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Abstract 

This paper presents a spectrally-weighted balanced truncation technique for tightly coupled integated circuit inter-
connects, when the interconnect circuit parameters change as a result of statistical variations in the manufacturing
process. The salient features of this algorithm are the inclusion of the parameter variation in the RLC interconnect,
the guaranteed passivity of the reduced transfer function, and the availability of provable spectrally-weighted error
bounds for the reduced-order system. This paper shows that the variational balanced truncation technique produces
reduced systems that accurately follow the time- and frequency- domain responses of the original system when varia-
tions in the circuit parameters are taken into consideration. Experimental results show that the new variational spec-
trally-weighted balanced truncation attains, in average, 30% more accuracy than the variational Krylov-subspace-
based model-order reduction techniques.
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1   Introduction

Model reduction techniques enable circuit designers to capture the interconnect effects with a

much shorter computational time than that required for simulation of the full circuit. On the other

hand, as the minimum feature sizes shrink to the sub-quarter microns, geometrical variations in

the line width, metal height, and dielectric thickness due to process variations have more pro-

nounced effects on the reliability and performance of VLSI circuits [1]. As a consequence, it is

crucial to assess the impact of these process variations on model-order reduction techniques. 

Among various classes of model reduction techniques, explicit moment-matching algorithms

(AWE [2], RICE [3]) and Krylov-subspace-based methods (Pact [4], PVL [5], PRIMA [6]) have

been most commonly employed for generating the reduced-order models of the interconnects.

The computational complexity of these model-order reduction techniques is primarily due to the

matrix-vector products. However, these methods do not provide a provable error bound for the

reduced system. Extensions of explicit moment-matching techniques have been proposed

recently, to reduce the linear time-varying (LTV) as well as non-linear dynamic systems [7], [8].

An alternative model reduction technique is the balanced realization [9], [10], [11]. While

being widely investigated in control system theory, balanced realization techniques have not

received the same attention as Krylov-based and Pade-based model reduction techniques in the

context of interconnect analysis, partly because these methods involve computation-intensive

algorithms [9], [11], [12]. Furthermore, it is well known that the balancing transformation may be

poorly conditioned when the system is nearly uncontrollable or unobservable [9]. The most sig-

nificant drawback of the conventional balanced realization techniques lies in their inability to

guarantee a passive reduced-order system. However, the balanced truncation technique can

achieve smaller reduced-order models with a better error control than those obtained using Kry-

lov-subspace-based order reduction techniques. 

Recently, in [13], the authors developed a guaranteed passive balancing transformation for the

model-order reduction of large LTI systems. 

The balanced realization-based model reduction methods provide an  error-bound between

the transfer function of the original and that of the reduced system.The bottleneck in balanced

truncation methods is the computational complexity for solving the Lyapunov equations. Refer-

ence [10] uses the truncated balanced realization technique as well as the Schur decomposition to

develop an efficient numerical method for the order reduction of a large linear time-invariant

(LTI) system. References [11] and [12] propose efficient algorithms to solve the two Lyapunov
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equations in order to obtain the controllability and the observability grammians. The algorithms

are based on the Alternated Direction Implicit (ADI) method that was first proposed in [14], [15]. 

A shortcoming of these model reduction techniques is that they do not reshape the frequency

spectrum to emphasize error minimization in some frequency range of interest. Furthermore, they

do not address the numerical difficulties when the system is nearly uncontrollable or unobserv-

able. In [16]-[18], a new numerically stable, frequency-weighted balanced truncation technique

was presented. The proposed method gives a definite a priori bound on the weighted error, and is

guaranteed to be stable even when both input and output weightings are utilized at the same time. 

Analyzing the interconnect without taking into account the rather large variations of the inter-

connect geometries is not useful in practice. These variations are especially large in the inter-layer

dielectric (ILD) thickness and the metal line width and height. These process-dependent geomet-

rical variations have a definite impact on the total line and inter-wire coupling parasitics, which in

turn results in variations in the signal delay and the coupling noise. In [19], Liu et al. studied the

effect of interconnect parameter variations on the Krylov-subspace model-order reduction tech-

niques. The paper adds the variability to the Krylov-subspace-based model reduction method [4],

[6] by borrowing some ideas from the matrix perturbation theory [20]. The authors allow two-

dimensional variations on the projection matrices. To compute the corresponding sensitivities of

the susceptance and conductance matrices to each dimensional variation, some sample points

were picked up and the dominant eigenvalues/eigenvectors were calculated. 

The goal of the present paper is to study the effects of process variations and spectral shaping

on model-order reduction using an extended balanced truncation technique and to propose an effi-

cient order reduction technique that includes these effects. The main contribution of this paper is

the use of the spectrally-weighted balanced truncation method proposed in [16]-[18] combined

with a new variational balanced truncation approach proposed in that accounts for process varia-

tions resulting in a new variational spectrally-weighted balanced truncation method [21]. The

works of [18], [19], and [21] have laid the groundwork for interesting research on various exten-

sions of balanced truncation method (e.g., [13]) and model-order reduction of parameterized

interconnects (e.g., [22]). To preserve the passivity, the proposed algorithm employs results of

[13]. As the future work, we will investigate the systematic way of determining the input/output

weighting functions for the spectrally-weighted balanced truncation method.

This paper is organized as follows: Section 2 gives a brief overview of the balanced realization

technique. Section 3 describes the frequency-weighted model reduction proposed in [16]-[18]. A

discussion about the effect of process variations on interconnect modeling is provided in Section
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4. Also, in Section 4, the variational balanced truncation with spectral shaping is illustrated, and a

theoretical comparison between the proposed algorithm and the work presented in [19] is pro-

vided. Section 5 discusses the experimental results including the comparison between the pro-

posed model reduction technique and different model-order reduction techniques in [6] and [13].

The accuracy of the proposed order reduction technique in generating low-order reduced systems

for electromagnetically coupled global interconnect and H-tree clock distribution network is

examined. Finally, Section 6 presents the concluding remarks for this paper.

2   An overview of the balanced realization technique

Consider the state-space representation of a linear time-invariant (LTI) system:

   (1)

   (2)

where , , , and . represents the state vec-

tor of the system. n denotes the order of the system, and p represents the size of the input vector.

