of each node will be within the observability don’t care calculated for
that node. However as mentioned before, this observation does not hold for
power minimization. For example if by modifying the function of an internal
node, the signal probability of a fanout node is changed from 0.1 to 0.2 a 78%
increase in the power consumption of the fanout node can be expected.

In order to study the effect of using observability don’t cares on the switch-
ing activity of other nodes in the network, the notion of don’t care regions for a
node f and its fanin node g is introduced in [29].

Definition 4 Given a node g and its fanout nodes F={f1,...fk}, the don’t care
regions of g with respect to F are denoted as . This don’t care region
specifies all global conditions where g evaluates to α (α={0,1}). The second
entry is a k bit vector where each bit takes values from the set β={0,1,-}. Bit i of
this vector specifies whether for points in this region fi evaluates to the same
value as g (βi=0), an opposite value than g (βi=1) or whether fi is independent
of g (βi=-).

The following lemmas give properties of don’t care regions which are used
to study the effect of changing the global function of node g on the global func-
tion of its fanout node f.

Lemma 1 Using the minterms in Rg,f (1,-) and Rg,f (0,-) while optimizing node g

Rg F, α β,( )
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Definition 1 The external don’t care set for each output zi of the network is all
input combinations that either do not occur or the value of zi for that input com-
bination is not important.

Definition 2 If yi is the variable at an intermediate node and fi its logic function,
then yi = fi. Therefore, yi ≠ fi.represents conditions that are not satisfiable. The
expression  for all nodes in the network is called the Satisfi-
ability Don’t Care set (SDC).

Definition 3 The observability don’t cares (ODCs) at each intermediate node y0
of a multi-level network are conditions under which y0 can be either 1 or 0
while the functions generated at each primary output remain unchanged. If

 gives the set of circuit outputs, then the complete ODC at node y0
is:

(6)

The complete don’t care set for a node n is found by first computing the
ODC as a function of the primary inputs of the circuit. The external don’t care
which is also expressed in terms of the primary inputs is then added to ODC.
Image projection techniques [18] are then used to find the ODC plus EDC of the
node in terms of the immediate fanins of the node. Finally a subset of SDC for
nodes which can be substituted into n with high probability, is added to this local
don’t care. In general computing the ODC for a node is the most complex part of
this computation.

In [19] a method is described for computing the complete set of observability
conditions for each node in the network where the ODC at each node is com-
puted as a function of the ODC for its fanout edges. In this procedure the ODC
of the node with respect to each primary output is computed separately. A differ-
ent technique for computing the complete don’t care set is presented in [57]
which takes advantage of observability relations [12] at the primary outputs of
the network. The given algorithm computes the complete ODC for each node in
a multi-level combinational network. For tree networks, the following equation
is used to compute the maximal set of ODCs at the output of a node g:

(7)

where .

The complete ODC cannot however be used in synthesis for any real size
problem. This is because once the function of a node is minimized using its com-
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ESPRESSO [6] presents a heuristic approach where novel techniques are used to
efficiently produce good area solutions while ESPRESSO EXACT [56] presents
an exact method for solving the minimum area solution. In [19] a method is pre-
sented for computing the complete set of observability conditions for each node
in the network where the observability don’t care (ODC) at each node is com-
puted as a function of the ODC for its fanout edges.

This section addresses the problem of Boolean function minimization for
low power using a don’t care set. The problem of power optimization during
logic synthesis has been addressed in a number of recent publications. The don’t
care set computed for area optimization [57] is used in [60] to optimize the local
function of nodes for power. This work does not however take into account the
effect of changes in the function of internal nodes on the power consumption of
other nodes in the network. The idea of power relevant don’t cares was first
introduced in [29] where an efficient technique for computing power relevant
don’t cares was presented. The computed power relevant don’t care guarantees
that any changes in the local function of a node does not result in increasing the
switching activity of other nodes in the network beyond their value when these
nodes were optimized. The notion of minimal variable supports is used in [29] to
optimize the local function of nodes for power.