In a general nth-order RLC circuit, for example, the state vector constitutes node voltages across

circuit capacitances, voltage sources, currents flowing through inductors, and current sources. The

system matrix A is readily obtained from the conductance and susceptance matrices of the RLC

circuit. Similar to [5], the representation of A with respect to the susceptance, , and

conductance, , matrices is carried out around an expansion point , such

that  becomes non-singular. The goal of the model-order reduction is to

obtain a similar lower order system

    (3)

   (4)

where  , , , , and . r, the order of the

reduced system, is much smaller than that of the original system. The balanced truncation tech-

nique carries out the order reduction by providing an  error-bound between the transfer func-

tions of the original and the reduced systems. 

Central to the state-space description and balanced truncation of dynamic systems are the con-

trollability and observability grammians. The key functions in formulating the passivity-preserv-

ing balanced truncation of linear systems are the positive-definite controllability and observability

grammians PL and QL of the system, which are obtained by solving Lur’e equations [13], i.e.,

x· Ax Bu+=

y Cx=

A ℜn n×∈ B ℜn p×∈ C ℜp n×∈ u ℜp 1×∈ x ℜn 1×∈

L ℜn n×∈

G ℜn n×∈ s0 0≠( ) C∈

A L G s0⁄+( ) 1– G[ ]–=

xr
· Arxr Brur+=

yr Crxr=

Ar ℜk k×∈ Br ℜk p×∈ Cr ℜp k×∈ ur ℜp 1×∈ xr ℜk 1×∈

L∞



5

(5)

    (6)

The controllability grammian is a measure of how much the input energy is coupled to the states

of the system. The observability grammian is a measure of how the states and the outputs are cou-

pled to each other. The controllability and observability grammians give some interesting insights

about the system characteristics. It can be proved (cf. reference [9]) that there exists a similarity

transformation matrix T that maps any given representation of a system to a balanced realization

such that the controllability and observability grammians of the new system  are equal

and diagonal, i.e.,

 (7)

where . Calculating the diagonal matrices PL,r and QL,r, whose diagonal ele-

ments represent the singular values associated with each state variable xk , ; makes it pos-

sible to find a criterion for evaluating the possibility of eliminating xk in the reduced model scheme

while preserving the time and frequency domain characteristics of the original system. The matrix

Σ is partitioned into to two submatrices: 

  (8)

where , , and the new coordinate transformed system (Ar , Br , Cr)

is also partitioned in conformity with Σ as:

         Ar = = ,   Br  =  = ,      Cr = = (9)

The reduced-order model based on (A11, B1, C1) is stable and the -error is bounded by: 

(10)

APL PL AT+ KcKc
T–=

PL CT B– Kc Jc
T–=

JcJc
T D DT+=

ATQL QL A+ Ko
T Ko–=

QLB CT– Ko
TJo–=

Jo
TJo D DT+=

Ar Br Cr, ,( )

PL r, QL r, Σ diag ξ1 ξ2 … ξn, , ,( )= = =

ξ1 ξ2 … ξn 0>≥ ≥ ≥

1 k n≤ ≤

Σ
Σ1 0

0 Σ2

=

Σ1 ℜk k×∈ Σ2 ℜ n k–( ) n k–( )×∈

TAT
1– A11 A12

A21 A22

TB
B1

B2

CT
1– C1 C2

L∞

H s( ) Hr
k s( )– ∞ 2 ξ i

i k 1+=

n

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

≤
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[13] has proved that  obtained using this method is actually positive-real, and therefore,

the reduced-order model is passive. According to Eq. (10), the error bound is similar to the twice-

the-sum-of-the-tail formula obtained for conventional balanced truncation method presented in

[9]-[12]. The balanced realization relies on the calculation of controllability and observability

grammians of the original system. The Lur’e equations are solved in order to obtain the system

grammians. The procedure to calculate the grammians effectively involves applying the Cholesky

factorization to matrix Q [10],

(11)

and diagonalizing the matrix RPRT, i.e.,

      with 

A balancing transformation, T, which maps the original system to the balanced realization form is

obtained as follows:

(12)

This algorithm, however, involves solving a generalized eigenvalue problem whose dimension

is as large as the order of the original transfer function [9]. More precisely, the Lur’e equations

(which is similar in form to Lyapunov equations) still need to be solved for the mapped system in

order to obtain the coordinate-mapped controllability and observability grammians, PL and QL, a

task that is computationally quite expensive.

The problem of solving a high-order set of matrix equations for the eigenvalues and eigenvec-

tors of the system can be avoided by using the Krylov subspace-based methods. In fact, studying

the algorithm proposed by [23] shows that it is only necessary to find the first k largest eigenval-

ues of the product and their corresponding left and right eigenvectors. Based on this observation,

a modified version of the Safanov’s algorithm is used in [10]. More precisely, in [10], the Arnoldi

algorithm is utilized to compute the largest eigenvalues and the corresponding left and right

eigenvectors. PLQL is a large symmetric matrix, which is a positive definite matrix. 

The underlying problem is to efficiently obtain the first k largest eigenvalues of a symmetric

matrix. The Lanczos method is utilized to efficiently calculate this subset of the system eigenval-

ues. The Lanczos algorithm reduces the original large symmetric matrix, M = PLQL, to a smaller

tridiagonal matrix Tq where . The algorithm involves successfully filling in the col-

umns VL  and VR  such that VL
T VR = Dq =diag(δ1, δ2 ,...., δq), where  VL  = [vL1 vL2 ... vLq] and VR  =

Hr
k s( )

Q RTR=

RPRT UΣ2UT= UTU I=

T Σ 1 2⁄– UTR=

Tq ℜq q×∈
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[vR1 vR2 . . . vRq] and the vectors  and span the Krylov   subspaces  Kq(v1,

P(L)Q(L)) and Kq(w1, P(L)Q(L)), respectively:

                           

The columns of the two projection matrices , form bases for the respective

right and left eigenspaces of the Krylov subspace in the Lancsoz method, associated with their

"big" eigenvalues . The matrices VL  and VR  are used as bases for the relevant eigens-

paces of the matrix PLQL in the derivation of the reduced-order model. 

A shortcoming of the conventional balanced truncation techniques proposed in [9], [11]-[12],

and [13] is that they do not reshape the frequency spectrum to emphasize error minimization in

some frequency range of interest. Our preliminary experiments show that the error between the

transfer function of the actual interconnect system and the transfer function of the reduced order

system obtained using any conventional order reduction technique is frequency-dependent, and

increases with frequency, which is undesirable. Fig. 1 visualizes this observation, where the

energy of the error arising from order reduction of the original system is frequency dependent.