The analysis on power relevant don’t cares [29] is used in [43] to compute a
re-synthesis potential for nodes in a technology mapped network. This re-synthe-
sis potential represents the estimated effect of a change in the local function of a
node on the power consumption of its transitive fanout nodes. The method pre-
sented in [43] also takes into account changes in power consumption due to vari-
ations in hazardous transitions in the network after an internal node is re-
synthesized. Under a simplifying assumption (that is, assuming a signal proba-
bility of 0.5 for all primary inputs) an efficient technique is presented for com-
puting this re-synthesis potential.

2.2.1 Computing Don’t Cares
In logic synthesis, the concept of don’t cares is used to represent the available
flexibility in implementing Boolean functions. Don’t care conditions for a func-
tion specify part of the Boolean space where the function can evaluate to one or
zero. Three sources of don’t cares are external don’t cares (EDC), observability
don’t cares (ODC) and satisfiability don’t care (SDC). It has been shown that if a
node is minimized using all three types of don’t cares, then all connections to
and inside the node are irredundant. This means that EDC, ODC and SDC pro-
vide a complete set of don’t care during optimization [5].
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(5)

The first term in this equation gives an estimate of the power added to the
network by duplicating the node function. The second term accounts for the
power at the output of the node which is removed from the network.

2.2   BOOLEAN OPTIMIZATION TECHNIQUES

Logic synthesis algorithms use the flexibility provided by don’t care conditions
to more effectively manipulate a Boolean network. Current techniques for com-
puting and using these don’t care conditions allow for correct functional opera-
tion of the network by guaranteeing that as each function in the network is being
optimized using its don’t care conditions, other functions in the network are
changed only within their don’t care sets.

Power consumption in a Boolean network is proportional to the switching
activity of the nodes in the network. Switching activity of a node is a function of
the signal probability of the function and therefore dependent on the global func-
tion of the node. This means that as a node is being optimized using its don’t
care set, the switching activity of the node function as well as the switching
activity of other nodes in the network is also being changed. This clearly shows
the need for new methods to analyze the effect of using don’t care sets on the
switching activity of nodes in the network.

Function minimization using a don’t care set is an important part of logic
synthesis for minimum area. The problem of don’t care computations and Bool-
ean function minimization has been addressed by many researchers in the past.
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Figure 3. Node elimination in the network.
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After the substitution, only the input plane for F1 is changed in the net-
work and the power at the input of F1 is increased from 0.54 to 0.68
even though literal count is decreased.

■
Once it has been determined that a node nj can be substituted into a node ni,

the power cost function of ni for both SOP implementations of ni before and after
substituting nj is computed. Substitution is performed if the power cost of ni is
reduced after substitution.

2.1.4 Selective Collapse
Selective collapse is the process of selectively eliminating nodes in a network in
order to reduce the area cost of the network. Selective collapse is performed on
an initial Boolean network to provide a better starting point for the extraction
procedures. This is done since the initial network might have factors identified
which are not good candidates for extraction. During area optimization, two
value functions are used to decide if a node should be eliminated by collapsing it
into its fanout nodes. One is the sum-of-products value of the node. This value is
the reduction in the number of literals in the sum-of-products form of the net-
work if the node is collapsed into all its fanout nodes.

The second value function is the factored form value. This value gives the
reduction in the number of literals in the factored form of the network if the node
is collapsed into its fanout nodes. The area value in the factored form of a node is
defined as follows[56]:

(4)

where lit(ni) is the number of literals in the factored form of the node ni and
LF(ni, nk) denotes the number of times variable ni appears in the factored form of
node nk. The first term in this equation accounts for the duplication of the literals
in the factored expression of ni once it is collapsed into its fanouts. The second
term is the decrease in the number of literals by removing the literals corre-
sponding to ni from its fanout nodes. The last term account for the removal of ni

from the network where lit(ni) literals are removed from the network.