Fig. 1. The L2-norm of the error vs. frequency

Section 3 describes a numerically stable, frequency-weighted balanced truncation technique

proposed by [16]-[18].

vRi{ }
i 1=
q

vLi{ }
i 1=
q

colsp VL( ) Kq vL1 M,( ) span vL1 M vL1 … Mq 1–
vL1, , ,{ }= =

colsp VR( ) Kq vR1 M,( ) span vR1 MvR1 … M
q 1–

vR1, , ,{ }= =

VL
T P L( )Q L( )( )VR Tq

α1 β2 0 … 0

γ2 α2 β3

0 γ3 0

βq

0 … 0 γq αq

= = ...
...

...
...

...

...
...

...

VL
T
VR Dq diag δ1 … δq, ,( )= =

VL VR, ℜn q×∈

ξ1
2 … ξq

2, ,
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3   Balanced truncation with spectral shaping 

So far, it has been observed that balanced realization is an attractive model reduction technique

due to the fact that it provides a priori -error bound for the reduced-order system. As men-

tioned above, the frequency dependence of the error between the reduced-order and the original

system transfer functions is important in many applications. In other words, error should be small

in one or more frequency ranges of interests, while it can be larger in other ranges, depending on

the application. The balanced truncation technique extended to include weighting on the input

and/or output as shown in Fig. 2 [16]-[18]. 

To determine the state-space characteristics of the new augmented system, two basic questions

must be addressed (cf. Fig. 2): 

1. What set of points in the x-state space could be a part of the zero initial condition response

for the weighted input denoted by η(t)?

2. What set of points in the x-state space as initial conditions could produce a weighted output

denoted by ξ(t)?

Consider the state-space representation of a set of tightly coupled RLC interconnects given by

equations (1) and (2). The goal of the frequency-weighted balanced realization technique is to cal-

culate of degree k (k < n), while minimizing

(13)

To obtain such a reduced system, the grammians of the augmented system must first be calcu-

lated and the same steps that are used for a unity-weighted system should then be employed. Most

importantly, the weighting functions are chosen to be positive real functions. Note that the pur-

pose of reshaping the frequency response is to minimize the error of the reduced order system.

The weighting functions should thus: (1) have a simple rational function in the s-domain, so that

both the frequency- and time-domain behavior of the augmented system can be easily studied, and

(2) be synthesized using simple low-order passive RLCK, in case the actual realization is of inter-

est. 

L∞

Wi(s) B (sI - A)-1 C Wo(s)

The direction of matrix multiplication 

Fig. 2. Block diagram of the original LTI system along with input and output weightings

η(t) ξ(t)

Hr
k s( )

Wo s( ) H s( ) Hr
k s( )–( )Wi s( ) ∞
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First, we write the Laplace transformation of the input and output weighting functions that are

chosen to be stable functions [16]:

(14)

(15)

According to the definition in [24], the controllable subspace of the augmented system,

H(s)Wi(s), is the solution set to the first question. A controller-form realization of the augmented

system H(s)Wi(s) is as follows:

, ,   (16)

Similarly, according to the definition in [24], the observable subspace of the augmented sys-

tem, Wo(s)H(s), is the solution set to the second question. An observer-form realization of the

augmented system Wo(s)H(s) is as follows:

,  , (17)

For a complete explanation of controller and observer form realizations, see chapter 3 of reference

[24]. Since all controllable and observable modes of these two augmented systems are determined

by  upper left corner submatrices of  and , the desired controllability and observability

grammians are thus given by the corresponding upper left corner submatrices of  and :

 , (18)

where  and  must satisfy the following Lur’e equations:

(19)

(20)

Wi s( ) Ci sI Ai–( ) 1– Bi Di+=

Wo s( ) Co sI Ao–( ) 1– Bo Do+=

Ai

A BCi

0 Ai

= Bi

BDi

Bi

= Ci C 0=

Ao
A 0

BoC Ao

= Bo
C
0

= Co DoC Co=

n n× Ai Ao

n n× P Q

PL

P P12

P12
T

P22

= QL

Q Q12

Q12
T

Q22

=

P Q

AiPL PL Ai
T Kc i, Kc i,

T+ + 0=

PL Ci
T

Bi– Kc i, Jc i,
T

–=

Jc i, Jc i,
T D DT+=

Ao
T QL QLAo Ko o,

T Ko o,+ + 0=

QLBo Co
T– Ko o,

T Jo o,–=

Jo o,
T Jo o, Do Do

T
+=
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The passivity of the original system and positive-realness of weighting function guarantee the

existence of matrices , , and , which satisfy equations (19) and (20) [13].

Expanding the  upper left corner block of the Lur’e equations yields:

(21)

(22)

We define the new variables:

(23)

(24)

It is readily seen that X and Y are symmetric matrices. As a consequence, there exist orthogo-

nal matrices U and V and diagonal matrices S and Z such that:

(25)

(26)

where S=diag(s1 , s2  , . . .  , sn), and  Z=diag(z1 , z2 , . . . , zn), and  ,

. Suppose that rank(X)=i and rank(Y)=j, where . We can

write:

(27)

(28)

Now, suppose that  and  is uniquely specified as , , and moreover,

let  and  denote the solutions of the Lur’e equations (21) and (22), which are both positive

semi-definite [13]. The similarity transformation  that simultaneously diagonalizes  and  is

thus as follows:

 (29)

PL QL, 0≥ Jc i, Jo o,

n n×

AP PAT Kc1Kc1
T+ + 0=

PCT BDi– Kc1Jc1
T

–=

Jc1Jc1
T D DT+=

ATQ QA Ko1
T Ko1+ + 0=

QB C
T
Do

T
– Ko1

T Jo1–=

Jo1
T Jo1 Do Do

T
+=

X Kc1Kc1
T BCiP12 P12

T
Ci

T
B

T
Kc i, Kc i,

T+ += =

Y Ko1
T Ko1 Q12BoC CTBo

TQ12
T Ko o,

T Ko o,+ += =

X USUT=

Y VZVT=

s1 s2 … sn 0≥ ≥ ≥ ≥

z1 z2 … zn 0≥ ≥ ≥ ≥ 1 i j, n≤ ≤

B Udiag s1
1 2⁄ … si

1 2⁄ 0 … 0, , , , ,( )=

C diag z1
1 2⁄ … zj

1 2⁄ 0 … 0, , , , ,( )VT
=

Kc1 Ko1 Kc1 B= Ko1 C=

P̂ Q̂

T̂ P̂ Q̂

T̂P̂T̂T T̂
1–( )T

Q̂T̂
1–

diag ξ1 … ξr ξr 1+ … ξn, , , , ,( )= =
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Similar to the unit-weighted balanced truncation method, this transformation matrix, , is

used to map the original system to a new coordinate transformed system for which the controlla-

bility and observability grammians are diagonal and identical. The reduced-order system is then

obtained from the transformed system. Most importantly, the reduced-order system is passive,

because  has been constructed using the positive semi-definite grammians  and . The bal-

anced truncation algorithm based on the coordinate transformed system using  preserves the

positive-realness of the transfer function, and hence preserves passivity. Note that  contains the

characteristics of the weighting functions. The input and output weightings are determined based

on the range of frequencies where the maximum accuracy is desired. The weighting functions

should emphasize the frequency ranges where more accuracy is required. Similarly, they must de-

emphasize the range of frequencies where the noise resulting from the order reduction has very

minimal energy or is out of the desired frequency bound.

4 Variational spectrally-weighted balanced truncation

Due to process variations, interconnect technology parameters are varying substantially. These

parameters can have as much as a % variation off their nominal values [1]. Therefore, the

effect of the process variations on the interconnect delay and crosstalk should be taken into con-

sideration. A common approach to anticipate these variations in the design is the conventional

skew-corner, worst-case modeling. This method, however, is too conservative because the proba-

bility of all 3-σ process corner values occurring simultaneously is very small. As a consequence,

statistically-based worst-case interconnect modelings using Monte-carlo simulation have been

proposed [25], [26]. These approaches, however, fail to handle large circuits that exist in reality.

To alleviate the problem of having large computational complexity (as also mentioned in [19]) the

effect of process variations must be taken into account in model-order reduction algorithms. Fur-

thermore, the resulting variational reduced-order model needs to converge to the reduced-order

model of the nominal network when all the parameter variations are zero.

Characterization of the interconnect geometry variation is an important issue in deep-submi-

cron VLSI technology. In order to accurately assess the performance of a complex interconnect

structure, it is essential to characterize the interconnect geometry, which in turn specifies the inter-

connect parasitics [19]. 

From a designer’s point of view, one important source of the IC performance variability is the

physical source of variability [27]. The manufacturing process variations can be overlooked at

T̂

T̂ P̂ Q̂

T̂

T̂

30
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two levels of IC fabrication. The variation at the first level of IC fabrication includes the case

where the interconnect (or device) parameters are constant within a die but vary within a wafer or

a lot. The process variation at the second level results in the variations of the device and intercon-

nect parameters within the die. Details about the physical imperfections, which lead to each of

these variations, are beyond the scope of this paper (see [25]-[27]). These two variations are

uncorrelated, thereby simplifying the mathematical formulations. Moreover, The physical varia-

tions induced by non-idealities of the manufacturing process manifest themselves to electrical

variations. For instance, for a given on-chip metal wire, a within-the-die width variation of ,

a within-the-wafer variation of , a within-the-die height variation of , and within-the-

wafer height variation of  will result in the non-zero offsets for the parasitic elements associ-

ated with that metal wire, i.e.,

where r0, c0, l0 are the zero-offset parasitic resistance, capacitance, and inductance per-unit

length. In general, for the susceptance and conductance matrices of the interconnect system that

are exposed to the process variations, we have:

(30)

(31)

To alleviate the problem of large computational complexity, the effect of process variations

must be taken into account in model-order reduction algorithms. Furthermore, the resulting varia-

tional reduced-order model needs to converge to the reduced-order model of the nominal network

when all the parameter variations are zero.

To obtain a balanced truncation technique that takes the process variations into account, we

should first find the new system matrix  (the so called perturbed system matrix) of coupled

interconnects affected by process variation with respect to the ideal system matrix, A, and the per-

turbed susceptance and conductance matrices  and . Lemma 1 helps us obtain the relation-

ship among the perturbed system matrix, the original system matrix, and the perturbed

susceptance and conductance matrices. 

w1 d,

w1 w, w2 d,

w1 w,

r w1 w2,( ) r0 r∆ 1 d, w1 d, r∆ 1 w, w1 w, r∆ 2 d, w2 d, r∆ 2 w, w2 w,+ + + + r0 r∆+= =

c w1 w2,( ) c0 c∆ 1 d, w1 d, c∆ 1 w, w1 w, c∆ 2 d, w2 d, c∆ 2 w, w2 w,+ + + + c0 c∆+= =

l w1 w2,( ) l0 l∆ 1 d, w1 d, l∆ 1 w, w1 w, l∆ 2 d, w2 d, l∆ 2 w, w2 w,+ + + + l0 l∆+= =

Gvar w1 w2,( ) G0 G∆ 1 w1 G∆ 2w2+ + G G∆+= =

Lvar w1 w2,( ) L0 L∆ 1w1 L∆ 2w2+ + L L∆+= =

Avar

L∆ G∆
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Lemma 1. Given an LTI system whose state-space representation is characterized by equations

(1) and (2), let the susceptance and conductance matrices,  and , vary according to equations

(30) and (31). If << , then: 

(32)

where            (33)

;  

where , and s0 is an arbitrary, but fixed expansion point such that

 becomes non-singular. 

Proof: Starting with the state-space representation of the perturbed system, the perturbed system

matrix, Avar, is derived by substituting (30) and (31) in the closed-form expression of the system

matrix, i.e.,: 

(34)

Expanding the Laurent series of , and neglecting higher order terms 

for  directly yields the desired equation.

                                                                           

Lemma 1 enables one to obtain the relationship between the perturbed system matrix and the

original one as well as the incremental variations of the susceptance and conductance matrices. 

The balanced realization approach directly utilizes the balancing transformation to project the

existing system to a new system whose controllability and observability grammians are identical

and diagonalized. The diagonal elements readily represent all the singular values corresponding to

the state variables of the system. The k-th order truncated balanced realization is then obtained by

considering the k largest singular-values. This approach provides insightful information about the

energy exerted by each state variable, and thus, the contribution of each state variable on the

external behavior of the system. From a mathematical viewpoint, the Hankel singular values of

the system transfer function are indeed the eigenvalues of the symmetric matrix, PLQL of the pas-

sivity guaranteed system. To realize the effect of interconnect parameter variations on the observ-

ability and controllability grammians of the system, the following Theorem is introduced.