The power value for a node is presented in [31] and is defined as follows:

lit ni( ) LF ni nk,( )
nk fanouts ni( )∈

∑⋅
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

LF ni nk,( )
nk fanouts ni( )∈

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

– lit ni( )–



9

transformed into F=Q.D+R where D is the divisor, Q is the quotient and R is the
remainder of dividing F by D. The procedure guarantees that the resulting factor-
ized form of F is maximally factorized. The procedure DIVISOR passed to the
function is used to find a candidate divisor for the function. By changing this
procedure, trade-offs in terms of speed and quality of results can be made. Quo-
tient Q is computed by performing weak division on F and D.

The problem of factorization for low power is stated as follows: Given a
sum-of-products expression for function F, find a maximally factored expression
where the weighted sum of the literals by their switching activity is minimized.

In [31], a DIVISOR procedure is presented that guarantees that at each step
of the factorization process the resulting factorized form has minimum sum of
literals weighted by their switching activities.

2.1.3 Substitution
Substitution of a function G into F is the process of re-expressing F in terms of
variable G and the original inputs of the function F[73]. Substitution can be per-
formed using algebraic or Boolean division algorithms. Even though Boolean
division in general yields better results, algebraic division is a much faster heu-
ristic which produces comparable results. If algebraic division is used for substi-
tuting variable G into function F and the quotient of the result is not 0, then it can
be concluded that G was a sub-expression of function F. In fact if a non-trivial
expression G (a function other than buffers or wires) can be substituted in func-
tion F using an algebraic division procedure (i.e. weak division), then the area
value as defined in equation  2 is always greater than zero. The important conse-
quence of this is that if a function G can be substituted into a function F, then it is
guaranteed that this substitution will result in a decrease in the number of literals
of the network in the SOP form.

Substitution is also used to minimize the network power consumption. How-
ever substitution does not always guarantee a reduction in the power cost of the
network. This means that an operation which decreases the number of literals in
the network can potentially increase the power cost of the network in the SOP
form.

Example 1:

Assume F1 = a b c and F2 = a b

also p(a) = p(b) = p(c) = 0.9, p(F2) = 0.5

Note that p(F2) ≠ p(a)*p(b). The cause for this is spatial dependence
between inputs a and b[46].

F1 can be expressed in terms of F2 as follows:

F1 = F2 c
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that is inserted in the network. The last term accounts for the power at the output
of the new cubes inserted in the SOP representation of function f.

(3)

where LS(v, q) denotes the number of times variable v appears in the expression
for q. The procedure for performing low power kernel extraction for a Boolean
network first computes the set of all kernels for all the nodes in the network
using the procedure described in [56]. The sub-expression that has maximum
power value is then extracted

Power tracks well with the area of a network. Therefore it is desired that
power optimization techniques do not degrade the area quality of the solution
while optimizing the network for power. It is also shown in [31] that extractions
performed using equation 3 will not increase the literal count in the network.
This is an important property since if the area of the circuit is increased a lot dur-
ing power extraction, then the power due to the increased area will more than
offset the power gain and no power gain will be obtained. Similar techniques are
also presented in [31] for performing common cube extraction.

2.1.2 Factorization
Factorization is the process of deriving a factored form from a sum-of-products
form of a function. For example if F=a.b+a.c+b.c then one possible factoriza-
tion of F is a.(b+c)+b.c. In most logic synthesis systems Boolean functions are
internally stored in the sum-of-products form. The area of a Boolean network
however is more accurately estimated by the number of literals in the factored
form of the network. This means that an efficient factoring algorithm is needed
in order to guide the optimization problems. Exact methods for computing the
best factorized form of a function have been presented in the past. However these
algorithms are too complex to be used since the factorization algorithms are used
to guide the optimization procedure and have to be performed numerous times.

A heuristic factoring algorithm is described in [73]. In this algorithm a recur-
sive procedure is used to find a factored form of a given sum-of-products repre-
sentation. At each step of the recursion the function F passed to the procedure is
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network. During algebraic operations, the value of a divisor is measured in terms
of the reduction in the number of literals that is obtained by using that divisor.