L G

L∆
2

L
2

Avar A A∆+≈

A∆ A∆ 1 A∆ 2+=

A∆ 1 Ls0
1– G∆– L 1–

s0 Ls0∆ Ls0
1–
G+= A∆ 2 Ls0

1–
Ls0∆ Ls0

1– ∆G=

Ls0( )∆ L G s0⁄+( )∆=

A L G s0⁄+( ) 1– G[ ]–=

Avar I Ls0
1–

Ls0∆+( )
1–
Ls0

1–
G ∆G+( )–=

I Ls0
1–

Ls0∆+( ) Ls0
1–

Ls0∆( )
k

k 2≥
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Theorem 1. Consider a passive LTI system with the state-space representation given by equations

(1) and (2). Suppose that the system matrix  is perturbed by . The control-

lability and observability grammians of the perturbed system are approximately equal to:

(35)

(36)

where 

Proof:  A complete proof is provided for Eq. (35). Eq. (36) can be proven using a similar

approach. The positive-definite controllability grammian PL is the solution to Lur’e equation

given by equations (5) and (6). Due to the similarity between the Lur’e equation and the classical

Lyapunov equation used in the conventional balanced truncation method, PL will thus have the

same mathematical form as the solution to the corresponding Lyapunov equation, i.e., 

(37)

The matrix exponential  can be expressed in terms of its matrix-valued power series using

Cayley-Hamilton theorem [28]. In fact, according to the Cayley-Hamilton theorem, there exist

analytical scalar functions, , such that:

(38)

Replacing the exponential function and its transpose in Eq. (37) with their corresponding

equivalent finite-series representations in Eq. (38) yields the following expression: 

Replacing A in the above equation with , and performing matrix factorizations will

prove the validity of Eq. (35). It can also be proven that Eqs. (35) and (36) will indeed provide

upper bounds for Pvar and Qvar matrix values.

According to Theorem 1, any perturbation in the system matrix manifests itself as a congru-

ence transformation, , that maps the observability and controllability grammians of the system

to the ones for the new perturbed system demonstrated by Eqs. (35) and (36). Moreover, having

A ℜn n×∈ A∆ ℜn n×∈

Pvar ∆ϒPL ∆ϒT≅

Qvar ∆ϒT QL ∆ϒ≅

∆ϒ I n 1–( ) ∆A A 1–⋅⋅+=

PL = e
At

KcKc
T

e
AT t

td
0

∞

∫=

eAt

αk t( )}k 0=
n 1–

e
At

= αk t( )A
k

k 0=

n 1–

∑=

PL αk t( )Ak

k 0=

n 1–

∑ B
⎝ ⎠
⎜ ⎟
⎛ ⎞

αl t( )Al

l 0=

n 1–

∑ B
⎝ ⎠
⎜ ⎟
⎛ ⎞T

td
0

∞

∫=

A A∆+

ϒ∆
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positive-definite PL and QL automatically results in positive-definite Pvar and Qvar, because the

latter matrices are congruent to the former ones and the positive-realness is retained by congruent

transformations (the proof is straightforward). 

To account for the effect of process variations in the proposed model-order reduction tech-

nique, Theorem 1 is directly utilized in the new algorithm. Moreover, the proposed technique also

reshapes the estimated error in the frequency domain using the frequency weighting method

described in Section 3, and thus, creates a reduced-order system with more accurate time- and fre-

quency-domain responses than a Krylov-based order reduction technique. Reshaping the spec-

trum of the estimated error is undertaken by introducing input and/or output weighting functions

that appropriately minimize(s) the error in the regions where there is a large discrepancy between

the spectrum of the original system and that of reduced system. Comparing the proposed algo-

rithm with the work in [19] on the variational Krylov-subspace model-reduction, the key advan-

tages of variational truncated balanced realization is a superior accuracy and a proven error-

bound. Under specific assumptions set forth by the perturbation theory [20], one can theoretically

calculate the projection matrix of the perturbed system. Nevertheless, as also pointed out in [19],

it is impractical to use the perturbation theory. Instead, reference [19] seeks to calculate the first-

order expansion of the Krylov-subspace. More precisely, the method proposed by [19] involves

the calculation of the first-order expansion of the Krylov-subspace whose projection matrix is as

follows:

where w1 and w2 are dimensional variations. ’s are to be computed by choosing a set of sam-

ple points. A variational reduced-order model can then be constructed by inserting the resulting

variational Krylov-subspace into the PRIMA equations. The calculation of ‘s on a limited

number of sample points will lead to additional errors, which may become significant in long

interconnects carrying high-frequency signals. 

There are, however, some problems that need to be taken into account:

• We still need to solve the Lyapunov equations to obtain the grammians of the system. To effi-

ciently solve the Lyapunov equations, an iterative Lyapunov equation solver, Vector ADI

(VADI), which was presented in [11] and [12], is utilized. The VADI algorithm was developed

to provide a low-rank approximation to the solution of the Lyapunov equations. The VADI

method is as inexpensive as Krylov subspace-based moment matching methods. Reference

[12] includes a discussion about the number of required iterations and an analysis of the com-

putational complexity of the VADI method.

X w1 w2,( ) X0 X11∆ w1 X21∆ w2 X12∆ w1
2

X22∆ w2
2

+ + + +=

Xij∆

Xij∆
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• To account for the effect of process variations on the interconnect performance, Theorem 1 is

directly employed. However, equations (35) and (36) involve a matrix inversion operation. To

compute the inverse of a matrix more efficiently, the problem is elaborated in the form of

solving a set of linear algebraic equations rather than explicit inverse formation [20].

Now, we proceed with describing the new procedure for variational balanced truncation.

Given H(s), Wi(s), Wo(s): 

1. Using lemma 1, Determine matrix .

2. Using Theorem 1, compute the perturbing congruence transformation, . 

3. Using the VADI iteration, compute the controllability and observability grammians of  and

 of the original spectrally-weighted system by solving the Lur’e equations (19) and (20).

4. Calculate new perturbed controllability and observability grammians,  and  using

Eqs. (35) and (36). 

5. Using equations (23) and (24), compute Xvar and Yvar  from  and .

6. Decompose Xvar and Yvar  using the eigenvalue decomposition technique into

and .

7. Use equations (27) and (28), compute  and .

8. Using the VADI iteration, solve the mapped Lur’e equations (21) and (22) for the new per-

turbed system to compute  and .

9. Using the block Lanczos algorithm, obtain the reduced order left and right eigen-matrices,

 and , associated with the k largest singular values of S .

10. Let  and compute the singular-value decomposition of , i.e.,

.