2.1.1 Common Sub-expression Extraction
Algebraic extraction uses the concepts of common kernel and cube extraction to
introduce nodes into a network in order to optimize the area cost of a network.
These techniques use the SOP cost of nodes to minimize the total number of lit-
erals in the SOP form of the network. Algebraic extraction techniques utilizing
kernels and cubes are used extensively and result in significant reduction in the
area of the mapped network [56].

The problem of power optimization during extraction is stated as follows:

Problem: Given a boolean network, find a set of nodes to introduce in the net-
work such that the power cost of the network in the SOP form is minimized.

Kernel and cube extractions can be used to minimize the network power con-
sumption. In the following each method is presented separately [55] [31]. In the
following, we summarize the work presented in [31].

Consider a multiple-output Boolean function F={f1,..,fL} with cubes
(c1,...,cN) and input set (v1,...vM). Let D=(d1 +.. + dP) represent a kernel of func-
tion f used as a divisor. Also assume Q={q1,..qR} is the set of co-kernels for ker-
nel D in functions {f1, ..,fL}. The area value for extracting D is given by equation
2 [56]. In this equation the first term accounts for literals saved by not repeating
the kernel, the second term accounts for literals saved by not repeating the co-
kernels and the last term accounts for the number of literals introduced by
extracting kernel D.

(2)

where lit(d) denotes the number of literals of cube d.

The power (saving) value for extracting kernel D is defined in equation 3. In
this equation, the first term accounts for the reduction in the load on the inputs of
the kernel. The second term accounts for the reduction in the load on the inputs
to the co-kernels of the given kernel. The third term accounts for the cubes of the
function that are removed from the original SOP representation of the function.
Note that in this representation di.qj corresponds to a cube of the original SOP
representation of the function. The forth term corresponds to power consumption
at the output of the new node which is inserted into the network. The fifth term
corresponds to the power consumption at the output of the cubes of the new node
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mized. Boolean optimization techniques use don’t care sets derived from the net-
work structure and/or specified by the user to compute a local don’t care for each
node in the network and then optimize the local function of each node using this
local don’t care. The following sections discuss how each of these techniques are
used to optimize power consumption in a Boolean network.

2.1   ALGEBRAIC LOGIC RESTRUCTURING

Logic extraction applied to a set of Boolean functions (e.g. represented as a
multi-level Boolean network) is the process of identifying and creating some
new functions and variables, and re-expressing the original functions in terms of
the original as well as the new variables. The optimization problem associated
with the extraction is to find a set of new functions such that the resulting Bool-
ean network is optimal (e.g. area, power dissipation). Factorization is the process
of deriving a factored form from a sum-of-products form. The associated optimi-
zation problem is to find a factored form with the minimum cost (e.g. number of
literals, switched capacitance) [8]. The complexity of finding the factorized form
and decomposition of nodes is very high for any real sized network therefore
approximation need to be made in order to make the problem tractable. A power-
ful approach introduced in [7] is to assume that logic functions in the network
are algebraic expressions. Using this approach only common sub-expressions
instead of sub-functions are considered for extraction and factorization. The
approach is to first make all functions prime and irredundant and then look for
sets of cubes which divide two or more expressions in a formal, algebraic way.

By restricting computations to algebraic manipulations, fast algorithms for
division and other similar operations are obtained. These operations include: 1)
algebraic extraction algorithms which provide fast methods for identifying logic
sharing among different nodes, 2) substitution algorithms which help in reducing
the area by taking advantage of functions that have already been implemented, 3)
algebraic factorization algorithms which provide fast techniques for estimating
the area of the network by computing the number of literals in the factored form
of the network and 4) decomposition of nodes into smaller nodes by taking
advantage of logic sharing within the same node. The application of these proce-
dures during technology independent phase of logic synthesis has proved to be
quite effective. The formulation of Rectangle Covering Problem introduced in
[8] provides an efficient technique for generating the set of kernels, kernel inter-
sections and common cubes [7] which represent good candidate divisors of alge-
braic expressions.