11. Let and 

12. Compute the reduced order space realization using the matrices  and  as fol-

lows:

A∆

ϒ∆

PL

QL

Pvar Qvar

Pvar Qvar

UvarSvarUvar
T VvarZvarVvar

T

Bvar Cvar

P̂var Q̂var

V̂L var, V̂R var, P̂varQ̂var

Êvar V̂L var,
T

V̂R var,= Êvar

Êvar ÛE var, Σ̂E var, V̂E var,
T

=

ŜL var, V̂L var, ÛE var, Σ̂E var,
1 2⁄–

= ℜn k×∈ ŜR var, V̂R var, V̂E var, Σ̂E var,
1 2⁄–

= ℜn k×∈

ŜL var, ŜR var,
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(39)

Notice that to guarantee the passivity, the Lur’e equations must be solved instead of Lyapunov

equations, leading to a slight modification of the above algorithm.

Now we prove that a provable error bound exists on the -norm of the weighted error

between the original system and the reduced order system obtained using the proposed varia-

tional, spectrally-weighted balanced truncation.

Theorem 2. The -error of the variational model reduction with spectral shaping is: 

(40)

where σvar,i (i=1, ..., n) are singular values of the perturbed system.  

and

  

Proof: Expanding the left-hand side of Eq. (13) in terms of Laplace-domain expressions of 

and  results in the following equation:

In the spectrally-weighted variational balanced truncation, the reduced-order system is derived

by applying the transformation matrix, , on the original perturbed system and then truncating

the transformed system as mathematically described by equations (8)-(10):

Âvar B̂var

Ĉvar D̂var

ŜL var, AvarŜR var, ŜL var,
T

B

CŜR var, D
=

L∞

L∞

Wo s( ) Hvar s( ) Hrvar
k s( )–( )Wi s( ) ∞ k σvar i,

i k 1+=

n

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

≤

k Wo s( )L ∞ KWi s( ) ∞=

K diag s1
1– 2⁄ … sn

1 2⁄– 0 … 0, , , , ,( )UTB=

L CVdiag z1
1– 2⁄ … zn

1– 2⁄ 0 … 0, , , , ,( )=

H s( )

Hrvar

k s( )

Wo s( ) C sI Avar–( ) 1–
B Ĉvar sI Âvar–( )

1–
B̂var–( )Wi s( ) ∞

Tvar

Tvar AvarTvar
1– TB

CT 1– D

Âvar A12 B̂var

A21 A22 B2

Ĉvar C2 D

=
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Matrices  and , obtained from the seventh step of the spectrally-weighted varia-

tional balanced truncation algorithm, are also partitioned correspondingly. It is readily proved that

 and . Thus:

     

     

    (41)

Note that  represents the reduced-order model of

. Hence, there exists a bounded -error for the former system whose

reduced-order model is represented by the latter system.

Plugging the above equation into Eq. (41) proves the Theorem. 

As mentioned earlier, process variations will have a definite impact on the on-chip intercon-

nect parasitics. These variations have two adverse effects on the system matrix as also demon-

strated by Eqs. (32)-(33). Ignoring second-order variations, any incremental increase in the values

of parasitic conductances and resistances reduces , whereas any incremental increase in the

values of parasitic inductances and capacitances increases .

As an interesting special case, consider the tightly coupled RLC interconnects shown in Fig. 3.

It is easily proved that, for this case, the system matrix A is a symmetric positive-definite matrix

(the susceptance and conductance matrices are both symmetric positive definite matrices). Under

these circumstances, the following theorem proves useful in finding the upper and lower limits of

variations in the poles of the system transfer function of tightly coupled RLC interconnects that

are subject to the process variations:

Bvar Cvar

B̂var Bvar 1, K= Ĉvar LCvar 1,=

Wo s( ) C sI Avar–( ) 1–
B Ĉvar sI Âvar–( )

1–
B̂var–( )Wi s( ) ∞ =

Wo s( ) LCvar sI Avar–( ) 1– BvarK( ) LCvar 1, sI Âvar–( )
1–

Bvar 1, K– )Wi s( ) ∞ =

Wo s( )L Cvar sI Avar–( ) 1– Bvar( ) Cvar 1, sI Âvar–( )
1–

Bvar 1,– )KWi s( ) ∞ ≤

Wo s( )L ∞× Cvar sI Avar–( ) 1–
Bvar C var 1, sI Âvar–( )

1–
Bvar 1, )– ∞ KWi s( ) ∞×

Cvar 1, sI Âvar–( )
1–

Bvar 1,

Cvar sI Avar–( ) 1–
Bvar L∞

1
2
--- Cvar sI Avar–( )

1–
Bvar Cvar 1, sI Âvar–( )

1–
Bvar 1,–( )

∞
σvar i,

i k 1+=

n

∑≤

A∆

A∆
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Fig. 3. Circuit schematic of N interconnects that are electromagnetically coupled to each other

Theorem 3 [20]. Given an LTI system whose state-space representation is given by equations (1)

and (2), if the system matrix  is perturbed by  due to the process varia-

tion, then the following inequalities hold:

(42)

(43)

where  is given by lemma 1.

Proof hint: Follows from theories developed for the symmetric eigenvalue problem (see pages

395-400 of [20]). 

According to Theorem 3, the magnitude of difference between poles of the perturbed system and

those of the original system is limited by the L2-norm of the perturbing matrix, . Furthermore,

the eigenvalues of the perturbed system are upper and lower bounded by the values given in Eq.

(43).

5   Experimental results

In this section the proposed variational spectrally-weighted balanced truncation model-order

reduction technique (VSBT) is evaluated by performing experiments on a number of global inter-

connect structures such as clock trees and coupled interconnect lines. To preserve passivity, the

proposed VSBT incorporates the algorithm proposed in [13].

......
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.
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.
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......

A ℜn n×∈ A∆ ℜn n×∈

λk A A∆+( ) λk A( )– A∆ 2≤

λk A( ) λn A∆( )+ λk A A∆+( ) λk A( ) λ1 A∆( )+≤ ≤

A∆
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First, the accuracy of spectrally-weighted balanced truncation (SBT) technique [16]-[18] is

demonstrated and the result of applying this algorithm is compared with those obtained by utiliz-

ing our implementations of PRIMA [6] and the positive-real truncated balanced realization (PR-

TBR) [13]. The VSBT method is then applied to study the impact of the interconnect process vari-

ations on the timing performance of the clock trees and coupled busses. Finally, the accuracy of

VSBT is validated by using it to reduce the order of an arbitrary stable LTI system that is subject

to perturbations. 

5.1   A single lossy distributed RLC interconnect

First, consider a single lossy transmission line of 3-mm length. The values for unit-length capaci-

tances, inductances and resistances are demonstrated in Fig. 4. The transmission line is modeled

by 1000 lumped RLC sections in cascade, hence, the system has an order of 2000. Shown in Fig.

5 is the magnitude response of the reduced transfer function obtained by the proposed technique

compared to those of the PR-TBR algorithm and PRIMA algorithm. The order of the reduced sys-

tems is set to four. The input weighting function is identified as a lead compensator with its zero

located at a lower frequency compared to its pole location, i.e.,

(44)

Clearly, the SBT technique produces a reduced system with a frequency response closely follow-

ing that of the original system. The weighting function in Eq. (44) is capable of maintaining the

low-frequency accuracy, while significantly improving the high-frequency accuracy up to 10GHz. 

Wi s( ) 8 10
8× s 10

7
+( )

107 s 8 10
8×+( )

----------------------------------------=

C2 C1000

L1R1 R2
L2 R1000 L1000

C1

Rs

. . . .

Vin

Vout

Fig. 4. A single lossy line modeled by 1000 ladder RLC sections

    

C1 C2
… C1000 8= = = = fF

L1 L2
… L1000 0.05= = = = nH

R1 R2
… R1000 0.1= = = =

Rs 0.2= kΩ
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5.2   Two electromagnetically-coupled interconnects

To examine the performance of the proposed SBT technique in high-frequency coupled intercon-

nects, two electromagnetically-coupled interconnects are considered. Shown in Fig. 6 is the dis-

tributed RLC model for these two interconnects. The values for the electrical elements of

interconnects are also indicated underneath the circuit schematic. The capacitive coupling is mod-

eled by distributed floating capacitances, Cc. In state-of-the-art CMOS technologies, the coupling

capacitances account for approximately 70-95% of the total node capacitances, which makes the

coupling noise analysis even more important. Similarly, mutual inductances with a coupling coef-

ficient of k capture the inductive coupling between the two interconnects. To include the most

general case, the electrical values of the two lines are considered to be different. CL1 and CL2 rep-

resent the load capacitances at the far end terminations of the aggressor and victim lines. In high-

speed ICs, the lines are normally driving other CMOS buffers, therefore, the load capacitances are

comprised of the input capacitances of the CMOS receiver buffers driven by the interconnects.
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The receiver buffer sizes for long interconnects are rather large, leading to large load capaci-

tances, CL1 and CL2. Each line is modeled using 500 ladder RLC sections in cascade, to accu-

rately capture the distributed nature of long interconnects in high-speed VLSI circuits.

In this experiment, the accuracy of the proposed SBT method in estimating the spectrum of elec-

tromagnetic crosstalk is examined. The frequency response of the two coupled RLC interconnects

with the input signal Vin at the near end of the aggressor line and the output voltage across the load

capacitance CL2 at the far end termination of the victim line is first simulated using HSPICE.

Next, three model-order reduction techniques are employed to reduce the order of the original

system: PRIMA [6], PR-TBR [13], and the proposed SBT method. The order of the system is

reduced to eight using these three different order-reduction techniques. For the SBT method, a

first-order lowpass weighting function, , at the input is incorporated. To

calculate the time-constant of the weighting function, τ0,wi, an important attribute of the crosstalk

noise is utilized. The time-domain crosstalk voltage experiences its maximum gradient around its

50% rising transition time. The 50% rising transition time is calculated by using an extension to

the Elmore delay metric for RLC tree circuits [28]. The maximum time-domain variation corre-

sponds to the high-frequency spectral components of the signal. As a consequence, an input

weighting function with a time-constant equal to 50% of the rising transition time of the far end

crosstalk greatly reduces the high-frequency imprecision of the low-order reduced system

obtained by PRIMA and PR-TBR techniques. This is evident from Fig. 7 where the magnitude

response of the two coupled RLC circuits in Fig. 6 is compared with those of the reduced systems.

Wi s( ) 1 1 sτ0 wi,+( )⁄=
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All of the order reduction techniques in this experiment accurately predict the spectrum of the

far end crosstalk at the low frequency range. However, PRIMA and PR-TBR are incapable of fol-

lowing the signal spectrum for frequencies beyond 700 MHz. In contrast, SBT follows the spec-

tral variations of the crosstalk for frequencies up to 7 GHz. 

Fig. 7. The magnitude response of the original system and reduced-order systems obtained by 

using SPBT, PR-TBR[13], PRIMA [16].
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Cc CcCc

Rs R11L11

Fig. 6. Two electromagnetically coupled RLC interconnects.
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5.3   H-tree clock distribution

An H-tree clock network is constructed and routed in the TSMC 0.13µm digital CMOS technol-

ogy. The clock tree is driven by a four-stage tapered buffer at the root of the tree, as shown in Fig.

8. The design target of the on-chip clock frequency is 3.0 GHz. The clock tree is modeled by a

large coupled distributed RLC network. More precisely, every 5µm segment of each line is mod-

eled by an RLC ladder network, whose R, L, and C values are changed due to metal width and

ILD thickness variations. Based on the data reported in [26] on the interconnect-dominated test

circuits, the typical variational distribution for metal interconnects as well as ILD thicknesses is a

normal distribution. The widths of metal and ILD layers vary up to 30% of their nominal values

(which is the ratio of the 3-σ variation to the nominal value stated as a percentage).

 L1  L2

 L3 L4

L5 L6

L7

...

  L1 = 2mm ; L2 = 1mm ; L3 = 500µm ; L4 = 250µm  ;  L5 = 125µm ;  L6 = 62µm ;  L7 = 30µm

Fig. 8. The H-tree clock distribution driven by a tapered buffer
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Table 1: Comparison between simulation results on an H-tree clock net with process variations

(Star-HSPICE level 49, 0.13µm, CMOS process). Delays are given in ps. 