The traditional cost for optimization using algebraic techniques has been net-
work area. This in general has been represented as the number of literals in the
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A number of models have been proposed to more accurately estimate the
contribution of nodes in the technology mapped network to the load values in the
technology mapped network. Load in the Factored Form (LF) and Load in the
Sum-of-Products from (LS) are two such models presented in [33].

Meanwhile, interconnect plays a role in determining the total chip area,
delay and power dissipation, and hence, must be accounted for as early as possi-
ble during the design process. The interconnect capacitance estimation is how-
ever a difficult task even after technology mapping due to lack of detailed place
and route information. Approximate estimates can be obtained by using informa-
tion derived from a companion placement solution or by using stochastic/proce-
dural interconnect models [51].

1.1.2 Switching Activity Values
Switching activity at a node gives the number of times in a clock cycle that the
value at the output of the node changes its value. Hazards and glitches contribute
to the switching activity of a node therefore the value of the switching activity at
a node is dependent on the delay model being used. Power estimation techniques
could account for steady-state transitions and/or hazards and glitches. Some-
times, the first component of power consumption is referred to as the functional
activity while the latter is referred as the spurious activity. It is shown in [4] that
an average of 10-40% of the total power is dissipated in glitching. Estimating
power due to spurious activity at the technology independent phase of logic syn-
thesis is however difficult and imprecise as it requires accurate delay information
which is not available since the circuit is not yet mapped to gates in a cell library.
Therefore, logic optimization techniques tend to consider only the functional
activity of nodes.

2   Technology Independent Power Optimization

Given the functional description of a combinational design, the goal of technol-
ogy independent logic optimization is to produce an area, delay or power optimal
multi-level description of the circuit. This multi-level description or a Boolean
network consists of single output nodes and edges where each node represents a
Boolean function of the variables associated with its incoming edges. The opti-
mal circuit produced during the technology independent optimization, is then
used as the input to the technology mapping process. Technology independent
optimization techniques include algebraic logic restructuring techniques and
Boolean optimization techniques. Algebraic restructuring consist mainly of
identifying common sub-expressions in the node functions and introducing new
nodes or removing existing nodes such that the cost under consideration is mini-
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logic synthesis while Section 3 considers power optimization in PLAs (two-level
logic). Sections 4 and 5 address technology mapping and post-mapping optimi-
zation for low power. The chapter is concluded with the description of the meth-
odology (scripts) for power optimization in Section 6.

1.1   SOURCES OF POWER DISSIPATION

Power dissipation in CMOS circuits is caused by three sources: 1) the leakage
current, 2) the short-circuit (rush-through) current, and 3) the capacitive current.
The short-circuit and subthreshold currents in CMOS circuits can be made small
with proper circuit and device design techniques. The dominant source of power
dissipation is thus the charging and discharging of the capacitances associated
with node ni and is given by:

(1)

where V
dd

 is the supply voltage, f is the clock frequency, C
i
 is the capacitance

seen by the node and Ei (referred to as the switching activity) is the average num-
ber of transitions at the output of the node in a clock cycle. The product of Ci and
Ei is referred to as the switched capacitance. At the logic level, it is assumed that
Vdd and f are fixed, thus, the total switched capacitance of the circuit is mini-
mized.

An estimate for the total power consumption of a network is obtained by
summing equation 1 over all the nodes in the technology mapped network. Leak-
age and sub-threshold currents are small compared to charging and discharging
currents and are ignored in this model. Also short circuit current can be modeled
as an equivalent capacitance which is added to Ci. During logic synthesis, all
architectural and technology related issues for the network being optimized have
been decided. This means that the values for V

dd
 and f are fixed during logic syn-

thesis. Therefore the main issues in computing the power estimate are in comput-
ing the load and switching activity value at the output of the node. These issues
are discussed in the next section.

1.1.1 Load Values
Power dissipation is dependent on the physical capacitances seen by individual
gates in the circuit. Accurate values for this load can be obtained for a mapped
network by using the logic and delay information from the target library. Esti-
mating this capacitance at the technology independent phase of logic synthesis is
however difficult and imprecise as it requires estimation of the load capacitances
from structures which are not yet mapped to gates in a cell library.
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that these techniques are a good starting point for developing a power optimiza-
tion paradigm.

This chapter discusses the procedures and the methodology necessary to perform
logic synthesis on a Boolean network such that after technology mapping the
power consumption of the network is minimized. It assumes that the readers are
familiar with the basic logic synthesis flow and operations. (A recent book by
Hachtel and Somenzi [27] is an excellent reference on the subject.) This chapter
is not meant to provide a comprehensive survey of related work, rather to sum-
marize the basic techniques in a form suitable for researchers and workers in the
field.

In the remainder of this section, power estimation issues that need to be con-
sidered during the power optimization process are discussed. Section 2 describes
power optimization techniques for technology independent phase of multi-level

Figure 2. Logic synthesis flow.
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already in the network to implement the function of another node in the network.
Combinational speed-up algorithms work by identifying a set of nodes which
when removed reduce the delay of the network. The operation then proceeds to
eliminate these nodes from the network by collapsing them into their fanout
nodes. Local optimization techniques include two-level node simplification
using the local don’t care set of the network which is derived from the network
structure and also the don’t care specified by the user. These techniques work on
finding a minimal representation of the function of the node. Factorization and
decomposition techniques operate by identifying logic sharing within the same
function which when extracted, will result in a smaller representation of the
function. Technology mapping is used to implement optimized Boolean network
using the gates in the target technology such as standard cells and FPGAs.

Figure 2 shows the typical flow for logic synthesis targeting minimum area.
The approach here is to first optimize the network for area and then use speed-up
techniques to reduce the network delay. The network is then mapped to the target
technology using a technology mapping algorithm. If the delay constraints are
not met, then the network is re-synthesized to achieve the desired delay require-
ments.

 Power consumption of a Boolean network is in general proportional to the
area of the circuit. This means that even though it is possible to make area-power
trade-offs, still the general trend is that as area is reduced, power consumption in
the circuit is also reduced, that is, any paradigm for minimizing the power con-
sumption of the network should also attempt to achieve an area solution that is
comparable to the solution provided by an area optimization technique. Current
techniques for minimizing circuit area have proved quite effective. This means

Figure 1.  ASIC design flow.
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1   Introduction

Low power VLSI design can be achieved at various levels of the design abstrac-
tion from algorithmic and system levels down to layout and circuit levels (see
Figure 1). Power optimization techniques at the system, architectural (behav-
ioral) design level, register-transfer (RT) level, physical design level, and the cir-
cuit level have been addressed by researchers in the past. Logic synthesis
however, is an important part of the design cycle for a digital system. This means
that in order to minimize power effectively, power has to be considered during
logic synthesis and optimization.

Logic synthesis provides the automatic synthesis of gate-level netlists, mini-
mizing some objective function subject to various constraints. The goal, in gen-
eral is to obtain a minimum area circuit subject to a given delay requirement.
Example inputs to a logic synthesis system include two-level logic representa-
tion, multi-level Boolean networks, finite state machines and technology mapped
circuits. Depending on the input specification, the target implementation, the
objective function, and the delay models used, different techniques are applied to
transform and optimize the original RTL description. These techniques include
the global area minimization strategy, combinational speed-up techniques based
on local restructuring, local optimizations, and   technology mapping for area or
speed optimization.

The basic idea behind extraction techniques is to look for expressions that
are observed many times in the nodes of the network and extract such expres-
sions. The extracted expression is implemented only once and the output of that
node replaces the expression in any other node in the network where the expres-
sion appears. Re-substitution is the process of using the function of a node