Twenty experiments were carried out where, in each experiment, a set of normally-distributed

numbers for the metal and ILD width variations were generated. The 50% propagation delay at an

arbitrarily chosen fan-out (leaf) node was computed by the VSBT technique and compared with

the result obtained using the algorithm presented in [19]. Results of this comparison are provided

in Table 1. Throughout this experiment, for the sake of simplicity, the geometrical variations of

the interconnect are assumed to be mutually independent. In all of these experiments, the follow-

ing input weighting function was utilized to minimize the high-frequency components of the esti-

mated error:

3-σ variations
(%)

50% delay 
of the fan-out node

ILD width
Metal Layer 

width
paper [19]

(ps)
VSBT

(ps)
Star-HSPICE

(ps)

12.3 -10.3 195.7 196.0 196.3
5.8 19.8 211.5 216.4 216.2

-21.4 -2.3 192.3 200.1 200.1
-10.2 -8.2 201.0 208.2 206.6
2.45 22.1 200.4 204.1 203.2
19.2 10.6 190.1 195.0 194.2
-24.3 -17.8 198.2 200.3 200.0
28.1 11.4 212.3 222.5 221.7
-12.4 -5.9 214.5 221.9 220.9
-14.9 -2.5 184.1 196.2 195.6
-1.3 12.6 203.6 213.2 212.5
25.7 -7.2 202.2 207.3 206.4
7.6 1.6 202.7 217.7 215.3
-2.3 -29.1 212.2 233.4 231.8
20.1 -18.5 198.4 211.8 210.5
-18.8 13.7 182.2 201.0 200.3
22.4 -4.5 186.0 204.7 203.3
-27.6 13.6 181.7 193.1 192.8
5.3 14.3 208.5 218.2 217.8
28.7 -26.4 213.2 235.2 238.8
-13.4 -10.6 185.5 198.1 197.5
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From Table 1, it is clear that the VSBT algorithm can predict the 50% delays more accurately

than [19] for all possible 3-σ variations of metal and ILD layers used in Table 1. By comparing

the number of floating point operation (flops) from MATLAB simulation, the computation time

for the VSBT technique is, on average, 15% lower than that of [19]. Notice that although the com-

putation time for VSBT is not that much faster than that of [19], VSBT results in far more accu-

rate delay values compared to [19]. 

5.4   Two electromagnetically coupled interconnects with variational parameters

The next experiment is on two electromagnetically-coupled microstrip lines with statistically

varying electrical parameters due to process variations. Microstrip lines serve as the most appro-

priate models for characterizing the topmost metal layers in CMOS technology. The schematic of

these two coupled lines along with their nominal geometrical parameters are depicted in Fig. 9.

The accuracy of two variational order reduction techniques, the proposed VSBT and the tech-

nique proposed in [19], in estimating the delay of signal at the far end (load termination) of Line 2

is examined. 

Fig. 9. Two parallel microstrip lines in a 0.13µm CMOS process

The height and width of the metal layer are subject to % variations around their nominal

values. Twenty experiments were carried out, while allowing the metal height and width to vary

as normally distributed random processes. The following input weighting function was employed

to reshape the spectrum of the error:

Wi s( ) 4 10
7×

s 4 10
7×( )+

-------------------------------=

WD TH

HT

SP

L

 

  0.13µm technology with copper
  HT = 5µ
  TH = 1µ
  Cycle-time = 2nsec

  

  L =15mm
  WD = 1.8µ
  SP = 0.15µ

Line 1 Line 2

30±
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(45)

Results of these twenty experiments are reported in Table 2. The MATLAB-reported flop

usage of the VSBT technique is 10% more than that of [19], while the delays reported by VSBT is

more accurate than [19]. 

Table 2: Comparison between simulation results on two capacitively coupled microstrip lines

(star-HSPICE level 49, 0.13µm CMOS process). Delays are given in ps.

5.5    A general example

To demonstrate the accuracy and validity of VSBT on any arbitrary stable LTI system exposed to

perturbations, we started from an arbitrary state-space specification of an LTI system having

twenty poles and thirteen zeros, as shown in the pole-zero map of Fig. 10. Suppose that each and

3-σ variations
(%)

50% delay 
of the far-end node of Line 2 (ps)

Metal
W

Metal 
H

Paper [19]
(ps)

VSBT
(ps)

Star-HSPICE
(ps)

-0.4 20.1 598 597 596
15.8 -1.9 606 640 639
-9.3 13.2 509 525 524
-1.75 10.8 591 612 610
15.8 -14.4 680 700 697
-13.2 -0.9 706 734 731
19.1 -29.1 701 725 722
29.3 2.5 502 538 536
-1.8 7.9 583 610 607
11.5 -4.2 653 683 680
-15.3 19.4 643 665 662
14.7 25.3 548 567 563
1.1 -10.4 643 667 665

-15.6 22.1 696 717 711
18.2 -23.5 611 631 629
-13.2 -0.5 686 705 703
-9.4 21.7 629 644 643
0.7 -11.1 695 713 712
29.8 -20.6 556 598 592
10.8 -0.7 601 630 627

Wi s( ) 1 10
8×

s 1 10
8×( )+

-------------------------------=
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every element of the system matrix A experiences a normally distributed random perturbation

with a standard deviation of 30% around the nominal value. The order of the reduced order sys-

tem is set to three. It is desired to have high accuracy in high frequencies, therefore, the following

weighting function is used:

A variational spectrally-weighted reduced-order model is derived by using two approaches.

The first approach is to calculate the perturbed system matrix and then directly apply the spec-

trally weighted balanced truncation. The second approach is to use the VSBT technique. 

Fig. 11 shows and compares the bode diagram of the magnitude response, the bode diagram of

the phase response, the impulse response of the original perturbed system, the reduced-order sys-

tem by using direct order reduction technique, and the reduced-order system by using the VSBT

technique. Notice that applying the direct mode-order reduction technique on a large system of

parameter-varying interconnects to generate the reduced order system is very time consuming.

The reason for this is that the direct order reduction algorithm must be run on the system each

time under different offset values for electrical parameters of the interconnect. As can be seen

from Fig. 11, the difference between the two order reduction approaches is quite small. 
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Fig. 10. The pole-zero map of the LTI system specified in section 6.5
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Fig. 11. The bode diagram and impulse response of the original perturbed system, the system obtained by 
direct spectrally-weighted balanced truncation, and the VSBT algorithm

6   Conclusions and Future Work

In this paper a variational spectrally-weighted balanced truncation technique for the model-order

reduction of geometrically varying multiport RLC interconnects was proposed. It was shown that

the balanced truncation technique is a highly effective approach when the variations in the circuit

parameters need to be taken into consideration. Various experiments demonstrate that the compu-

tational run-time of the variational spectrally-weighted balanced truncation approach is 10-15%

higher than that of the variational Krylov-subspace-based model-order reduction techniques while

the accuracy is also 20% higher, on average.

As a future work, we will investigate the systematic way of determining the input/output

weighting functions that minimize Eq. (13) in the spectrally-weighted balanced truncation

method.
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